rtsp_server: Add example making use of subclassing RTSPMediaFactory and RTSPMedia

This commit is contained in:
Sebastian Dröge 2020-02-23 10:26:28 +02:00
parent 51545b90f0
commit 7e989631f8
2 changed files with 487 additions and 1 deletions

View file

@ -15,6 +15,7 @@ gstreamer-video = { path = "../gstreamer-video" }
gstreamer-pbutils = { path = "../gstreamer-pbutils" } gstreamer-pbutils = { path = "../gstreamer-pbutils" }
gstreamer-player = { path = "../gstreamer-player", optional = true } gstreamer-player = { path = "../gstreamer-player", optional = true }
gstreamer-editing-services = { path = "../gstreamer-editing-services", optional = true } gstreamer-editing-services = { path = "../gstreamer-editing-services", optional = true }
gstreamer-sdp = { path = "../gstreamer-sdp", optional = true }
gstreamer-rtsp = { path = "../gstreamer-rtsp", optional = true } gstreamer-rtsp = { path = "../gstreamer-rtsp", optional = true }
gstreamer-rtsp-server = { path = "../gstreamer-rtsp-server", optional = true } gstreamer-rtsp-server = { path = "../gstreamer-rtsp-server", optional = true }
gstreamer-rtsp-server-sys = { git = "https://gitlab.freedesktop.org/gstreamer/gstreamer-rs-sys", features = ["v1_8"], optional = true } gstreamer-rtsp-server-sys = { git = "https://gitlab.freedesktop.org/gstreamer/gstreamer-rs-sys", features = ["v1_8"], optional = true }
@ -43,7 +44,7 @@ gtksink = ["gtk", "gio"]
gtkvideooverlay = ["gtk", "gdk", "gio"] gtkvideooverlay = ["gtk", "gdk", "gio"]
gtkvideooverlay-x11 = ["gtkvideooverlay"] gtkvideooverlay-x11 = ["gtkvideooverlay"]
gtkvideooverlay-quartz = ["gtkvideooverlay"] gtkvideooverlay-quartz = ["gtkvideooverlay"]
gst-rtsp-server = ["gstreamer-rtsp-server"] gst-rtsp-server = ["gstreamer-rtsp-server", "gstreamer-rtsp", "gstreamer-sdp"]
gst-rtsp-server-record = ["gstreamer-rtsp-server-sys", "gstreamer-rtsp-server", "gstreamer-rtsp", "gio"] gst-rtsp-server-record = ["gstreamer-rtsp-server-sys", "gstreamer-rtsp-server", "gstreamer-rtsp", "gio"]
v1_10 = ["gstreamer/v1_10"] v1_10 = ["gstreamer/v1_10"]
pango-cairo = ["pango", "pangocairo", "cairo-rs"] pango-cairo = ["pango", "pangocairo", "cairo-rs"]
@ -110,6 +111,10 @@ name = "rtpfecserver"
name = "rtsp-server" name = "rtsp-server"
required-features = ["gst-rtsp-server"] required-features = ["gst-rtsp-server"]
[[bin]]
name = "rtsp-server-subclass"
required-features = ["gst-rtsp-server"]
[[bin]] [[bin]]
name = "tagsetter" name = "tagsetter"

View file

@ -0,0 +1,481 @@
// This example demonstrates how to set up a rtsp server using GStreamer
// and extending the behaviour by subclass RTSPMediaFactory and RTSPMedia.
// For this, the example creates a videotestsrc pipeline manually to be used
// by the RTSP server for providing data, and adds a custom attribute to the
// SDP provided to the client.
//
// It also comes with a custom RTSP server/client subclass for hooking into
// the client machinery and printing some status.
extern crate gstreamer as gst;
extern crate gstreamer_rtsp as gst_rtsp;
extern crate gstreamer_rtsp_server as gst_rtsp_server;
extern crate gstreamer_sdp as gst_sdp;
use gst_rtsp_server::prelude::*;
#[macro_use]
extern crate glib;
extern crate failure;
use failure::Error;
#[macro_use]
extern crate failure_derive;
#[path = "../examples-common.rs"]
mod examples_common;
#[derive(Debug, Fail)]
#[fail(display = "Could not get mount points")]
struct NoMountPoints;
#[derive(Debug, Fail)]
#[fail(display = "Usage: {} LAUNCH_LINE", _0)]
struct UsageError(String);
fn main_loop() -> Result<(), Error> {
let main_loop = glib::MainLoop::new(None, false);
let server = server::Server::new();
// Much like HTTP servers, RTSP servers have multiple endpoints that
// provide different streams. Here, we ask our server to give
// us a reference to his list of endpoints, so we can add our
// test endpoint, providing the pipeline from the cli.
let mounts = server.get_mount_points().ok_or(NoMountPoints)?;
// Next, we create our custom factory for the endpoint we want to create.
// The job of the factory is to create a new pipeline for each client that
// connects, or (if configured to do so) to reuse an existing pipeline.
let factory = media_factory::Factory::new();
// This setting specifies whether each connecting client gets the output
// of a new instance of the pipeline, or whether all connected clients share
// the output of the same pipeline.
// If you want to stream a fixed video you have stored on the server to any
// client, you would not set this to shared here (since every client wants
// to start at the beginning of the video). But if you want to distribute
// a live source, you will probably want to set this to shared, to save
// computing and memory capacity on the server.
factory.set_shared(true);
// Now we add a new mount-point and tell the RTSP server to serve the content
// provided by the factory we configured above, when a client connects to
// this specific path.
mounts.add_factory("/test", &factory);
// Attach the server to our main context.
// A main context is the thing where other stuff is registering itself for its
// events (e.g. sockets, GStreamer bus, ...) and the main loop is something that
// polls the main context for its events and dispatches them to whoever is
// interested in them. In this example, we only do have one, so we can
// leave the context parameter empty, it will automatically select
// the default one.
let id = server.attach(None);
println!(
"Stream ready at rtsp://127.0.0.1:{}/test",
server.get_bound_port()
);
// Start the mainloop. From this point on, the server will start to serve
// our quality content to connecting clients.
main_loop.run();
glib::source_remove(id);
Ok(())
}
// Our custom media factory that creates a media input manually
mod media_factory {
use super::*;
use glib::subclass;
use glib::subclass::prelude::*;
use glib::translate::*;
extern crate gstreamer_rtsp_server as gst_rtsp_server;
use gst_rtsp_server::subclass::prelude::*;
// In the imp submodule we include the actual implementation
mod imp {
use super::*;
// This is the private data of our factory
pub struct Factory {}
// This trait registers our type with the GObject object system and
// provides the entry points for creating a new instance and setting
// up the class data
impl ObjectSubclass for Factory {
const NAME: &'static str = "RsRTSPMediaFactory";
type ParentType = gst_rtsp_server::RTSPMediaFactory;
type Instance = gst::subclass::ElementInstanceStruct<Self>;
type Class = subclass::simple::ClassStruct<Self>;
// This macro provides some boilerplate
glib_object_subclass!();
// Called when a new instance is to be created. We need to return an instance
// of our struct here.
fn new() -> Self {
Self {}
}
}
// Implementation of glib::Object virtual methods
impl ObjectImpl for Factory {
// This macro provides some boilerplate.
glib_object_impl!();
fn constructed(&self, obj: &glib::Object) {
self.parent_constructed(obj);
let factory = obj
.downcast_ref::<gst_rtsp_server::RTSPMediaFactory>()
.unwrap();
// All media created by this factory are our custom media type. This would
// not require a media factory subclass and can also be called on the normal
// RTSPMediaFactory.
factory.set_media_gtype(super::media::Media::static_type());
}
}
// Implementation of gst_rtsp_server::RTSPMediaFactory virtual methods
impl RTSPMediaFactoryImpl for Factory {
fn create_element(
&self,
_factory: &gst_rtsp_server::RTSPMediaFactory,
_url: &gst_rtsp::RTSPUrl,
) -> Option<gst::Element> {
// Create a simple VP8 videotestsrc input
let bin = gst::Bin::new(None);
let src = gst::ElementFactory::make("videotestsrc", None).unwrap();
let enc = gst::ElementFactory::make("vp8enc", None).unwrap();
// The names of the payloaders must be payX
let pay = gst::ElementFactory::make("rtpvp8pay", Some("pay0")).unwrap();
// Configure the videotestsrc live
src.set_property("is-live", &true).unwrap();
// Produce encoded data as fast as possible
enc.set_property("deadline", &1i64).unwrap();
bin.add_many(&[&src, &enc, &pay]).unwrap();
gst::Element::link_many(&[&src, &enc, &pay]).unwrap();
Some(bin.upcast())
}
}
}
// This here defines the public interface of our factory and implements
// the corresponding traits so that it behaves like any other RTSPMediaFactory
glib_wrapper! {
pub struct Factory(
Object<
gst::subclass::ElementInstanceStruct<imp::Factory>,
subclass::simple::ClassStruct<imp::Factory>,
FactoryClass
>
) @extends gst_rtsp_server::RTSPMediaFactory;
match fn {
get_type => || imp::Factory::get_type().to_glib(),
}
}
// Factories must be Send+Sync, and ours is
unsafe impl Send for Factory {}
unsafe impl Sync for Factory {}
impl Factory {
// Creates a new instance of our factory
pub fn new() -> Factory {
glib::Object::new(Self::static_type(), &[])
.expect("Failed to create factory")
.downcast()
.expect("Created factory is of wrong type")
}
}
}
// Our custom media subclass that adds a custom attribute to the SDP returned by DESCRIBE
mod media {
use super::*;
use glib::subclass;
use glib::subclass::prelude::*;
use glib::translate::*;
extern crate gstreamer_rtsp_server as gst_rtsp_server;
use gst_rtsp_server::subclass::prelude::*;
// In the imp submodule we include the actual implementation
mod imp {
use super::*;
// This is the private data of our media
pub struct Media {}
// This trait registers our type with the GObject object system and
// provides the entry points for creating a new instance and setting
// up the class data
impl ObjectSubclass for Media {
const NAME: &'static str = "RsRTSPMedia";
type ParentType = gst_rtsp_server::RTSPMedia;
type Instance = gst::subclass::ElementInstanceStruct<Self>;
type Class = subclass::simple::ClassStruct<Self>;
// This macro provides some boilerplate
glib_object_subclass!();
// Called when a new instance is to be created. We need to return an instance
// of our struct here.
fn new() -> Self {
Self {}
}
}
// Implementation of glib::Object virtual methods
impl ObjectImpl for Media {
// This macro provides some boilerplate.
glib_object_impl!();
}
// Implementation of gst_rtsp_server::RTSPMedia virtual methods
impl RTSPMediaImpl for Media {
fn setup_sdp(
&self,
media: &gst_rtsp_server::RTSPMedia,
sdp: &mut gst_sdp::SDPMessageRef,
info: &gst_rtsp_server::subclass::rtsp_media::SDPInfo,
) -> Result<(), gst::LoggableError> {
self.parent_setup_sdp(media, sdp, info)?;
sdp.add_attribute("my-custom-attribute", Some("has-a-value"));
Ok(())
}
}
}
// This here defines the public interface of our factory and implements
// the corresponding traits so that it behaves like any other RTSPMedia
glib_wrapper! {
pub struct Media(
Object<
gst::subclass::ElementInstanceStruct<imp::Media>,
subclass::simple::ClassStruct<imp::Media>,
MediaClass
>
) @extends gst_rtsp_server::RTSPMedia;
match fn {
get_type => || imp::Media::get_type().to_glib(),
}
}
// Medias must be Send+Sync, and ours is
unsafe impl Send for Media {}
unsafe impl Sync for Media {}
}
// Our custom RTSP server subclass that reports when clients are connecting and uses
// our custom RTSP client subclass for each client
mod server {
use super::*;
use glib::subclass;
use glib::subclass::prelude::*;
use glib::translate::*;
extern crate gstreamer_rtsp_server as gst_rtsp_server;
use gst_rtsp_server::subclass::prelude::*;
// In the imp submodule we include the actual implementation
mod imp {
use super::*;
// This is the private data of our server
pub struct Server {}
// This trait registers our type with the GObject object system and
// provides the entry points for creating a new instance and setting
// up the class data
impl ObjectSubclass for Server {
const NAME: &'static str = "RsRTSPServer";
type ParentType = gst_rtsp_server::RTSPServer;
type Instance = gst::subclass::ElementInstanceStruct<Self>;
type Class = subclass::simple::ClassStruct<Self>;
// This macro provides some boilerplate
glib_object_subclass!();
// Called when a new instance is to be created. We need to return an instance
// of our struct here.
fn new() -> Self {
Self {}
}
}
// Implementation of glib::Object virtual methods
impl ObjectImpl for Server {
// This macro provides some boilerplate.
glib_object_impl!();
}
// Implementation of gst_rtsp_server::RTSPServer virtual methods
impl RTSPServerImpl for Server {
fn create_client(
&self,
server: &gst_rtsp_server::RTSPServer,
) -> Option<gst_rtsp_server::RTSPClient> {
let client = super::client::Client::new();
// Duplicated from the default implementation
client.set_session_pool(server.get_session_pool().as_ref());
client.set_mount_points(server.get_mount_points().as_ref());
client.set_auth(server.get_auth().as_ref());
client.set_thread_pool(server.get_thread_pool().as_ref());
Some(client.upcast())
}
fn client_connected(
&self,
server: &gst_rtsp_server::RTSPServer,
client: &gst_rtsp_server::RTSPClient,
) {
self.parent_client_connected(server, client);
println!("Client {:?} connected", client);
}
}
}
// This here defines the public interface of our factory and implements
// the corresponding traits so that it behaves like any other RTSPServer
glib_wrapper! {
pub struct Server(
Object<
gst::subclass::ElementInstanceStruct<imp::Server>,
subclass::simple::ClassStruct<imp::Server>,
ServerClass
>
) @extends gst_rtsp_server::RTSPServer;
match fn {
get_type => || imp::Server::get_type().to_glib(),
}
}
// Servers must be Send+Sync, and ours is
unsafe impl Send for Server {}
unsafe impl Sync for Server {}
impl Server {
// Creates a new instance of our factory
pub fn new() -> Server {
glib::Object::new(Self::static_type(), &[])
.expect("Failed to create server")
.downcast()
.expect("Created server is of wrong type")
}
}
}
// Our custom RTSP client subclass.
mod client {
use super::*;
use glib::subclass;
use glib::subclass::prelude::*;
use glib::translate::*;
extern crate gstreamer_rtsp_server as gst_rtsp_server;
use gst_rtsp_server::subclass::prelude::*;
// In the imp submodule we include the actual implementation
mod imp {
use super::*;
// This is the private data of our server
pub struct Client {}
// This trait registers our type with the GObject object system and
// provides the entry points for creating a new instance and setting
// up the class data
impl ObjectSubclass for Client {
const NAME: &'static str = "RsRTSPClient";
type ParentType = gst_rtsp_server::RTSPClient;
type Instance = gst::subclass::ElementInstanceStruct<Self>;
type Class = subclass::simple::ClassStruct<Self>;
// This macro provides some boilerplate
glib_object_subclass!();
// Called when a new instance is to be created. We need to return an instance
// of our struct here.
fn new() -> Self {
Self {}
}
}
// Implementation of glib::Object virtual methods
impl ObjectImpl for Client {
// This macro provides some boilerplate.
glib_object_impl!();
}
// Implementation of gst_rtsp_server::RTSPClient virtual methods
impl RTSPClientImpl for Client {
fn closed(&self, client: &gst_rtsp_server::RTSPClient) {
self.parent_closed(client);
println!("Client {:?} closed", client);
}
}
}
// This here defines the public interface of our factory and implements
// the corresponding traits so that it behaves like any other RTSPClient
glib_wrapper! {
pub struct Client(
Object<
gst::subclass::ElementInstanceStruct<imp::Client>,
subclass::simple::ClassStruct<imp::Client>,
ClientClass
>
) @extends gst_rtsp_server::RTSPClient;
match fn {
get_type => || imp::Client::get_type().to_glib(),
}
}
// Clients must be Send+Sync, and ours is
unsafe impl Send for Client {}
unsafe impl Sync for Client {}
impl Client {
// Creates a new instance of our factory
pub fn new() -> Client {
glib::Object::new(Self::static_type(), &[])
.expect("Failed to create client")
.downcast()
.expect("Created client is of wrong type")
}
}
}
fn example_main() -> Result<(), Error> {
gst::init()?;
main_loop()
}
fn main() {
match examples_common::run(example_main) {
Ok(r) => r,
Err(e) => eprintln!("Error! {}", e),
}
}