gst-plugins-rs/generic/sodium/src/encrypter/imp.rs

528 lines
17 KiB
Rust

// encrypter.rs
//
// Copyright 2019 Jordan Petridis <jordan@centricular.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
// SPDX-License-Identifier: MIT
use gst::glib;
use gst::prelude::*;
use gst::subclass::prelude::*;
use smallvec::SmallVec;
use sodiumoxide::crypto::box_;
type BufferVec = SmallVec<[gst::Buffer; 16]>;
use std::sync::Mutex;
use once_cell::sync::Lazy;
static CAT: Lazy<gst::DebugCategory> = Lazy::new(|| {
gst::DebugCategory::new(
"sodiumencrypter",
gst::DebugColorFlags::empty(),
Some("Encrypter Element"),
)
});
#[derive(Debug, Clone)]
struct Props {
receiver_key: Option<glib::Bytes>,
sender_key: Option<glib::Bytes>,
block_size: u32,
}
impl Default for Props {
fn default() -> Self {
Props {
receiver_key: None,
sender_key: None,
block_size: 32768,
}
}
}
#[derive(Debug)]
struct State {
adapter: gst_base::UniqueAdapter,
nonce: box_::Nonce,
precomputed_key: box_::PrecomputedKey,
block_size: u32,
write_headers: bool,
}
impl State {
fn from_props(props: &Props) -> Result<Self, gst::ErrorMessage> {
let sender_key = props
.sender_key
.as_ref()
.and_then(|k| box_::SecretKey::from_slice(k))
.ok_or_else(|| {
gst::error_msg!(
gst::ResourceError::NotFound,
[format!(
"Failed to set Sender's Key from property: {:?}",
props.sender_key
)
.as_ref()]
)
})?;
let receiver_key = props
.receiver_key
.as_ref()
.and_then(|k| box_::PublicKey::from_slice(k))
.ok_or_else(|| {
gst::error_msg!(
gst::ResourceError::NotFound,
[format!(
"Failed to set Receiver's Key from property: {:?}",
props.receiver_key
)
.as_ref()]
)
})?;
// This env variable is only meant to bypass nonce regeneration during
// tests to get determinisic results. It should never be used outside
// of testing environments.
let nonce = if let Ok(val) = std::env::var("GST_SODIUM_ENCRYPT_NONCE") {
let bytes = hex::decode(val).expect("Failed to decode hex variable");
assert_eq!(bytes.len(), box_::NONCEBYTES);
box_::Nonce::from_slice(&bytes).unwrap()
} else {
box_::gen_nonce()
};
let precomputed_key = box_::precompute(&receiver_key, &sender_key);
Ok(Self {
adapter: gst_base::UniqueAdapter::new(),
precomputed_key,
nonce,
block_size: props.block_size,
write_headers: true,
})
}
fn seal(&mut self, message: &[u8]) -> Vec<u8> {
let ciphertext = box_::seal_precomputed(message, &self.nonce, &self.precomputed_key);
self.nonce.increment_le_inplace();
ciphertext
}
fn encrypt_message(&mut self, buffer: &gst::BufferRef) -> gst::Buffer {
let map = buffer
.map_readable()
.expect("Failed to map buffer readable");
let sealed = self.seal(&map);
gst::Buffer::from_mut_slice(sealed)
}
fn encrypt_blocks(&mut self, block_size: usize) -> BufferVec {
assert_ne!(block_size, 0);
let mut buffers = BufferVec::new();
// As long we have enough bytes to encrypt a block, or more, we do so
// else the leftover bytes on the adapter will be pushed when EOS
// is sent.
while self.adapter.available() >= block_size {
let buffer = self.adapter.take_buffer(block_size).unwrap();
let out_buf = self.encrypt_message(&buffer);
buffers.push(out_buf);
}
buffers
}
}
pub struct Encrypter {
srcpad: gst::Pad,
sinkpad: gst::Pad,
props: Mutex<Props>,
state: Mutex<Option<State>>,
}
impl Encrypter {
fn sink_chain(
&self,
pad: &gst::Pad,
buffer: gst::Buffer,
) -> Result<gst::FlowSuccess, gst::FlowError> {
gst::log!(CAT, obj: pad, "Handling buffer {:?}", buffer);
let mut buffers = BufferVec::new();
let mut state_guard = self.state.lock().unwrap();
let state = state_guard.as_mut().unwrap();
if state.write_headers {
let mut headers = Vec::with_capacity(40);
headers.extend_from_slice(crate::TYPEFIND_HEADER);
// Write the Nonce used into the stream.
headers.extend_from_slice(state.nonce.as_ref());
// Write the block_size into the stream
headers.extend_from_slice(&state.block_size.to_le_bytes());
buffers.push(gst::Buffer::from_mut_slice(headers));
state.write_headers = false;
}
state.adapter.push(buffer);
// Encrypt the whole blocks, if any, and push them.
buffers.extend(state.encrypt_blocks(state.block_size as usize));
drop(state_guard);
for buffer in buffers {
self.srcpad.push(buffer).map_err(|err| {
gst::error!(CAT, imp: self, "Failed to push buffer {:?}", err);
err
})?;
}
Ok(gst::FlowSuccess::Ok)
}
fn sink_event(&self, pad: &gst::Pad, event: gst::Event) -> bool {
use gst::EventView;
gst::log!(CAT, obj: pad, "Handling event {:?}", event);
match event.view() {
EventView::Caps(_) => {
// We send our own caps downstream
let caps = gst::Caps::builder("application/x-sodium-encrypted").build();
self.srcpad.push_event(gst::event::Caps::new(&caps))
}
EventView::Eos(_) => {
let mut state_mutex = self.state.lock().unwrap();
let mut buffers = BufferVec::new();
// This will only be run after READY state,
// and will be guaranted to be initialized
let state = state_mutex.as_mut().unwrap();
// Now that all the full size blocks are pushed, drain the
// rest of the adapter and push whatever is left.
let avail = state.adapter.available();
// logic error, all the complete blocks that can be pushed
// should have been done in the sink_chain call.
assert!(avail < state.block_size as usize);
if avail > 0 {
let b = state.encrypt_blocks(avail);
buffers.extend(b);
}
// drop the lock before pushing into the pad
drop(state_mutex);
for buffer in buffers {
if let Err(err) = self.srcpad.push(buffer) {
gst::error!(CAT, imp: self, "Failed to push buffer at EOS {:?}", err);
return false;
}
}
gst::Pad::event_default(pad, Some(&*self.instance()), event)
}
_ => gst::Pad::event_default(pad, Some(&*self.instance()), event),
}
}
fn src_event(&self, pad: &gst::Pad, event: gst::Event) -> bool {
use gst::EventView;
gst::log!(CAT, obj: pad, "Handling event {:?}", event);
match event.view() {
EventView::Seek(_) => false,
_ => gst::Pad::event_default(pad, Some(&*self.instance()), event),
}
}
fn src_query(&self, pad: &gst::Pad, query: &mut gst::QueryRef) -> bool {
use gst::QueryViewMut;
gst::log!(CAT, obj: pad, "Handling query {:?}", query);
match query.view_mut() {
QueryViewMut::Seeking(q) => {
let format = q.format();
q.set(
false,
gst::GenericFormattedValue::none_for_format(format),
gst::GenericFormattedValue::none_for_format(format),
);
gst::log!(CAT, obj: pad, "Returning {:?}", q.query_mut());
true
}
QueryViewMut::Duration(q) => {
if q.format() != gst::Format::Bytes {
return gst::Pad::query_default(pad, Some(&*self.instance()), query);
}
/* First let's query the bytes duration upstream */
let mut peer_query = gst::query::Duration::new(gst::Format::Bytes);
if !self.sinkpad.peer_query(&mut peer_query) {
gst::error!(CAT, "Failed to query upstream duration");
return false;
}
let size = match peer_query.result() {
gst::GenericFormattedValue::Bytes(Some(size)) => *size,
_ => {
gst::error!(CAT, "Failed to query upstream duration");
return false;
}
};
let state = self.state.lock().unwrap();
let state = match state.as_ref() {
// If state isn't set, it means that the
// element hasn't been activated yet.
None => return false,
Some(s) => s,
};
// calculate the number of chunks that exist in the stream
let total_chunks = (size + state.block_size as u64 - 1) / state.block_size as u64;
// add the MAC of each block
let size = size + total_chunks * box_::MACBYTES as u64;
// add static offsets
let size = size + crate::HEADERS_SIZE as u64;
gst::debug!(CAT, obj: pad, "Setting duration bytes: {}", size);
q.set(size.bytes());
true
}
_ => gst::Pad::query_default(pad, Some(&*self.instance()), query),
}
}
}
#[glib::object_subclass]
impl ObjectSubclass for Encrypter {
const NAME: &'static str = "GstSodiumEncrypter";
type Type = super::Encrypter;
type ParentType = gst::Element;
fn with_class(klass: &Self::Class) -> Self {
let templ = klass.pad_template("sink").unwrap();
let sinkpad = gst::Pad::builder_with_template(&templ, Some("sink"))
.chain_function(|pad, parent, buffer| {
Encrypter::catch_panic_pad_function(
parent,
|| Err(gst::FlowError::Error),
|encrypter| encrypter.sink_chain(pad, buffer),
)
})
.event_function(|pad, parent, event| {
Encrypter::catch_panic_pad_function(
parent,
|| false,
|encrypter| encrypter.sink_event(pad, event),
)
})
.build();
let templ = klass.pad_template("src").unwrap();
let srcpad = gst::Pad::builder_with_template(&templ, Some("src"))
.query_function(|pad, parent, query| {
Encrypter::catch_panic_pad_function(
parent,
|| false,
|encrypter| encrypter.src_query(pad, query),
)
})
.event_function(|pad, parent, event| {
Encrypter::catch_panic_pad_function(
parent,
|| false,
|encrypter| encrypter.src_event(pad, event),
)
})
.build();
let props = Mutex::new(Props::default());
let state = Mutex::new(None);
Self {
srcpad,
sinkpad,
props,
state,
}
}
}
impl ObjectImpl for Encrypter {
fn properties() -> &'static [glib::ParamSpec] {
static PROPERTIES: Lazy<Vec<glib::ParamSpec>> = Lazy::new(|| {
vec![
glib::ParamSpecBoxed::builder::<glib::Bytes>("receiver-key")
.nick("Receiver Key")
.blurb("The public key of the Receiver")
.build(),
glib::ParamSpecBoxed::builder::<glib::Bytes>("sender-key")
.nick("Sender Key")
.blurb("The private key of the Sender")
.write_only()
.build(),
glib::ParamSpecUInt::builder("block-size")
.nick("Block Size")
.blurb("The block-size of the chunks")
.minimum(1024)
.default_value(32768)
.build(),
]
});
PROPERTIES.as_ref()
}
fn constructed(&self) {
self.parent_constructed();
let obj = self.instance();
obj.add_pad(&self.sinkpad).unwrap();
obj.add_pad(&self.srcpad).unwrap();
}
fn set_property(&self, _id: usize, value: &glib::Value, pspec: &glib::ParamSpec) {
match pspec.name() {
"sender-key" => {
let mut props = self.props.lock().unwrap();
props.sender_key = value.get().expect("type checked upstream");
}
"receiver-key" => {
let mut props = self.props.lock().unwrap();
props.receiver_key = value.get().expect("type checked upstream");
}
"block-size" => {
let mut props = self.props.lock().unwrap();
props.block_size = value.get().expect("type checked upstream");
}
_ => unimplemented!(),
}
}
fn property(&self, _id: usize, pspec: &glib::ParamSpec) -> glib::Value {
match pspec.name() {
"receiver-key" => {
let props = self.props.lock().unwrap();
props.receiver_key.to_value()
}
"block-size" => {
let props = self.props.lock().unwrap();
props.block_size.to_value()
}
_ => unimplemented!(),
}
}
}
impl GstObjectImpl for Encrypter {}
impl ElementImpl for Encrypter {
fn metadata() -> Option<&'static gst::subclass::ElementMetadata> {
static ELEMENT_METADATA: Lazy<gst::subclass::ElementMetadata> = Lazy::new(|| {
gst::subclass::ElementMetadata::new(
"Encrypter",
"Generic",
"libsodium-based file encrypter",
"Jordan Petridis <jordan@centricular.com>",
)
});
Some(&*ELEMENT_METADATA)
}
fn pad_templates() -> &'static [gst::PadTemplate] {
static PAD_TEMPLATES: Lazy<Vec<gst::PadTemplate>> = Lazy::new(|| {
let src_caps = gst::Caps::builder("application/x-sodium-encrypted").build();
let src_pad_template = gst::PadTemplate::new(
"src",
gst::PadDirection::Src,
gst::PadPresence::Always,
&src_caps,
)
.unwrap();
let sink_pad_template = gst::PadTemplate::new(
"sink",
gst::PadDirection::Sink,
gst::PadPresence::Always,
&gst::Caps::new_any(),
)
.unwrap();
vec![src_pad_template, sink_pad_template]
});
PAD_TEMPLATES.as_ref()
}
fn change_state(
&self,
transition: gst::StateChange,
) -> Result<gst::StateChangeSuccess, gst::StateChangeError> {
gst::debug!(CAT, imp: self, "Changing state {:?}", transition);
match transition {
gst::StateChange::NullToReady => {
let props = self.props.lock().unwrap().clone();
// Create an internal state struct from the provided properties or
// refuse to change state
let state_ = State::from_props(&props).map_err(|err| {
self.post_error_message(err);
gst::StateChangeError
})?;
let mut state = self.state.lock().unwrap();
*state = Some(state_);
}
gst::StateChange::ReadyToNull => {
let _ = self.state.lock().unwrap().take();
}
_ => (),
}
let success = self.parent_change_state(transition)?;
if transition == gst::StateChange::ReadyToNull {
let _ = self.state.lock().unwrap().take();
}
Ok(success)
}
}