gst-plugins-rs/generic/threadshare/src/runtime/executor/context.rs
François Laignel 61c62ee1e8 ts/timers: multiple improvements
This commit improves threadshare timers predictability
by better making use of current time slice.

Added a dedicate timer BTreeMap for after timers (those
that are guaranteed to fire no sooner than the expected
instant) so as to avoid previous workaround which added
half the max throttling duration. These timers can now
be checked against the reactor processing instant.

Oneshot timers only need to be polled as `Future`s when
intervals are `Stream`s. This also reduces the size for
oneshot timers and make user call `next` on intervals.
Intervals can also implement `FusedStream`, which can help
when used in features such as `select!`.

Also drop the `time` module, which was kepts for
compatibility when the `executor` was migrated from tokio
based to smol-like.
2022-09-13 07:29:50 +00:00

571 lines
18 KiB
Rust

// Copyright (C) 2018-2020 Sebastian Dröge <sebastian@centricular.com>
// Copyright (C) 2019-2022 François Laignel <fengalin@free.fr>
//
// Take a look at the license at the top of the repository in the LICENSE file.
use futures::prelude::*;
use once_cell::sync::Lazy;
use std::collections::HashMap;
use std::io;
use std::pin::Pin;
use std::sync::{Arc, Mutex};
use std::task::{self, Poll};
use std::time::Duration;
use super::{Handle, HandleWeak, JoinHandle, Scheduler, SubTaskOutput, TaskId};
use crate::runtime::RUNTIME_CAT;
// We are bound to using `sync` for the `runtime` `Mutex`es. Attempts to use `async` `Mutex`es
// lead to the following issues:
//
// * `CONTEXTS`: can't `spawn` a `Future` when called from a `Context` thread via `ffi`.
// * `timers`: can't automatically `remove` the timer from `BinaryHeap` because `async drop`
// is not available.
// * `task_queues`: can't `add` a pending task when called from a `Context` thread via `ffi`.
//
// Also, we want to be able to `acquire` a `Context` outside of an `async` context.
// These `Mutex`es must be `lock`ed for a short period.
static CONTEXTS: Lazy<Mutex<HashMap<Arc<str>, ContextWeak>>> =
Lazy::new(|| Mutex::new(HashMap::new()));
/// Blocks on `future` in one way or another if possible.
///
/// IO & time related `Future`s must be handled within their own [`Context`].
/// Wait for the result using a [`JoinHandle`] or a `channel`.
///
/// If there's currently an active `Context` with a task, then the future is only queued up as a
/// pending sub task for that task.
///
/// Otherwise the current thread is blocking and the passed in future is executed.
///
/// Note that you must not pass any futures here that wait for the currently active task in one way
/// or another as this would deadlock!
#[track_caller]
pub fn block_on_or_add_sub_task<Fut>(future: Fut) -> Option<Fut::Output>
where
Fut: Future + Send + 'static,
Fut::Output: Send + 'static,
{
if let Some((cur_context, cur_task_id)) = Context::current_task() {
gst::debug!(
RUNTIME_CAT,
"Adding subtask to task {:?} on context {}",
cur_task_id,
cur_context.name()
);
let _ = cur_context.add_sub_task(cur_task_id, async move {
future.await;
Ok(())
});
return None;
}
// Not running in a Context thread so we can block
Some(block_on(future))
}
/// Blocks on `future`.
///
/// IO & time related `Future`s must be handled within their own [`Context`].
/// Wait for the result using a [`JoinHandle`] or a `channel`.
///
/// The current thread is blocking and the passed in future is executed.
///
/// # Panics
///
/// This function panics if called within a [`Context`] thread.
#[track_caller]
pub fn block_on<Fut>(future: Fut) -> Fut::Output
where
Fut: Future + Send + 'static,
Fut::Output: Send + 'static,
{
if let Some(context) = Context::current() {
let msg = format!("Attempt to block within Context {}", context.name());
gst::error!(RUNTIME_CAT, "{}", msg);
panic!("{}", msg);
}
// Not running in a Context thread so we can block
gst::debug!(RUNTIME_CAT, "Blocking on new dummy context");
Scheduler::block_on(future)
}
/// Yields execution back to the runtime.
#[inline]
pub fn yield_now() -> YieldNow {
YieldNow::default()
}
#[derive(Debug, Default)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct YieldNow(bool);
impl Future for YieldNow {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
if !self.0 {
self.0 = true;
cx.waker().wake_by_ref();
Poll::Pending
} else {
Poll::Ready(())
}
}
}
#[derive(Clone, Debug)]
pub struct ContextWeak(HandleWeak);
impl ContextWeak {
pub fn upgrade(&self) -> Option<Context> {
self.0.upgrade().map(Context)
}
}
/// A `threadshare` `runtime` `Context`.
///
/// The `Context` provides low-level asynchronous processing features to
/// multiplex task execution on a single thread.
///
/// `Element` implementations should use [`PadSrc`] and [`PadSink`] which
/// provide high-level features.
///
/// [`PadSrc`]: ../pad/struct.PadSrc.html
/// [`PadSink`]: ../pad/struct.PadSink.html
#[derive(Clone, Debug)]
pub struct Context(Handle);
impl PartialEq for Context {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl Eq for Context {}
impl Context {
pub fn acquire(context_name: &str, wait: Duration) -> Result<Self, io::Error> {
assert_ne!(context_name, Scheduler::DUMMY_NAME);
let mut contexts = CONTEXTS.lock().unwrap();
if let Some(context_weak) = contexts.get(context_name) {
if let Some(context) = context_weak.upgrade() {
gst::debug!(RUNTIME_CAT, "Joining Context '{}'", context.name());
return Ok(context);
}
}
let context = Context(Scheduler::start(context_name, wait));
contexts.insert(context_name.into(), context.downgrade());
gst::debug!(
RUNTIME_CAT,
"New Context '{}' throttling {:?}",
context.name(),
wait,
);
Ok(context)
}
pub fn downgrade(&self) -> ContextWeak {
ContextWeak(self.0.downgrade())
}
pub fn name(&self) -> &str {
self.0.context_name()
}
// FIXME this could be renamed as max_throttling
// but then, all elements should also change their
// wait variables and properties to max_throttling.
pub fn wait_duration(&self) -> Duration {
self.0.max_throttling()
}
/// Total duration the scheduler spent parked.
///
/// This is only useful for performance evaluation.
#[cfg(feature = "tuning")]
pub fn parked_duration(&self) -> Duration {
self.0.parked_duration()
}
/// Returns `true` if a `Context` is running on current thread.
pub fn is_context_thread() -> bool {
Scheduler::is_scheduler_thread()
}
/// Returns the `Context` running on current thread, if any.
pub fn current() -> Option<Context> {
Scheduler::current().map(Context)
}
/// Returns the `TaskId` running on current thread, if any.
pub fn current_task() -> Option<(Context, TaskId)> {
Scheduler::current().map(|scheduler| {
// Context users always operate on a Task
(Context(scheduler), TaskId::current().unwrap())
})
}
/// Executes the provided function relatively to this [`Context`].
///
/// Usefull to initialze i/o sources and timers from outside
/// of a [`Context`].
///
/// # Panic
///
/// This will block current thread and would panic if run
/// from the [`Context`].
#[track_caller]
pub fn enter<'a, F, O>(&'a self, f: F) -> O
where
F: FnOnce() -> O + Send + 'a,
O: Send + 'a,
{
if let Some(cur) = Context::current().as_ref() {
if cur == self {
panic!(
"Attempt to enter Context {} within itself, this would deadlock",
self.name()
);
} else {
gst::warning!(
RUNTIME_CAT,
"Entering Context {} within {}",
self.name(),
cur.name()
);
}
} else {
gst::debug!(RUNTIME_CAT, "Entering Context {}", self.name());
}
self.0.enter(f)
}
pub fn spawn<Fut>(&self, future: Fut) -> JoinHandle<Fut::Output>
where
Fut: Future + Send + 'static,
Fut::Output: Send + 'static,
{
self.0.spawn(future)
}
pub fn spawn_and_unpark<Fut>(&self, future: Fut) -> JoinHandle<Fut::Output>
where
Fut: Future + Send + 'static,
Fut::Output: Send + 'static,
{
self.0.spawn_and_unpark(future)
}
/// Forces the scheduler to unpark.
///
/// This is not needed by elements implementors as they are
/// supposed to call [`Self::spawn_and_unpark`] when needed.
/// However, it's useful for lower level implementations such as
/// `runtime::Task` so as to make sure the iteration loop yields
/// as soon as possible when a transition is requested.
pub(in crate::runtime) fn unpark(&self) {
self.0.unpark();
}
pub fn add_sub_task<T>(&self, task_id: TaskId, sub_task: T) -> Result<(), T>
where
T: Future<Output = SubTaskOutput> + Send + 'static,
{
self.0.add_sub_task(task_id, sub_task)
}
pub async fn drain_sub_tasks() -> SubTaskOutput {
let (ctx, task_id) = match Context::current_task() {
Some(task) => task,
None => return Ok(()),
};
ctx.0.drain_sub_tasks(task_id).await
}
}
impl From<Handle> for Context {
fn from(handle: Handle) -> Self {
Context(handle)
}
}
#[cfg(test)]
mod tests {
use futures::channel::mpsc;
use futures::lock::Mutex;
use futures::prelude::*;
use std::net::{IpAddr, Ipv4Addr, SocketAddr, UdpSocket};
use std::sync::Arc;
use std::time::{Duration, Instant};
use super::super::Scheduler;
use super::Context;
use crate::runtime::Async;
type Item = i32;
const SLEEP_DURATION_MS: u64 = 2;
const SLEEP_DURATION: Duration = Duration::from_millis(SLEEP_DURATION_MS);
const DELAY: Duration = Duration::from_millis(SLEEP_DURATION_MS * 10);
#[test]
fn block_on_task_id() {
gst::init().unwrap();
assert!(!Context::is_context_thread());
crate::runtime::executor::block_on(async {
let (ctx, task_id) = Context::current_task().unwrap();
assert_eq!(ctx.name(), Scheduler::DUMMY_NAME);
assert_eq!(task_id, super::TaskId(0));
let res = ctx.add_sub_task(task_id, async move {
let (_ctx, task_id) = Context::current_task().unwrap();
assert_eq!(task_id, super::TaskId(0));
Ok(())
});
assert!(res.is_ok());
assert!(Context::is_context_thread());
});
assert!(!Context::is_context_thread());
}
#[test]
fn block_on_timer() {
gst::init().unwrap();
let elapsed = crate::runtime::executor::block_on(async {
let now = Instant::now();
crate::runtime::timer::delay_for(DELAY).await;
now.elapsed()
});
assert!(elapsed >= DELAY);
}
#[test]
fn context_task_id() {
use super::TaskId;
gst::init().unwrap();
let context = Context::acquire("context_task_id", SLEEP_DURATION).unwrap();
let join_handle = context.spawn(async {
let (ctx, task_id) = Context::current_task().unwrap();
assert_eq!(ctx.name(), "context_task_id");
assert_eq!(task_id, TaskId(0));
});
futures::executor::block_on(join_handle).unwrap();
// TaskId(0) is vacant again
let ctx_weak = context.downgrade();
let join_handle = context.spawn(async move {
let (ctx, task_id) = Context::current_task().unwrap();
assert_eq!(task_id, TaskId(0));
let res = ctx.add_sub_task(task_id, async move {
let (_ctx, task_id) = Context::current_task().unwrap();
assert_eq!(task_id, TaskId(0));
Ok(())
});
assert!(res.is_ok());
ctx_weak
.upgrade()
.unwrap()
.spawn(async {
let (ctx, task_id) = Context::current_task().unwrap();
assert_eq!(task_id, TaskId(1));
let res = ctx.add_sub_task(task_id, async move {
let (_ctx, task_id) = Context::current_task().unwrap();
assert_eq!(task_id, TaskId(1));
Ok(())
});
assert!(res.is_ok());
assert!(Context::drain_sub_tasks().await.is_ok());
let (_ctx, task_id) = Context::current_task().unwrap();
assert_eq!(task_id, TaskId(1));
})
.await
.unwrap();
assert!(Context::drain_sub_tasks().await.is_ok());
let (_ctx, task_id) = Context::current_task().unwrap();
assert_eq!(task_id, TaskId(0));
});
futures::executor::block_on(join_handle).unwrap();
}
#[test]
fn drain_sub_tasks() {
// Setup
gst::init().unwrap();
let context = Context::acquire("drain_sub_tasks", SLEEP_DURATION).unwrap();
let join_handle = context.spawn(async {
let (sender, mut receiver) = mpsc::channel(1);
let sender: Arc<Mutex<mpsc::Sender<Item>>> = Arc::new(Mutex::new(sender));
let add_sub_task = move |item| {
let sender = sender.clone();
Context::current_task()
.ok_or(())
.and_then(|(ctx, task_id)| {
ctx.add_sub_task(task_id, async move {
sender
.lock()
.await
.send(item)
.await
.map_err(|_| gst::FlowError::Error)
})
.map_err(drop)
})
};
// Tests
// Drain empty queue
let drain_fut = Context::drain_sub_tasks();
drain_fut.await.unwrap();
// Add a subtask
add_sub_task(0).unwrap();
// Check that it was not executed yet
receiver.try_next().unwrap_err();
// Drain it now and check that it was executed
let drain_fut = Context::drain_sub_tasks();
drain_fut.await.unwrap();
assert_eq!(receiver.try_next().unwrap(), Some(0));
// Add another task and check that it's not executed yet
add_sub_task(1).unwrap();
receiver.try_next().unwrap_err();
// Return the receiver
receiver
});
let mut receiver = futures::executor::block_on(join_handle).unwrap();
// The last sub task should be simply dropped at this point
match receiver.try_next() {
Ok(None) | Err(_) => (),
other => panic!("Unexpected {:?}", other),
}
}
#[test]
fn block_on_from_sync() {
gst::init().unwrap();
let context = Context::acquire("block_on_from_sync", SLEEP_DURATION).unwrap();
let bytes_sent = crate::runtime::executor::block_on(context.spawn(async {
let saddr = SocketAddr::new(IpAddr::V4(Ipv4Addr::LOCALHOST), 5001);
let socket = Async::<UdpSocket>::bind(saddr).unwrap();
let saddr = SocketAddr::new(IpAddr::V4(Ipv4Addr::LOCALHOST), 4001);
socket.send_to(&[0; 10], saddr).await.unwrap()
}))
.unwrap();
assert_eq!(bytes_sent, 10);
let elapsed = crate::runtime::executor::block_on(context.spawn(async {
let start = Instant::now();
crate::runtime::timer::delay_for(DELAY).await;
start.elapsed()
}))
.unwrap();
// Due to throttling, `Delay` may be fired earlier
assert!(elapsed + SLEEP_DURATION / 2 >= DELAY);
}
#[test]
#[should_panic]
fn block_on_from_context() {
gst::init().unwrap();
let context = Context::acquire("block_on_from_context", SLEEP_DURATION).unwrap();
// Panic: attempt to `runtime::executor::block_on` within a `Context` thread
let join_handle = context.spawn(async {
crate::runtime::executor::block_on(crate::runtime::timer::delay_for(DELAY));
});
// Panic: task has failed
// (enforced by `async-task`, see comment in `Future` impl for `JoinHanlde`).
futures::executor::block_on(join_handle).unwrap_err();
}
#[test]
fn enter_context_from_scheduler() {
gst::init().unwrap();
let elapsed = crate::runtime::executor::block_on(async {
let context = Context::acquire("enter_context_from_executor", SLEEP_DURATION).unwrap();
let socket = context
.enter(|| {
let saddr = SocketAddr::new(IpAddr::V4(Ipv4Addr::LOCALHOST), 5002);
Async::<UdpSocket>::bind(saddr)
})
.unwrap();
let saddr = SocketAddr::new(IpAddr::V4(Ipv4Addr::LOCALHOST), 4002);
let bytes_sent = socket.send_to(&[0; 10], saddr).await.unwrap();
assert_eq!(bytes_sent, 10);
let (start, timer) =
context.enter(|| (Instant::now(), crate::runtime::timer::delay_for(DELAY)));
timer.await;
start.elapsed()
});
// Due to throttling, `Delay` may be fired earlier
assert!(elapsed + SLEEP_DURATION / 2 >= DELAY);
}
#[test]
fn enter_context_from_sync() {
gst::init().unwrap();
let context = Context::acquire("enter_context_from_sync", SLEEP_DURATION).unwrap();
let socket = context
.enter(|| {
let saddr = SocketAddr::new(IpAddr::V4(Ipv4Addr::LOCALHOST), 5003);
Async::<UdpSocket>::bind(saddr)
})
.unwrap();
let saddr = SocketAddr::new(IpAddr::V4(Ipv4Addr::LOCALHOST), 4003);
let bytes_sent = futures::executor::block_on(socket.send_to(&[0; 10], saddr)).unwrap();
assert_eq!(bytes_sent, 10);
let (start, timer) =
context.enter(|| (Instant::now(), crate::runtime::timer::delay_for(DELAY)));
let elapsed = crate::runtime::executor::block_on(async move {
timer.await;
start.elapsed()
});
// Due to throttling, `Delay` may be fired earlier
assert!(elapsed + SLEEP_DURATION / 2 >= DELAY);
}
}