mirror of
https://gitlab.freedesktop.org/gstreamer/gst-plugins-rs.git
synced 2025-04-24 09:34:38 +00:00
802 lines
28 KiB
Rust
802 lines
28 KiB
Rust
// Copyright (C) 2018 Sebastian Dröge <sebastian@centricular.com>
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
//
|
|
// SPDX-License-Identifier: MIT OR Apache-2.0
|
|
|
|
use gst::glib;
|
|
use gst::prelude::*;
|
|
use gst::subclass::prelude::*;
|
|
use gst_base::prelude::*;
|
|
use gst_base::subclass::base_src::CreateSuccess;
|
|
use gst_base::subclass::prelude::*;
|
|
|
|
use byte_slice_cast::*;
|
|
|
|
use std::ops::Rem;
|
|
use std::sync::Mutex;
|
|
use std::u32;
|
|
|
|
use num_traits::cast::NumCast;
|
|
use num_traits::float::Float;
|
|
|
|
use once_cell::sync::Lazy;
|
|
|
|
// This module contains the private implementation details of our element
|
|
|
|
static CAT: Lazy<gst::DebugCategory> = Lazy::new(|| {
|
|
gst::DebugCategory::new(
|
|
"rssinesrc",
|
|
gst::DebugColorFlags::empty(),
|
|
Some("Rust Sine Wave Source"),
|
|
)
|
|
});
|
|
|
|
// Default values of properties
|
|
const DEFAULT_SAMPLES_PER_BUFFER: u32 = 1024;
|
|
const DEFAULT_FREQ: u32 = 440;
|
|
const DEFAULT_VOLUME: f64 = 0.8;
|
|
const DEFAULT_MUTE: bool = false;
|
|
const DEFAULT_IS_LIVE: bool = false;
|
|
|
|
// Property value storage
|
|
#[derive(Debug, Clone, Copy)]
|
|
struct Settings {
|
|
samples_per_buffer: u32,
|
|
freq: u32,
|
|
volume: f64,
|
|
mute: bool,
|
|
is_live: bool,
|
|
}
|
|
|
|
impl Default for Settings {
|
|
fn default() -> Self {
|
|
Settings {
|
|
samples_per_buffer: DEFAULT_SAMPLES_PER_BUFFER,
|
|
freq: DEFAULT_FREQ,
|
|
volume: DEFAULT_VOLUME,
|
|
mute: DEFAULT_MUTE,
|
|
is_live: DEFAULT_IS_LIVE,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Stream-specific state, i.e. audio format configuration
|
|
// and sample offset
|
|
struct State {
|
|
info: Option<gst_audio::AudioInfo>,
|
|
sample_offset: u64,
|
|
sample_stop: Option<u64>,
|
|
accumulator: f64,
|
|
}
|
|
|
|
impl Default for State {
|
|
fn default() -> State {
|
|
State {
|
|
info: None,
|
|
sample_offset: 0,
|
|
sample_stop: None,
|
|
accumulator: 0.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ClockWait {
|
|
clock_id: Option<gst::SingleShotClockId>,
|
|
flushing: bool,
|
|
}
|
|
|
|
impl Default for ClockWait {
|
|
fn default() -> ClockWait {
|
|
ClockWait {
|
|
clock_id: None,
|
|
flushing: true,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Struct containing all the element data
|
|
#[derive(Default)]
|
|
pub struct SineSrc {
|
|
settings: Mutex<Settings>,
|
|
state: Mutex<State>,
|
|
clock_wait: Mutex<ClockWait>,
|
|
}
|
|
|
|
impl SineSrc {
|
|
fn process<F: Float + FromByteSlice>(
|
|
data: &mut [u8],
|
|
accumulator_ref: &mut f64,
|
|
freq: u32,
|
|
rate: u32,
|
|
channels: u32,
|
|
vol: f64,
|
|
) {
|
|
use std::f64::consts::PI;
|
|
|
|
// Reinterpret our byte-slice as a slice containing elements of the type
|
|
// we're interested in. GStreamer requires for raw audio that the alignment
|
|
// of memory is correct, so this will never ever fail unless there is an
|
|
// actual bug elsewhere.
|
|
let data = data.as_mut_slice_of::<F>().unwrap();
|
|
|
|
// Convert all our parameters to the target type for calculations
|
|
let vol: F = NumCast::from(vol).unwrap();
|
|
let freq = freq as f64;
|
|
let rate = rate as f64;
|
|
let two_pi = 2.0 * PI;
|
|
|
|
// We're carrying a accumulator with up to 2pi around instead of working
|
|
// on the sample offset. High sample offsets cause too much inaccuracy when
|
|
// converted to floating point numbers and then iterated over in 1-steps
|
|
let mut accumulator = *accumulator_ref;
|
|
let step = two_pi * freq / rate;
|
|
|
|
for chunk in data.chunks_exact_mut(channels as usize) {
|
|
let value = vol * F::sin(NumCast::from(accumulator).unwrap());
|
|
for sample in chunk {
|
|
*sample = value;
|
|
}
|
|
|
|
accumulator += step;
|
|
if accumulator >= two_pi {
|
|
accumulator -= two_pi;
|
|
}
|
|
}
|
|
|
|
*accumulator_ref = accumulator;
|
|
}
|
|
}
|
|
|
|
// This trait registers our type with the GObject object system and
|
|
// provides the entry points for creating a new instance and setting
|
|
// up the class data
|
|
#[glib::object_subclass]
|
|
impl ObjectSubclass for SineSrc {
|
|
const NAME: &'static str = "GstRsSineSrc";
|
|
type Type = super::SineSrc;
|
|
type ParentType = gst_base::PushSrc;
|
|
}
|
|
|
|
// Implementation of glib::Object virtual methods
|
|
impl ObjectImpl for SineSrc {
|
|
// Metadata for the properties
|
|
fn properties() -> &'static [glib::ParamSpec] {
|
|
static PROPERTIES: Lazy<Vec<glib::ParamSpec>> = Lazy::new(|| {
|
|
vec![
|
|
glib::ParamSpecUInt::builder("samples-per-buffer")
|
|
.nick("Samples Per Buffer")
|
|
.blurb("Number of samples per output buffer")
|
|
.minimum(1)
|
|
.default_value(DEFAULT_SAMPLES_PER_BUFFER)
|
|
.mutable_ready()
|
|
.build(),
|
|
glib::ParamSpecUInt::builder("freq")
|
|
.nick("Frequency")
|
|
.blurb("Frequency")
|
|
.minimum(1)
|
|
.default_value(DEFAULT_FREQ)
|
|
.mutable_playing()
|
|
.build(),
|
|
glib::ParamSpecDouble::builder("volume")
|
|
.nick("Volume")
|
|
.blurb("Output volume")
|
|
.maximum(10.0)
|
|
.default_value(DEFAULT_VOLUME)
|
|
.mutable_playing()
|
|
.build(),
|
|
glib::ParamSpecBoolean::builder("mute")
|
|
.nick("Mute")
|
|
.blurb("Mute")
|
|
.default_value(DEFAULT_MUTE)
|
|
.mutable_playing()
|
|
.build(),
|
|
glib::ParamSpecBoolean::builder("is-live")
|
|
.nick("Is Live")
|
|
.blurb("(Pseudo) live output")
|
|
.default_value(DEFAULT_IS_LIVE)
|
|
.mutable_ready()
|
|
.build(),
|
|
]
|
|
});
|
|
|
|
PROPERTIES.as_ref()
|
|
}
|
|
|
|
// Called right after construction of a new instance
|
|
fn constructed(&self) {
|
|
// Call the parent class' ::constructed() implementation first
|
|
self.parent_constructed();
|
|
|
|
let obj = self.obj();
|
|
// Initialize live-ness and notify the base class that
|
|
// we'd like to operate in Time format
|
|
obj.set_live(DEFAULT_IS_LIVE);
|
|
obj.set_format(gst::Format::Time);
|
|
}
|
|
|
|
// Called whenever a value of a property is changed. It can be called
|
|
// at any time from any thread.
|
|
fn set_property(&self, _id: usize, value: &glib::Value, pspec: &glib::ParamSpec) {
|
|
match pspec.name() {
|
|
"samples-per-buffer" => {
|
|
let mut settings = self.settings.lock().unwrap();
|
|
let samples_per_buffer = value.get().expect("type checked upstream");
|
|
gst::info!(
|
|
CAT,
|
|
imp: self,
|
|
"Changing samples-per-buffer from {} to {}",
|
|
settings.samples_per_buffer,
|
|
samples_per_buffer
|
|
);
|
|
settings.samples_per_buffer = samples_per_buffer;
|
|
drop(settings);
|
|
|
|
let _ = self
|
|
.obj()
|
|
.post_message(gst::message::Latency::builder().src(&*self.obj()).build());
|
|
}
|
|
"freq" => {
|
|
let mut settings = self.settings.lock().unwrap();
|
|
let freq = value.get().expect("type checked upstream");
|
|
gst::info!(
|
|
CAT,
|
|
imp: self,
|
|
"Changing freq from {} to {}",
|
|
settings.freq,
|
|
freq
|
|
);
|
|
settings.freq = freq;
|
|
}
|
|
"volume" => {
|
|
let mut settings = self.settings.lock().unwrap();
|
|
let volume = value.get().expect("type checked upstream");
|
|
gst::info!(
|
|
CAT,
|
|
imp: self,
|
|
"Changing volume from {} to {}",
|
|
settings.volume,
|
|
volume
|
|
);
|
|
settings.volume = volume;
|
|
}
|
|
"mute" => {
|
|
let mut settings = self.settings.lock().unwrap();
|
|
let mute = value.get().expect("type checked upstream");
|
|
gst::info!(
|
|
CAT,
|
|
imp: self,
|
|
"Changing mute from {} to {}",
|
|
settings.mute,
|
|
mute
|
|
);
|
|
settings.mute = mute;
|
|
}
|
|
"is-live" => {
|
|
let mut settings = self.settings.lock().unwrap();
|
|
let is_live = value.get().expect("type checked upstream");
|
|
gst::info!(
|
|
CAT,
|
|
imp: self,
|
|
"Changing is-live from {} to {}",
|
|
settings.is_live,
|
|
is_live
|
|
);
|
|
settings.is_live = is_live;
|
|
}
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
// Called whenever a value of a property is read. It can be called
|
|
// at any time from any thread.
|
|
fn property(&self, _id: usize, pspec: &glib::ParamSpec) -> glib::Value {
|
|
match pspec.name() {
|
|
"samples-per-buffer" => {
|
|
let settings = self.settings.lock().unwrap();
|
|
settings.samples_per_buffer.to_value()
|
|
}
|
|
"freq" => {
|
|
let settings = self.settings.lock().unwrap();
|
|
settings.freq.to_value()
|
|
}
|
|
"volume" => {
|
|
let settings = self.settings.lock().unwrap();
|
|
settings.volume.to_value()
|
|
}
|
|
"mute" => {
|
|
let settings = self.settings.lock().unwrap();
|
|
settings.mute.to_value()
|
|
}
|
|
"is-live" => {
|
|
let settings = self.settings.lock().unwrap();
|
|
settings.is_live.to_value()
|
|
}
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl GstObjectImpl for SineSrc {}
|
|
|
|
// Implementation of gst::Element virtual methods
|
|
impl ElementImpl for SineSrc {
|
|
// Set the element specific metadata. This information is what
|
|
// is visible from gst-inspect-1.0 and can also be programatically
|
|
// retrieved from the gst::Registry after initial registration
|
|
// without having to load the plugin in memory.
|
|
fn metadata() -> Option<&'static gst::subclass::ElementMetadata> {
|
|
static ELEMENT_METADATA: Lazy<gst::subclass::ElementMetadata> = Lazy::new(|| {
|
|
gst::subclass::ElementMetadata::new(
|
|
"Sine Wave Source",
|
|
"Source/Audio",
|
|
"Creates a sine wave",
|
|
"Sebastian Dröge <sebastian@centricular.com>",
|
|
)
|
|
});
|
|
|
|
Some(&*ELEMENT_METADATA)
|
|
}
|
|
|
|
// Create and add pad templates for our sink and source pad. These
|
|
// are later used for actually creating the pads and beforehand
|
|
// already provide information to GStreamer about all possible
|
|
// pads that could exist for this type.
|
|
fn pad_templates() -> &'static [gst::PadTemplate] {
|
|
static PAD_TEMPLATES: Lazy<Vec<gst::PadTemplate>> = Lazy::new(|| {
|
|
// On the src pad, we can produce F32/F64 with any sample rate
|
|
// and any number of channels
|
|
let caps = gst_audio::AudioCapsBuilder::new_interleaved()
|
|
.format_list([gst_audio::AUDIO_FORMAT_F32, gst_audio::AUDIO_FORMAT_F64])
|
|
.build();
|
|
// The src pad template must be named "src" for basesrc
|
|
// and specific a pad that is always there
|
|
let src_pad_template = gst::PadTemplate::new(
|
|
"src",
|
|
gst::PadDirection::Src,
|
|
gst::PadPresence::Always,
|
|
&caps,
|
|
)
|
|
.unwrap();
|
|
|
|
vec![src_pad_template]
|
|
});
|
|
|
|
PAD_TEMPLATES.as_ref()
|
|
}
|
|
|
|
// Called whenever the state of the element should be changed. This allows for
|
|
// starting up the element, allocating/deallocating resources or shutting down
|
|
// the element again.
|
|
fn change_state(
|
|
&self,
|
|
transition: gst::StateChange,
|
|
) -> Result<gst::StateChangeSuccess, gst::StateChangeError> {
|
|
// Configure live'ness once here just before starting the source
|
|
if let gst::StateChange::ReadyToPaused = transition {
|
|
self.obj().set_live(self.settings.lock().unwrap().is_live);
|
|
}
|
|
|
|
// Call the parent class' implementation of ::change_state()
|
|
self.parent_change_state(transition)
|
|
}
|
|
}
|
|
|
|
// Implementation of gst_base::BaseSrc virtual methods
|
|
impl BaseSrcImpl for SineSrc {
|
|
// Called whenever the input/output caps are changing, i.e. in the very beginning before data
|
|
// flow happens and whenever the situation in the pipeline is changing. All buffers after this
|
|
// call have the caps given here.
|
|
//
|
|
// We simply remember the resulting AudioInfo from the caps to be able to use this for knowing
|
|
// the sample rate, etc. when creating buffers
|
|
fn set_caps(&self, caps: &gst::Caps) -> Result<(), gst::LoggableError> {
|
|
use std::f64::consts::PI;
|
|
|
|
let info = gst_audio::AudioInfo::from_caps(caps).map_err(|_| {
|
|
gst::loggable_error!(CAT, "Failed to build `AudioInfo` from caps {}", caps)
|
|
})?;
|
|
|
|
gst::debug!(CAT, imp: self, "Configuring for caps {}", caps);
|
|
|
|
self.obj()
|
|
.set_blocksize(info.bpf() * (self.settings.lock().unwrap()).samples_per_buffer);
|
|
|
|
let settings = *self.settings.lock().unwrap();
|
|
let mut state = self.state.lock().unwrap();
|
|
|
|
// If we have no caps yet, any old sample_offset and sample_stop will be
|
|
// in nanoseconds
|
|
let old_rate = match state.info {
|
|
Some(ref info) => info.rate() as u64,
|
|
None => *gst::ClockTime::SECOND,
|
|
};
|
|
|
|
// Update sample offset and accumulator based on the previous values and the
|
|
// sample rate change, if any
|
|
let old_sample_offset = state.sample_offset;
|
|
let sample_offset = old_sample_offset
|
|
.mul_div_floor(info.rate() as u64, old_rate)
|
|
.unwrap();
|
|
|
|
let old_sample_stop = state.sample_stop;
|
|
let sample_stop =
|
|
old_sample_stop.map(|v| v.mul_div_floor(info.rate() as u64, old_rate).unwrap());
|
|
|
|
let accumulator =
|
|
(sample_offset as f64).rem(2.0 * PI * (settings.freq as f64) / (info.rate() as f64));
|
|
|
|
*state = State {
|
|
info: Some(info),
|
|
sample_offset,
|
|
sample_stop,
|
|
accumulator,
|
|
};
|
|
|
|
drop(state);
|
|
|
|
let _ = self
|
|
.obj()
|
|
.post_message(gst::message::Latency::builder().src(&*self.obj()).build());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Called when starting, so we can initialize all stream-related state to its defaults
|
|
fn start(&self) -> Result<(), gst::ErrorMessage> {
|
|
// Reset state
|
|
*self.state.lock().unwrap() = Default::default();
|
|
self.unlock_stop()?;
|
|
|
|
gst::info!(CAT, imp: self, "Started");
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Called when shutting down the element so we can release all stream-related state
|
|
fn stop(&self) -> Result<(), gst::ErrorMessage> {
|
|
// Reset state
|
|
*self.state.lock().unwrap() = Default::default();
|
|
self.unlock()?;
|
|
|
|
gst::info!(CAT, imp: self, "Stopped");
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn query(&self, query: &mut gst::QueryRef) -> bool {
|
|
use gst::QueryViewMut;
|
|
|
|
match query.view_mut() {
|
|
// In Live mode we will have a latency equal to the number of samples in each buffer.
|
|
// We can't output samples before they were produced, and the last sample of a buffer
|
|
// is produced that much after the beginning, leading to this latency calculation
|
|
QueryViewMut::Latency(q) => {
|
|
let settings = *self.settings.lock().unwrap();
|
|
let state = self.state.lock().unwrap();
|
|
|
|
if let Some(ref info) = state.info {
|
|
let latency = gst::ClockTime::SECOND
|
|
.mul_div_floor(settings.samples_per_buffer as u64, info.rate() as u64)
|
|
.unwrap();
|
|
gst::debug!(CAT, imp: self, "Returning latency {}", latency);
|
|
q.set(settings.is_live, latency, gst::ClockTime::NONE);
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
_ => BaseSrcImplExt::parent_query(self, query),
|
|
}
|
|
}
|
|
|
|
fn fixate(&self, mut caps: gst::Caps) -> gst::Caps {
|
|
// Fixate the caps. BaseSrc will do some fixation for us, but
|
|
// as we allow any rate between 1 and MAX it would fixate to 1. 1Hz
|
|
// is generally not a useful sample rate.
|
|
//
|
|
// We fixate to the closest integer value to 48kHz that is possible
|
|
// here, and for good measure also decide that the closest value to 1
|
|
// channel is good.
|
|
caps.truncate();
|
|
{
|
|
let caps = caps.make_mut();
|
|
let s = caps.structure_mut(0).unwrap();
|
|
s.fixate_field_nearest_int("rate", 48_000);
|
|
s.fixate_field_nearest_int("channels", 1);
|
|
}
|
|
|
|
// Let BaseSrc fixate anything else for us. We could've alternatively have
|
|
// called caps.fixate() here
|
|
self.parent_fixate(caps)
|
|
}
|
|
|
|
fn is_seekable(&self) -> bool {
|
|
true
|
|
}
|
|
|
|
fn do_seek(&self, segment: &mut gst::Segment) -> bool {
|
|
// Handle seeking here. For Time and Default (sample offset) seeks we can
|
|
// do something and have to update our sample offset and accumulator accordingly.
|
|
//
|
|
// Also we should remember the stop time (so we can stop at that point), and if
|
|
// reverse playback is requested. These values will all be used during buffer creation
|
|
// and for calculating the timestamps, etc.
|
|
|
|
if segment.rate() < 0.0 {
|
|
gst::error!(CAT, imp: self, "Reverse playback not supported");
|
|
return false;
|
|
}
|
|
|
|
let settings = *self.settings.lock().unwrap();
|
|
let mut state = self.state.lock().unwrap();
|
|
|
|
// We store sample_offset and sample_stop in nanoseconds if we
|
|
// don't know any sample rate yet. It will be converted correctly
|
|
// once a sample rate is known.
|
|
let rate = match state.info {
|
|
None => *gst::ClockTime::SECOND,
|
|
Some(ref info) => info.rate() as u64,
|
|
};
|
|
|
|
if let Some(segment) = segment.downcast_ref::<gst::format::Time>() {
|
|
use std::f64::consts::PI;
|
|
|
|
let sample_offset = segment
|
|
.start()
|
|
.unwrap()
|
|
.nseconds()
|
|
.mul_div_floor(rate, *gst::ClockTime::SECOND)
|
|
.unwrap();
|
|
|
|
let sample_stop = segment
|
|
.stop()
|
|
.and_then(|v| v.nseconds().mul_div_floor(rate, *gst::ClockTime::SECOND));
|
|
|
|
let accumulator =
|
|
(sample_offset as f64).rem(2.0 * PI * (settings.freq as f64) / (rate as f64));
|
|
|
|
gst::debug!(
|
|
CAT,
|
|
imp: self,
|
|
"Seeked to {}-{:?} (accum: {}) for segment {:?}",
|
|
sample_offset,
|
|
sample_stop,
|
|
accumulator,
|
|
segment
|
|
);
|
|
|
|
*state = State {
|
|
info: state.info.clone(),
|
|
sample_offset,
|
|
sample_stop,
|
|
accumulator,
|
|
};
|
|
|
|
true
|
|
} else if let Some(segment) = segment.downcast_ref::<gst::format::Default>() {
|
|
use std::f64::consts::PI;
|
|
|
|
if state.info.is_none() {
|
|
gst::error!(
|
|
CAT,
|
|
imp: self,
|
|
"Can only seek in Default format if sample rate is known"
|
|
);
|
|
return false;
|
|
}
|
|
|
|
let sample_offset = *segment.start().unwrap();
|
|
let sample_stop = segment.stop().map(|stop| *stop);
|
|
|
|
let accumulator =
|
|
(sample_offset as f64).rem(2.0 * PI * (settings.freq as f64) / (rate as f64));
|
|
|
|
gst::debug!(
|
|
CAT,
|
|
imp: self,
|
|
"Seeked to {}-{:?} (accum: {}) for segment {:?}",
|
|
sample_offset,
|
|
sample_stop,
|
|
accumulator,
|
|
segment
|
|
);
|
|
|
|
*state = State {
|
|
info: state.info.clone(),
|
|
sample_offset,
|
|
sample_stop,
|
|
accumulator,
|
|
};
|
|
|
|
true
|
|
} else {
|
|
gst::error!(
|
|
CAT,
|
|
imp: self,
|
|
"Can't seek in format {:?}",
|
|
segment.format()
|
|
);
|
|
|
|
false
|
|
}
|
|
}
|
|
|
|
fn unlock(&self) -> Result<(), gst::ErrorMessage> {
|
|
// This should unblock the create() function ASAP, so we
|
|
// just unschedule the clock it here, if any.
|
|
gst::debug!(CAT, imp: self, "Unlocking");
|
|
let mut clock_wait = self.clock_wait.lock().unwrap();
|
|
if let Some(clock_id) = clock_wait.clock_id.take() {
|
|
clock_id.unschedule();
|
|
}
|
|
clock_wait.flushing = true;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn unlock_stop(&self) -> Result<(), gst::ErrorMessage> {
|
|
// This signals that unlocking is done, so we can reset
|
|
// all values again.
|
|
gst::debug!(CAT, imp: self, "Unlock stop");
|
|
let mut clock_wait = self.clock_wait.lock().unwrap();
|
|
clock_wait.flushing = false;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl PushSrcImpl for SineSrc {
|
|
// Creates the audio buffers
|
|
fn create(
|
|
&self,
|
|
_buffer: Option<&mut gst::BufferRef>,
|
|
) -> Result<CreateSuccess, gst::FlowError> {
|
|
// Keep a local copy of the values of all our properties at this very moment. This
|
|
// ensures that the mutex is never locked for long and the application wouldn't
|
|
// have to block until this function returns when getting/setting property values
|
|
let settings = *self.settings.lock().unwrap();
|
|
|
|
// Get a locked reference to our state, i.e. the input and output AudioInfo
|
|
let mut state = self.state.lock().unwrap();
|
|
let info = match state.info {
|
|
None => {
|
|
gst::element_imp_error!(self, gst::CoreError::Negotiation, ["Have no caps yet"]);
|
|
return Err(gst::FlowError::NotNegotiated);
|
|
}
|
|
Some(ref info) => info.clone(),
|
|
};
|
|
|
|
// If a stop position is set (from a seek), only produce samples up to that
|
|
// point but at most samples_per_buffer samples per buffer
|
|
let n_samples = if let Some(sample_stop) = state.sample_stop {
|
|
if sample_stop <= state.sample_offset {
|
|
gst::log!(CAT, imp: self, "At EOS");
|
|
return Err(gst::FlowError::Eos);
|
|
}
|
|
|
|
sample_stop - state.sample_offset
|
|
} else {
|
|
settings.samples_per_buffer as u64
|
|
};
|
|
|
|
// Allocate a new buffer of the required size, update the metadata with the
|
|
// current timestamp and duration and then fill it according to the current
|
|
// caps
|
|
let mut buffer =
|
|
gst::Buffer::with_size((n_samples as usize) * (info.bpf() as usize)).unwrap();
|
|
{
|
|
let buffer = buffer.get_mut().unwrap();
|
|
|
|
// Calculate the current timestamp (PTS) and the next one,
|
|
// and calculate the duration from the difference instead of
|
|
// simply the number of samples to prevent rounding errors
|
|
let pts = state
|
|
.sample_offset
|
|
.mul_div_floor(*gst::ClockTime::SECOND, info.rate() as u64)
|
|
.map(gst::ClockTime::from_nseconds)
|
|
.unwrap();
|
|
let next_pts = (state.sample_offset + n_samples)
|
|
.mul_div_floor(*gst::ClockTime::SECOND, info.rate() as u64)
|
|
.map(gst::ClockTime::from_nseconds)
|
|
.unwrap();
|
|
buffer.set_pts(pts);
|
|
buffer.set_duration(next_pts - pts);
|
|
|
|
// Map the buffer writable and create the actual samples
|
|
let mut map = buffer.map_writable().unwrap();
|
|
let data = map.as_mut_slice();
|
|
|
|
if info.format() == gst_audio::AUDIO_FORMAT_F32 {
|
|
Self::process::<f32>(
|
|
data,
|
|
&mut state.accumulator,
|
|
settings.freq,
|
|
info.rate(),
|
|
info.channels(),
|
|
settings.volume,
|
|
);
|
|
} else {
|
|
Self::process::<f64>(
|
|
data,
|
|
&mut state.accumulator,
|
|
settings.freq,
|
|
info.rate(),
|
|
info.channels(),
|
|
settings.volume,
|
|
);
|
|
}
|
|
}
|
|
state.sample_offset += n_samples;
|
|
drop(state);
|
|
|
|
// If we're live, we are waiting until the time of the last sample in our buffer has
|
|
// arrived. This is the very reason why we have to report that much latency.
|
|
// A real live-source would of course only allow us to have the data available after
|
|
// that latency, e.g. when capturing from a microphone, and no waiting from our side
|
|
// would be necessary..
|
|
//
|
|
// Waiting happens based on the pipeline clock, which means that a real live source
|
|
// with its own clock would require various translations between the two clocks.
|
|
// This is out of scope for the tutorial though.
|
|
if self.obj().is_live() {
|
|
let (clock, base_time) = match Option::zip(self.obj().clock(), self.obj().base_time()) {
|
|
None => return Ok(CreateSuccess::NewBuffer(buffer)),
|
|
Some(res) => res,
|
|
};
|
|
|
|
let segment = self
|
|
.obj()
|
|
.segment()
|
|
.downcast::<gst::format::Time>()
|
|
.unwrap();
|
|
let running_time = segment.to_running_time(buffer.pts().opt_add(buffer.duration()));
|
|
|
|
// The last sample's clock time is the base time of the element plus the
|
|
// running time of the last sample
|
|
let wait_until = match running_time.opt_add(base_time) {
|
|
Some(wait_until) => wait_until,
|
|
None => return Ok(CreateSuccess::NewBuffer(buffer)),
|
|
};
|
|
|
|
// Store the clock ID in our struct unless we're flushing anyway.
|
|
// This allows to asynchronously cancel the waiting from unlock()
|
|
// so that we immediately stop waiting on e.g. shutdown.
|
|
let mut clock_wait = self.clock_wait.lock().unwrap();
|
|
if clock_wait.flushing {
|
|
gst::debug!(CAT, imp: self, "Flushing");
|
|
return Err(gst::FlowError::Flushing);
|
|
}
|
|
|
|
let id = clock.new_single_shot_id(wait_until);
|
|
clock_wait.clock_id = Some(id.clone());
|
|
drop(clock_wait);
|
|
|
|
gst::log!(
|
|
CAT,
|
|
imp: self,
|
|
"Waiting until {}, now {}",
|
|
wait_until,
|
|
clock.time().display(),
|
|
);
|
|
let (res, jitter) = id.wait();
|
|
gst::log!(CAT, imp: self, "Waited res {:?} jitter {}", res, jitter);
|
|
self.clock_wait.lock().unwrap().clock_id.take();
|
|
|
|
// If the clock ID was unscheduled, unlock() was called
|
|
// and we should return Flushing immediately.
|
|
if res == Err(gst::ClockError::Unscheduled) {
|
|
gst::debug!(CAT, imp: self, "Flushing");
|
|
return Err(gst::FlowError::Flushing);
|
|
}
|
|
}
|
|
|
|
gst::debug!(CAT, imp: self, "Produced buffer {:?}", buffer);
|
|
|
|
Ok(CreateSuccess::NewBuffer(buffer))
|
|
}
|
|
}
|