mirror of
https://git.deuxfleurs.fr/Deuxfleurs/garage.git
synced 2024-11-21 15:41:02 +00:00
cargo fmt
This commit is contained in:
parent
fcf9ac674a
commit
4abab246f1
8 changed files with 1109 additions and 985 deletions
|
@ -163,10 +163,10 @@ pub async fn handle_apply_cluster_layout(
|
|||
|
||||
let layout = garage.system.get_cluster_layout();
|
||||
let (layout, msg) = layout.apply_staged_changes(Some(param.version))?;
|
||||
//TODO : how to display msg ? Should it be in the Body Response ?
|
||||
for s in msg.iter() {
|
||||
println!("{}", s);
|
||||
}
|
||||
//TODO : how to display msg ? Should it be in the Body Response ?
|
||||
for s in msg.iter() {
|
||||
println!("{}", s);
|
||||
}
|
||||
|
||||
garage.system.update_cluster_layout(&layout).await?;
|
||||
|
||||
|
|
|
@ -4,7 +4,6 @@ extern crate tracing;
|
|||
|
||||
#[cfg(not(any(feature = "lmdb", feature = "sled", feature = "sqlite")))]
|
||||
//compile_error!("Must activate the Cargo feature for at least one DB engine: lmdb, sled or sqlite.");
|
||||
|
||||
#[cfg(feature = "lmdb")]
|
||||
pub mod lmdb_adapter;
|
||||
#[cfg(feature = "sled")]
|
||||
|
|
|
@ -27,9 +27,9 @@ pub async fn cli_layout_command_dispatch(
|
|||
LayoutOperation::Revert(revert_opt) => {
|
||||
cmd_revert_layout(system_rpc_endpoint, rpc_host, revert_opt).await
|
||||
}
|
||||
LayoutOperation::Config(config_opt) => {
|
||||
cmd_config_layout(system_rpc_endpoint, rpc_host, config_opt).await
|
||||
}
|
||||
LayoutOperation::Config(config_opt) => {
|
||||
cmd_config_layout(system_rpc_endpoint, rpc_host, config_opt).await
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -188,30 +188,37 @@ pub async fn cmd_show_layout(
|
|||
println!("No nodes have a role in the new layout.");
|
||||
}
|
||||
println!();
|
||||
|
||||
|
||||
println!("==== PARAMETERS OF THE LAYOUT COMPUTATION ====");
|
||||
println!("Zone redundancy: {}", layout.staged_parameters.get().zone_redundancy);
|
||||
println!(
|
||||
"Zone redundancy: {}",
|
||||
layout.staged_parameters.get().zone_redundancy
|
||||
);
|
||||
println!();
|
||||
|
||||
// this will print the stats of what partitions
|
||||
// will move around when we apply
|
||||
match layout.calculate_partition_assignation() {
|
||||
Ok(msg) => {
|
||||
for line in msg.iter() {
|
||||
println!("{}", line);
|
||||
}
|
||||
println!("To enact the staged role changes, type:");
|
||||
println!();
|
||||
println!(" garage layout apply --version {}", layout.version + 1);
|
||||
println!();
|
||||
println!(
|
||||
match layout.calculate_partition_assignation() {
|
||||
Ok(msg) => {
|
||||
for line in msg.iter() {
|
||||
println!("{}", line);
|
||||
}
|
||||
println!("To enact the staged role changes, type:");
|
||||
println!();
|
||||
println!(" garage layout apply --version {}", layout.version + 1);
|
||||
println!();
|
||||
println!(
|
||||
"You can also revert all proposed changes with: garage layout revert --version {}",
|
||||
layout.version + 1)},
|
||||
Err(Error::Message(s)) => {
|
||||
println!("Error while trying to compute the assignation: {}", s);
|
||||
println!("This new layout cannot yet be applied.");},
|
||||
_ => { println!("Unknown Error"); },
|
||||
}
|
||||
layout.version + 1)
|
||||
}
|
||||
Err(Error::Message(s)) => {
|
||||
println!("Error while trying to compute the assignation: {}", s);
|
||||
println!("This new layout cannot yet be applied.");
|
||||
}
|
||||
_ => {
|
||||
println!("Unknown Error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
@ -225,9 +232,9 @@ pub async fn cmd_apply_layout(
|
|||
let layout = fetch_layout(rpc_cli, rpc_host).await?;
|
||||
|
||||
let (layout, msg) = layout.apply_staged_changes(apply_opt.version)?;
|
||||
for line in msg.iter() {
|
||||
println!("{}", line);
|
||||
}
|
||||
for line in msg.iter() {
|
||||
println!("{}", line);
|
||||
}
|
||||
|
||||
send_layout(rpc_cli, rpc_host, layout).await?;
|
||||
|
||||
|
@ -258,26 +265,29 @@ pub async fn cmd_config_layout(
|
|||
config_opt: ConfigLayoutOpt,
|
||||
) -> Result<(), Error> {
|
||||
let mut layout = fetch_layout(rpc_cli, rpc_host).await?;
|
||||
|
||||
match config_opt.redundancy {
|
||||
None => (),
|
||||
Some(r) => {
|
||||
if r > layout.replication_factor {
|
||||
println!("The zone redundancy must be smaller or equal to the \
|
||||
replication factor ({}).", layout.replication_factor);
|
||||
}
|
||||
else if r < 1 {
|
||||
println!("The zone redundancy must be at least 1.");
|
||||
}
|
||||
else {
|
||||
layout.staged_parameters.update(LayoutParameters{ zone_redundancy: r });
|
||||
println!("The new zone redundancy has been saved ({}).", r);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
match config_opt.redundancy {
|
||||
None => (),
|
||||
Some(r) => {
|
||||
if r > layout.replication_factor {
|
||||
println!(
|
||||
"The zone redundancy must be smaller or equal to the \
|
||||
replication factor ({}).",
|
||||
layout.replication_factor
|
||||
);
|
||||
} else if r < 1 {
|
||||
println!("The zone redundancy must be at least 1.");
|
||||
} else {
|
||||
layout
|
||||
.staged_parameters
|
||||
.update(LayoutParameters { zone_redundancy: r });
|
||||
println!("The new zone redundancy has been saved ({}).", r);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
send_layout(rpc_cli, rpc_host, layout).await?;
|
||||
Ok(())
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// --- utility ---
|
||||
|
|
|
@ -86,10 +86,10 @@ pub enum LayoutOperation {
|
|||
/// Remove role from Garage cluster node
|
||||
#[structopt(name = "remove", version = garage_version())]
|
||||
Remove(RemoveRoleOpt),
|
||||
|
||||
/// Configure parameters value for the layout computation
|
||||
|
||||
/// Configure parameters value for the layout computation
|
||||
#[structopt(name = "config", version = garage_version())]
|
||||
Config(ConfigLayoutOpt),
|
||||
Config(ConfigLayoutOpt),
|
||||
|
||||
/// Show roles currently assigned to nodes and changes staged for commit
|
||||
#[structopt(name = "show", version = garage_version())]
|
||||
|
@ -104,7 +104,6 @@ pub enum LayoutOperation {
|
|||
Revert(RevertLayoutOpt),
|
||||
}
|
||||
|
||||
|
||||
#[derive(StructOpt, Debug)]
|
||||
pub struct AssignRoleOpt {
|
||||
/// Node(s) to which to assign role (prefix of hexadecimal node id)
|
||||
|
|
|
@ -1,42 +1,40 @@
|
|||
|
||||
//! This module deals with graph algorithms.
|
||||
//! It is used in layout.rs to build the partition to node assignation.
|
||||
|
||||
use rand::prelude::SliceRandom;
|
||||
use std::cmp::{max, min};
|
||||
use std::collections::VecDeque;
|
||||
use std::collections::HashMap;
|
||||
use std::collections::VecDeque;
|
||||
|
||||
//Vertex data structures used in all the graphs used in layout.rs.
|
||||
//usize parameters correspond to node/zone/partitions ids.
|
||||
//To understand the vertex roles below, please refer to the formal description
|
||||
//of the layout computation algorithm.
|
||||
#[derive(Clone,Copy,Debug, PartialEq, Eq, Hash)]
|
||||
pub enum Vertex{
|
||||
Source,
|
||||
Pup(usize), //The vertex p+ of partition p
|
||||
Pdown(usize), //The vertex p- of partition p
|
||||
PZ(usize,usize), //The vertex corresponding to x_(partition p, zone z)
|
||||
N(usize), //The vertex corresponding to node n
|
||||
Sink
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
||||
pub enum Vertex {
|
||||
Source,
|
||||
Pup(usize), //The vertex p+ of partition p
|
||||
Pdown(usize), //The vertex p- of partition p
|
||||
PZ(usize, usize), //The vertex corresponding to x_(partition p, zone z)
|
||||
N(usize), //The vertex corresponding to node n
|
||||
Sink,
|
||||
}
|
||||
|
||||
|
||||
//Edge data structure for the flow algorithm.
|
||||
//The graph is stored as an adjacency list
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct FlowEdge {
|
||||
cap: u32, //flow maximal capacity of the edge
|
||||
flow: i32, //flow value on the edge
|
||||
dest: usize, //destination vertex id
|
||||
rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v
|
||||
cap: u32, //flow maximal capacity of the edge
|
||||
flow: i32, //flow value on the edge
|
||||
dest: usize, //destination vertex id
|
||||
rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v
|
||||
}
|
||||
|
||||
//Edge data structure for the detection of negative cycles.
|
||||
//The graph is stored as a list of edges (u,v).
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct WeightedEdge {
|
||||
w: i32, //weight of the edge
|
||||
w: i32, //weight of the edge
|
||||
dest: usize,
|
||||
}
|
||||
|
||||
|
@ -47,375 +45,377 @@ impl Edge for WeightedEdge {}
|
|||
//Struct for the graph structure. We do encapsulation here to be able to both
|
||||
//provide user friendly Vertex enum to address vertices, and to use usize indices
|
||||
//and Vec instead of HashMap in the graph algorithm to optimize execution speed.
|
||||
pub struct Graph<E : Edge>{
|
||||
vertextoid : HashMap<Vertex , usize>,
|
||||
idtovertex : Vec<Vertex>,
|
||||
|
||||
graph : Vec< Vec<E> >
|
||||
pub struct Graph<E: Edge> {
|
||||
vertextoid: HashMap<Vertex, usize>,
|
||||
idtovertex: Vec<Vertex>,
|
||||
|
||||
graph: Vec<Vec<E>>,
|
||||
}
|
||||
|
||||
pub type CostFunction = HashMap<(Vertex,Vertex), i32>;
|
||||
pub type CostFunction = HashMap<(Vertex, Vertex), i32>;
|
||||
|
||||
impl<E : Edge> Graph<E>{
|
||||
pub fn new(vertices : &[Vertex]) -> Self {
|
||||
let mut map = HashMap::<Vertex, usize>::new();
|
||||
for (i, vert) in vertices.iter().enumerate(){
|
||||
map.insert(*vert , i);
|
||||
}
|
||||
Graph::<E> {
|
||||
vertextoid : map,
|
||||
idtovertex: vertices.to_vec(),
|
||||
graph : vec![Vec::< E >::new(); vertices.len() ]
|
||||
}
|
||||
}
|
||||
impl<E: Edge> Graph<E> {
|
||||
pub fn new(vertices: &[Vertex]) -> Self {
|
||||
let mut map = HashMap::<Vertex, usize>::new();
|
||||
for (i, vert) in vertices.iter().enumerate() {
|
||||
map.insert(*vert, i);
|
||||
}
|
||||
Graph::<E> {
|
||||
vertextoid: map,
|
||||
idtovertex: vertices.to_vec(),
|
||||
graph: vec![Vec::<E>::new(); vertices.len()],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Graph<FlowEdge>{
|
||||
//This function adds a directed edge to the graph with capacity c, and the
|
||||
//corresponding reversed edge with capacity 0.
|
||||
pub fn add_edge(&mut self, u: Vertex, v:Vertex, c: u32) -> Result<(), String>{
|
||||
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idu = self.vertextoid[&u];
|
||||
let idv = self.vertextoid[&v];
|
||||
let rev_u = self.graph[idu].len();
|
||||
let rev_v = self.graph[idv].len();
|
||||
self.graph[idu].push( FlowEdge{cap: c , dest: idv , flow: 0, rev : rev_v} );
|
||||
self.graph[idv].push( FlowEdge{cap: 0 , dest: idu , flow: 0, rev : rev_u} );
|
||||
Ok(())
|
||||
}
|
||||
|
||||
//This function returns the list of vertices that receive a positive flow from
|
||||
//vertex v.
|
||||
pub fn get_positive_flow_from(&self , v:Vertex) -> Result< Vec<Vertex> , String>{
|
||||
if !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idv = self.vertextoid[&v];
|
||||
let mut result = Vec::<Vertex>::new();
|
||||
for edge in self.graph[idv].iter() {
|
||||
if edge.flow > 0 {
|
||||
result.push(self.idtovertex[edge.dest]);
|
||||
}
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
|
||||
//This function returns the value of the flow incoming to v.
|
||||
pub fn get_inflow(&self , v:Vertex) -> Result< i32 , String>{
|
||||
if !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idv = self.vertextoid[&v];
|
||||
let mut result = 0;
|
||||
for edge in self.graph[idv].iter() {
|
||||
result += max(0,self.graph[edge.dest][edge.rev].flow);
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
impl Graph<FlowEdge> {
|
||||
//This function adds a directed edge to the graph with capacity c, and the
|
||||
//corresponding reversed edge with capacity 0.
|
||||
pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u32) -> Result<(), String> {
|
||||
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idu = self.vertextoid[&u];
|
||||
let idv = self.vertextoid[&v];
|
||||
let rev_u = self.graph[idu].len();
|
||||
let rev_v = self.graph[idv].len();
|
||||
self.graph[idu].push(FlowEdge {
|
||||
cap: c,
|
||||
dest: idv,
|
||||
flow: 0,
|
||||
rev: rev_v,
|
||||
});
|
||||
self.graph[idv].push(FlowEdge {
|
||||
cap: 0,
|
||||
dest: idu,
|
||||
flow: 0,
|
||||
rev: rev_u,
|
||||
});
|
||||
Ok(())
|
||||
}
|
||||
|
||||
//This function returns the value of the flow outgoing from v.
|
||||
pub fn get_outflow(&self , v:Vertex) -> Result< i32 , String>{
|
||||
if !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idv = self.vertextoid[&v];
|
||||
let mut result = 0;
|
||||
for edge in self.graph[idv].iter() {
|
||||
result += max(0,edge.flow);
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
//This function returns the list of vertices that receive a positive flow from
|
||||
//vertex v.
|
||||
pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> {
|
||||
if !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idv = self.vertextoid[&v];
|
||||
let mut result = Vec::<Vertex>::new();
|
||||
for edge in self.graph[idv].iter() {
|
||||
if edge.flow > 0 {
|
||||
result.push(self.idtovertex[edge.dest]);
|
||||
}
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
//This function computes the flow total value by computing the outgoing flow
|
||||
//from the source.
|
||||
pub fn get_flow_value(&mut self) -> Result<i32, String> {
|
||||
self.get_outflow(Vertex::Source)
|
||||
}
|
||||
//This function returns the value of the flow incoming to v.
|
||||
pub fn get_inflow(&self, v: Vertex) -> Result<i32, String> {
|
||||
if !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idv = self.vertextoid[&v];
|
||||
let mut result = 0;
|
||||
for edge in self.graph[idv].iter() {
|
||||
result += max(0, self.graph[edge.dest][edge.rev].flow);
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
//This function shuffles the order of the edge lists. It keeps the ids of the
|
||||
//reversed edges consistent.
|
||||
fn shuffle_edges(&mut self) {
|
||||
let mut rng = rand::thread_rng();
|
||||
for i in 0..self.graph.len() {
|
||||
self.graph[i].shuffle(&mut rng);
|
||||
//We need to update the ids of the reverse edges.
|
||||
for j in 0..self.graph[i].len() {
|
||||
let target_v = self.graph[i][j].dest;
|
||||
let target_rev = self.graph[i][j].rev;
|
||||
self.graph[target_v][target_rev].rev = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
//This function returns the value of the flow outgoing from v.
|
||||
pub fn get_outflow(&self, v: Vertex) -> Result<i32, String> {
|
||||
if !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idv = self.vertextoid[&v];
|
||||
let mut result = 0;
|
||||
for edge in self.graph[idv].iter() {
|
||||
result += max(0, edge.flow);
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
//Computes an upper bound of the flow n the graph
|
||||
pub fn flow_upper_bound(&self) -> u32{
|
||||
let idsource = self.vertextoid[&Vertex::Source];
|
||||
let mut flow_upper_bound = 0;
|
||||
for edge in self.graph[idsource].iter(){
|
||||
flow_upper_bound += edge.cap;
|
||||
}
|
||||
flow_upper_bound
|
||||
}
|
||||
|
||||
//This function computes the maximal flow using Dinic's algorithm. It starts with
|
||||
//the flow values already present in the graph. So it is possible to add some edge to
|
||||
//the graph, compute a flow, add other edges, update the flow.
|
||||
pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
|
||||
if !self.vertextoid.contains_key(&Vertex::Source) {
|
||||
return Err("The graph does not contain a source.".to_string());
|
||||
}
|
||||
if !self.vertextoid.contains_key(&Vertex::Sink) {
|
||||
return Err("The graph does not contain a sink.".to_string());
|
||||
}
|
||||
//This function computes the flow total value by computing the outgoing flow
|
||||
//from the source.
|
||||
pub fn get_flow_value(&mut self) -> Result<i32, String> {
|
||||
self.get_outflow(Vertex::Source)
|
||||
}
|
||||
|
||||
let idsource = self.vertextoid[&Vertex::Source];
|
||||
let idsink = self.vertextoid[&Vertex::Sink];
|
||||
|
||||
let nb_vertices = self.graph.len();
|
||||
//This function shuffles the order of the edge lists. It keeps the ids of the
|
||||
//reversed edges consistent.
|
||||
fn shuffle_edges(&mut self) {
|
||||
let mut rng = rand::thread_rng();
|
||||
for i in 0..self.graph.len() {
|
||||
self.graph[i].shuffle(&mut rng);
|
||||
//We need to update the ids of the reverse edges.
|
||||
for j in 0..self.graph[i].len() {
|
||||
let target_v = self.graph[i][j].dest;
|
||||
let target_rev = self.graph[i][j].rev;
|
||||
self.graph[target_v][target_rev].rev = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let flow_upper_bound = self.flow_upper_bound();
|
||||
|
||||
//To ensure the dispersion of the associations generated by the
|
||||
//assignation, we shuffle the neighbours of the nodes. Hence,
|
||||
//the vertices do not consider their neighbours in the same order.
|
||||
self.shuffle_edges();
|
||||
|
||||
//We run Dinic's max flow algorithm
|
||||
loop {
|
||||
//We build the level array from Dinic's algorithm.
|
||||
let mut level = vec![None; nb_vertices];
|
||||
//Computes an upper bound of the flow n the graph
|
||||
pub fn flow_upper_bound(&self) -> u32 {
|
||||
let idsource = self.vertextoid[&Vertex::Source];
|
||||
let mut flow_upper_bound = 0;
|
||||
for edge in self.graph[idsource].iter() {
|
||||
flow_upper_bound += edge.cap;
|
||||
}
|
||||
flow_upper_bound
|
||||
}
|
||||
|
||||
let mut fifo = VecDeque::new();
|
||||
fifo.push_back((idsource, 0));
|
||||
while !fifo.is_empty() {
|
||||
if let Some((id, lvl)) = fifo.pop_front() {
|
||||
if level[id] == None { //it means id has not yet been reached
|
||||
level[id] = Some(lvl);
|
||||
for edge in self.graph[id].iter() {
|
||||
if edge.cap as i32 - edge.flow > 0 {
|
||||
fifo.push_back((edge.dest, lvl + 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if level[idsink] == None {
|
||||
//There is no residual flow
|
||||
break;
|
||||
}
|
||||
//Now we run DFS respecting the level array
|
||||
let mut next_nbd = vec![0; nb_vertices];
|
||||
let mut lifo = VecDeque::new();
|
||||
//This function computes the maximal flow using Dinic's algorithm. It starts with
|
||||
//the flow values already present in the graph. So it is possible to add some edge to
|
||||
//the graph, compute a flow, add other edges, update the flow.
|
||||
pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
|
||||
if !self.vertextoid.contains_key(&Vertex::Source) {
|
||||
return Err("The graph does not contain a source.".to_string());
|
||||
}
|
||||
if !self.vertextoid.contains_key(&Vertex::Sink) {
|
||||
return Err("The graph does not contain a sink.".to_string());
|
||||
}
|
||||
|
||||
lifo.push_back((idsource, flow_upper_bound));
|
||||
let idsource = self.vertextoid[&Vertex::Source];
|
||||
let idsink = self.vertextoid[&Vertex::Sink];
|
||||
|
||||
while let Some((id_tmp, f_tmp)) = lifo.back() {
|
||||
let id = *id_tmp;
|
||||
let f = *f_tmp;
|
||||
if id == idsink {
|
||||
//The DFS reached the sink, we can add a
|
||||
//residual flow.
|
||||
lifo.pop_back();
|
||||
while let Some((id, _)) = lifo.pop_back() {
|
||||
let nbd = next_nbd[id];
|
||||
self.graph[id][nbd].flow += f as i32;
|
||||
let id_rev = self.graph[id][nbd].dest;
|
||||
let nbd_rev = self.graph[id][nbd].rev;
|
||||
self.graph[id_rev][nbd_rev].flow -= f as i32;
|
||||
}
|
||||
lifo.push_back((idsource, flow_upper_bound));
|
||||
continue;
|
||||
}
|
||||
//else we did not reach the sink
|
||||
let nbd = next_nbd[id];
|
||||
if nbd >= self.graph[id].len() {
|
||||
//There is nothing to explore from id anymore
|
||||
lifo.pop_back();
|
||||
if let Some((parent, _)) = lifo.back() {
|
||||
next_nbd[*parent] += 1;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
//else we can try to send flow from id to its nbd
|
||||
let new_flow = min(f as i32, self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow) as u32;
|
||||
if new_flow == 0 {
|
||||
next_nbd[id] += 1;
|
||||
continue;
|
||||
}
|
||||
if let (Some(lvldest), Some(lvlid)) =
|
||||
(level[self.graph[id][nbd].dest], level[id]){
|
||||
if lvldest <= lvlid {
|
||||
//We cannot send flow to nbd.
|
||||
next_nbd[id] += 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
//otherwise, we send flow to nbd.
|
||||
lifo.push_back((self.graph[id][nbd].dest, new_flow));
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
let nb_vertices = self.graph.len();
|
||||
|
||||
//This function takes a flow, and a cost function on the edges, and tries to find an
|
||||
// equivalent flow with a better cost, by finding improving overflow cycles. It uses
|
||||
// as subroutine the Bellman Ford algorithm run up to path_length.
|
||||
// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only
|
||||
// one needs to be present in the cost function.
|
||||
pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize )
|
||||
-> Result<(),String>{
|
||||
//We build the weighted graph g where we will look for negative cycle
|
||||
let mut gf = self.build_cost_graph(cost)?;
|
||||
let mut cycles = gf.list_negative_cycles(path_length);
|
||||
while !cycles.is_empty() {
|
||||
//we enumerate negative cycles
|
||||
for c in cycles.iter(){
|
||||
for i in 0..c.len(){
|
||||
//We add one flow unit to the edge (u,v) of cycle c
|
||||
let idu = self.vertextoid[&c[i]];
|
||||
let idv = self.vertextoid[&c[(i+1)%c.len()]];
|
||||
for j in 0..self.graph[idu].len(){
|
||||
//since idu appears at most once in the cycles, we enumerate every
|
||||
//edge at most once.
|
||||
let edge = self.graph[idu][j];
|
||||
if edge.dest == idv {
|
||||
self.graph[idu][j].flow += 1;
|
||||
self.graph[idv][edge.rev].flow -=1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
let flow_upper_bound = self.flow_upper_bound();
|
||||
|
||||
gf = self.build_cost_graph(cost)?;
|
||||
cycles = gf.list_negative_cycles(path_length);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
//To ensure the dispersion of the associations generated by the
|
||||
//assignation, we shuffle the neighbours of the nodes. Hence,
|
||||
//the vertices do not consider their neighbours in the same order.
|
||||
self.shuffle_edges();
|
||||
|
||||
//Construct the weighted graph G_f from the flow and the cost function
|
||||
fn build_cost_graph(&self , cost: &CostFunction) -> Result<Graph<WeightedEdge>,String>{
|
||||
|
||||
let mut g = Graph::<WeightedEdge>::new(&self.idtovertex);
|
||||
let nb_vertices = self.idtovertex.len();
|
||||
for i in 0..nb_vertices {
|
||||
for edge in self.graph[i].iter() {
|
||||
if edge.cap as i32 -edge.flow > 0 {
|
||||
//It is possible to send overflow through this edge
|
||||
let u = self.idtovertex[i];
|
||||
let v = self.idtovertex[edge.dest];
|
||||
if cost.contains_key(&(u,v)) {
|
||||
g.add_edge(u,v, cost[&(u,v)])?;
|
||||
}
|
||||
else if cost.contains_key(&(v,u)) {
|
||||
g.add_edge(u,v, -cost[&(v,u)])?;
|
||||
}
|
||||
else{
|
||||
g.add_edge(u,v, 0)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(g)
|
||||
//We run Dinic's max flow algorithm
|
||||
loop {
|
||||
//We build the level array from Dinic's algorithm.
|
||||
let mut level = vec![None; nb_vertices];
|
||||
|
||||
}
|
||||
let mut fifo = VecDeque::new();
|
||||
fifo.push_back((idsource, 0));
|
||||
while !fifo.is_empty() {
|
||||
if let Some((id, lvl)) = fifo.pop_front() {
|
||||
if level[id] == None {
|
||||
//it means id has not yet been reached
|
||||
level[id] = Some(lvl);
|
||||
for edge in self.graph[id].iter() {
|
||||
if edge.cap as i32 - edge.flow > 0 {
|
||||
fifo.push_back((edge.dest, lvl + 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if level[idsink] == None {
|
||||
//There is no residual flow
|
||||
break;
|
||||
}
|
||||
//Now we run DFS respecting the level array
|
||||
let mut next_nbd = vec![0; nb_vertices];
|
||||
let mut lifo = VecDeque::new();
|
||||
|
||||
lifo.push_back((idsource, flow_upper_bound));
|
||||
|
||||
while let Some((id_tmp, f_tmp)) = lifo.back() {
|
||||
let id = *id_tmp;
|
||||
let f = *f_tmp;
|
||||
if id == idsink {
|
||||
//The DFS reached the sink, we can add a
|
||||
//residual flow.
|
||||
lifo.pop_back();
|
||||
while let Some((id, _)) = lifo.pop_back() {
|
||||
let nbd = next_nbd[id];
|
||||
self.graph[id][nbd].flow += f as i32;
|
||||
let id_rev = self.graph[id][nbd].dest;
|
||||
let nbd_rev = self.graph[id][nbd].rev;
|
||||
self.graph[id_rev][nbd_rev].flow -= f as i32;
|
||||
}
|
||||
lifo.push_back((idsource, flow_upper_bound));
|
||||
continue;
|
||||
}
|
||||
//else we did not reach the sink
|
||||
let nbd = next_nbd[id];
|
||||
if nbd >= self.graph[id].len() {
|
||||
//There is nothing to explore from id anymore
|
||||
lifo.pop_back();
|
||||
if let Some((parent, _)) = lifo.back() {
|
||||
next_nbd[*parent] += 1;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
//else we can try to send flow from id to its nbd
|
||||
let new_flow = min(
|
||||
f as i32,
|
||||
self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow,
|
||||
) as u32;
|
||||
if new_flow == 0 {
|
||||
next_nbd[id] += 1;
|
||||
continue;
|
||||
}
|
||||
if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) {
|
||||
if lvldest <= lvlid {
|
||||
//We cannot send flow to nbd.
|
||||
next_nbd[id] += 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
//otherwise, we send flow to nbd.
|
||||
lifo.push_back((self.graph[id][nbd].dest, new_flow));
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
//This function takes a flow, and a cost function on the edges, and tries to find an
|
||||
// equivalent flow with a better cost, by finding improving overflow cycles. It uses
|
||||
// as subroutine the Bellman Ford algorithm run up to path_length.
|
||||
// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only
|
||||
// one needs to be present in the cost function.
|
||||
pub fn optimize_flow_with_cost(
|
||||
&mut self,
|
||||
cost: &CostFunction,
|
||||
path_length: usize,
|
||||
) -> Result<(), String> {
|
||||
//We build the weighted graph g where we will look for negative cycle
|
||||
let mut gf = self.build_cost_graph(cost)?;
|
||||
let mut cycles = gf.list_negative_cycles(path_length);
|
||||
while !cycles.is_empty() {
|
||||
//we enumerate negative cycles
|
||||
for c in cycles.iter() {
|
||||
for i in 0..c.len() {
|
||||
//We add one flow unit to the edge (u,v) of cycle c
|
||||
let idu = self.vertextoid[&c[i]];
|
||||
let idv = self.vertextoid[&c[(i + 1) % c.len()]];
|
||||
for j in 0..self.graph[idu].len() {
|
||||
//since idu appears at most once in the cycles, we enumerate every
|
||||
//edge at most once.
|
||||
let edge = self.graph[idu][j];
|
||||
if edge.dest == idv {
|
||||
self.graph[idu][j].flow += 1;
|
||||
self.graph[idv][edge.rev].flow -= 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
gf = self.build_cost_graph(cost)?;
|
||||
cycles = gf.list_negative_cycles(path_length);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
//Construct the weighted graph G_f from the flow and the cost function
|
||||
fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> {
|
||||
let mut g = Graph::<WeightedEdge>::new(&self.idtovertex);
|
||||
let nb_vertices = self.idtovertex.len();
|
||||
for i in 0..nb_vertices {
|
||||
for edge in self.graph[i].iter() {
|
||||
if edge.cap as i32 - edge.flow > 0 {
|
||||
//It is possible to send overflow through this edge
|
||||
let u = self.idtovertex[i];
|
||||
let v = self.idtovertex[edge.dest];
|
||||
if cost.contains_key(&(u, v)) {
|
||||
g.add_edge(u, v, cost[&(u, v)])?;
|
||||
} else if cost.contains_key(&(v, u)) {
|
||||
g.add_edge(u, v, -cost[&(v, u)])?;
|
||||
} else {
|
||||
g.add_edge(u, v, 0)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(g)
|
||||
}
|
||||
}
|
||||
|
||||
impl Graph<WeightedEdge>{
|
||||
//This function adds a single directed weighted edge to the graph.
|
||||
pub fn add_edge(&mut self, u: Vertex, v:Vertex, w: i32) -> Result<(), String>{
|
||||
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idu = self.vertextoid[&u];
|
||||
let idv = self.vertextoid[&v];
|
||||
self.graph[idu].push( WeightedEdge{ w , dest: idv} );
|
||||
Ok(())
|
||||
}
|
||||
impl Graph<WeightedEdge> {
|
||||
//This function adds a single directed weighted edge to the graph.
|
||||
pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i32) -> Result<(), String> {
|
||||
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
|
||||
return Err("The graph does not contain the provided vertex.".to_string());
|
||||
}
|
||||
let idu = self.vertextoid[&u];
|
||||
let idv = self.vertextoid[&v];
|
||||
self.graph[idu].push(WeightedEdge { w, dest: idv });
|
||||
Ok(())
|
||||
}
|
||||
|
||||
//This function lists the negative cycles it manages to find after path_length
|
||||
//iterations of the main loop of the Bellman-Ford algorithm. For the classical
|
||||
//algorithm, path_length needs to be equal to the number of vertices. However,
|
||||
//for particular graph structures like our case, the algorithm is still correct
|
||||
//when path_length is the length of the longest possible simple path.
|
||||
//See the formal description of the algorithm for more details.
|
||||
fn list_negative_cycles(&self, path_length: usize) -> Vec< Vec<Vertex> > {
|
||||
|
||||
let nb_vertices = self.graph.len();
|
||||
|
||||
//We start with every vertex at distance 0 of some imaginary extra -1 vertex.
|
||||
let mut distance = vec![0 ; nb_vertices];
|
||||
//The prev vector collects for every vertex from where does the shortest path come
|
||||
let mut prev = vec![None; nb_vertices];
|
||||
//This function lists the negative cycles it manages to find after path_length
|
||||
//iterations of the main loop of the Bellman-Ford algorithm. For the classical
|
||||
//algorithm, path_length needs to be equal to the number of vertices. However,
|
||||
//for particular graph structures like our case, the algorithm is still correct
|
||||
//when path_length is the length of the longest possible simple path.
|
||||
//See the formal description of the algorithm for more details.
|
||||
fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> {
|
||||
let nb_vertices = self.graph.len();
|
||||
|
||||
for _ in 0..path_length +1 {
|
||||
for id in 0..nb_vertices{
|
||||
for e in self.graph[id].iter(){
|
||||
if distance[id] + e.w < distance[e.dest] {
|
||||
distance[e.dest] = distance[id] + e.w;
|
||||
prev[e.dest] = Some(id);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//We start with every vertex at distance 0 of some imaginary extra -1 vertex.
|
||||
let mut distance = vec![0; nb_vertices];
|
||||
//The prev vector collects for every vertex from where does the shortest path come
|
||||
let mut prev = vec![None; nb_vertices];
|
||||
|
||||
for _ in 0..path_length + 1 {
|
||||
for id in 0..nb_vertices {
|
||||
for e in self.graph[id].iter() {
|
||||
if distance[id] + e.w < distance[e.dest] {
|
||||
distance[e.dest] = distance[id] + e.w;
|
||||
prev[e.dest] = Some(id);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//If self.graph contains a negative cycle, then at this point the graph described
|
||||
//by prev (which is a directed 1-forest/functional graph)
|
||||
//must contain a cycle. We list the cycles of prev.
|
||||
let cycles_prev = cycles_of_1_forest(&prev);
|
||||
|
||||
//Remark that the cycle in prev is in the reverse order compared to the cycle
|
||||
//in the graph. Thus the .rev().
|
||||
return cycles_prev.iter().map(|cycle| cycle.iter().rev().map(
|
||||
|id| self.idtovertex[*id]
|
||||
).collect() ).collect();
|
||||
}
|
||||
//If self.graph contains a negative cycle, then at this point the graph described
|
||||
//by prev (which is a directed 1-forest/functional graph)
|
||||
//must contain a cycle. We list the cycles of prev.
|
||||
let cycles_prev = cycles_of_1_forest(&prev);
|
||||
|
||||
//Remark that the cycle in prev is in the reverse order compared to the cycle
|
||||
//in the graph. Thus the .rev().
|
||||
return cycles_prev
|
||||
.iter()
|
||||
.map(|cycle| cycle.iter().rev().map(|id| self.idtovertex[*id]).collect())
|
||||
.collect();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//This function returns the list of cycles of a directed 1 forest. It does not
|
||||
//check for the consistency of the input.
|
||||
fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
|
||||
let mut cycles = Vec::<Vec::<usize>>::new();
|
||||
let mut time_of_discovery = vec![None; forest.len()];
|
||||
fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
|
||||
let mut cycles = Vec::<Vec<usize>>::new();
|
||||
let mut time_of_discovery = vec![None; forest.len()];
|
||||
|
||||
for t in 0..forest.len(){
|
||||
let mut id = t;
|
||||
//while we are on a valid undiscovered node
|
||||
while time_of_discovery[id] == None {
|
||||
time_of_discovery[id] = Some(t);
|
||||
if let Some(i) = forest[id] {
|
||||
id = i;
|
||||
}
|
||||
else{
|
||||
break;
|
||||
}
|
||||
}
|
||||
if forest[id] != None && time_of_discovery[id] == Some(t) {
|
||||
//We discovered an id that we explored at this iteration t.
|
||||
//It means we are on a cycle
|
||||
let mut cy = vec![id; 1];
|
||||
let mut id2 = id;
|
||||
while let Some(id_next) = forest[id2] {
|
||||
id2 = id_next;
|
||||
if id2 != id {
|
||||
cy.push(id2);
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
cycles.push(cy);
|
||||
}
|
||||
}
|
||||
cycles
|
||||
for t in 0..forest.len() {
|
||||
let mut id = t;
|
||||
//while we are on a valid undiscovered node
|
||||
while time_of_discovery[id] == None {
|
||||
time_of_discovery[id] = Some(t);
|
||||
if let Some(i) = forest[id] {
|
||||
id = i;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if forest[id] != None && time_of_discovery[id] == Some(t) {
|
||||
//We discovered an id that we explored at this iteration t.
|
||||
//It means we are on a cycle
|
||||
let mut cy = vec![id; 1];
|
||||
let mut id2 = id;
|
||||
while let Some(id_next) = forest[id2] {
|
||||
id2 = id_next;
|
||||
if id2 != id {
|
||||
cy.push(id2);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
cycles.push(cy);
|
||||
}
|
||||
}
|
||||
cycles
|
||||
}
|
||||
|
||||
|
||||
|
|
1270
src/rpc/layout.rs
1270
src/rpc/layout.rs
File diff suppressed because it is too large
Load diff
|
@ -7,12 +7,11 @@ mod consul;
|
|||
#[cfg(feature = "kubernetes-discovery")]
|
||||
mod kubernetes;
|
||||
|
||||
pub mod layout;
|
||||
pub mod graph_algo;
|
||||
pub mod layout;
|
||||
pub mod ring;
|
||||
pub mod system;
|
||||
|
||||
|
||||
mod metrics;
|
||||
pub mod rpc_helper;
|
||||
|
||||
|
|
|
@ -565,7 +565,6 @@ impl System {
|
|||
return Err(Error::Message(msg));
|
||||
}
|
||||
|
||||
|
||||
let update_ring = self.update_ring.lock().await;
|
||||
let mut layout: ClusterLayout = self.ring.borrow().layout.clone();
|
||||
|
||||
|
|
Loading…
Reference in a new issue