mirror of
https://git.deuxfleurs.fr/Deuxfleurs/garage.git
synced 2025-01-26 16:08:09 +00:00
Apply cargo fmt
This commit is contained in:
parent
c1d1646c4d
commit
2aeaddd5e2
2 changed files with 795 additions and 745 deletions
|
@ -1,12 +1,12 @@
|
|||
use std::cmp::min;
|
||||
use std::cmp::Ordering;
|
||||
use std::cmp::{min};
|
||||
use std::collections::{HashMap};
|
||||
use std::collections::HashMap;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use garage_util::bipartite::*;
|
||||
use garage_util::crdt::{AutoCrdt, Crdt, LwwMap};
|
||||
use garage_util::data::*;
|
||||
use garage_util::bipartite::*;
|
||||
|
||||
use rand::prelude::SliceRandom;
|
||||
|
||||
|
@ -168,454 +168,506 @@ impl ClusterLayout {
|
|||
true
|
||||
}
|
||||
|
||||
/// This function calculates a new partition-to-node assignation.
|
||||
/// The computed assignation maximizes the capacity of a
|
||||
/// partition (assuming all partitions have the same size).
|
||||
/// Among such optimal assignation, it minimizes the distance to
|
||||
/// the former assignation (if any) to minimize the amount of
|
||||
/// data to be moved. A heuristic ensures node triplets
|
||||
/// dispersion (in garage_util::bipartite::optimize_matching()).
|
||||
pub fn calculate_partition_assignation(&mut self) -> bool {
|
||||
//The nodes might have been updated, some might have been deleted.
|
||||
//So we need to first update the list of nodes and retrieve the
|
||||
//assignation.
|
||||
let old_node_assignation = self.update_nodes_and_ring();
|
||||
|
||||
/// This function calculates a new partition-to-node assignation.
|
||||
/// The computed assignation maximizes the capacity of a
|
||||
/// partition (assuming all partitions have the same size).
|
||||
/// Among such optimal assignation, it minimizes the distance to
|
||||
/// the former assignation (if any) to minimize the amount of
|
||||
/// data to be moved. A heuristic ensures node triplets
|
||||
/// dispersion (in garage_util::bipartite::optimize_matching()).
|
||||
pub fn calculate_partition_assignation(&mut self) -> bool {
|
||||
|
||||
//The nodes might have been updated, some might have been deleted.
|
||||
//So we need to first update the list of nodes and retrieve the
|
||||
//assignation.
|
||||
let old_node_assignation = self.update_nodes_and_ring();
|
||||
let (node_zone, _) = self.get_node_zone_capacity();
|
||||
|
||||
let (node_zone, _) = self.get_node_zone_capacity();
|
||||
|
||||
//We compute the optimal number of partition to assign to
|
||||
//every node and zone.
|
||||
if let Some((part_per_nod, part_per_zone)) = self.optimal_proportions(){
|
||||
//We collect part_per_zone in a vec to not rely on the
|
||||
//arbitrary order in which elements are iterated in
|
||||
//Hashmap::iter()
|
||||
let part_per_zone_vec = part_per_zone.iter()
|
||||
.map(|(x,y)| (x.clone(),*y))
|
||||
.collect::<Vec<(String,usize)>>();
|
||||
//We create an indexing of the zones
|
||||
let mut zone_id = HashMap::<String,usize>::new();
|
||||
for i in 0..part_per_zone_vec.len(){
|
||||
zone_id.insert(part_per_zone_vec[i].0.clone(), i);
|
||||
}
|
||||
|
||||
//We compute a candidate for the new partition to zone
|
||||
//assignation.
|
||||
let nb_zones = part_per_zone.len();
|
||||
let nb_nodes = part_per_nod.len();
|
||||
let nb_partitions = 1<<PARTITION_BITS;
|
||||
let left_cap_vec = vec![self.replication_factor as u32 ; nb_partitions];
|
||||
let right_cap_vec = part_per_zone_vec.iter().map(|(_,y)| *y as u32)
|
||||
.collect();
|
||||
let mut zone_assignation =
|
||||
dinic_compute_matching(left_cap_vec, right_cap_vec);
|
||||
//We compute the optimal number of partition to assign to
|
||||
//every node and zone.
|
||||
if let Some((part_per_nod, part_per_zone)) = self.optimal_proportions() {
|
||||
//We collect part_per_zone in a vec to not rely on the
|
||||
//arbitrary order in which elements are iterated in
|
||||
//Hashmap::iter()
|
||||
let part_per_zone_vec = part_per_zone
|
||||
.iter()
|
||||
.map(|(x, y)| (x.clone(), *y))
|
||||
.collect::<Vec<(String, usize)>>();
|
||||
//We create an indexing of the zones
|
||||
let mut zone_id = HashMap::<String, usize>::new();
|
||||
for i in 0..part_per_zone_vec.len() {
|
||||
zone_id.insert(part_per_zone_vec[i].0.clone(), i);
|
||||
}
|
||||
|
||||
|
||||
//We create the structure for the partition-to-node assignation.
|
||||
let mut node_assignation =
|
||||
vec![vec![None; self.replication_factor ];nb_partitions];
|
||||
//We will decrement part_per_nod to keep track of the number
|
||||
//of partitions that we still have to associate.
|
||||
let mut part_per_nod = part_per_nod.clone();
|
||||
|
||||
//We minimize the distance to the former assignation(if any)
|
||||
|
||||
//We get the id of the zones of the former assignation
|
||||
//(and the id no_zone if there is no node assignated)
|
||||
let no_zone = part_per_zone_vec.len();
|
||||
let old_zone_assignation : Vec<Vec<usize>> =
|
||||
old_node_assignation.iter().map(|x| x.iter().map(
|
||||
|id| match *id { Some(i) => zone_id[&node_zone[i]] ,
|
||||
None => no_zone }
|
||||
).collect()).collect();
|
||||
//We compute a candidate for the new partition to zone
|
||||
//assignation.
|
||||
let nb_zones = part_per_zone.len();
|
||||
let nb_nodes = part_per_nod.len();
|
||||
let nb_partitions = 1 << PARTITION_BITS;
|
||||
let left_cap_vec = vec![self.replication_factor as u32; nb_partitions];
|
||||
let right_cap_vec = part_per_zone_vec.iter().map(|(_, y)| *y as u32).collect();
|
||||
let mut zone_assignation = dinic_compute_matching(left_cap_vec, right_cap_vec);
|
||||
|
||||
//We minimize the distance to the former zone assignation
|
||||
zone_assignation = optimize_matching(
|
||||
&old_zone_assignation, &zone_assignation, nb_zones+1); //+1 for no_zone
|
||||
//We create the structure for the partition-to-node assignation.
|
||||
let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions];
|
||||
//We will decrement part_per_nod to keep track of the number
|
||||
//of partitions that we still have to associate.
|
||||
let mut part_per_nod = part_per_nod.clone();
|
||||
|
||||
//We need to assign partitions to nodes in their zone
|
||||
//We first put the nodes assignation that can stay the same
|
||||
for i in 0..nb_partitions{
|
||||
for j in 0..self.replication_factor {
|
||||
if let Some(Some(former_node)) = old_node_assignation[i].iter().find(
|
||||
|x| if let Some(id) = x {
|
||||
zone_id[&node_zone[*id]] == zone_assignation[i][j]
|
||||
}
|
||||
else {false}
|
||||
)
|
||||
{
|
||||
if part_per_nod[*former_node] > 0 {
|
||||
node_assignation[i][j] = Some(*former_node);
|
||||
part_per_nod[*former_node] -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//We minimize the distance to the former assignation(if any)
|
||||
|
||||
|
||||
//We complete the assignation of partitions to nodes
|
||||
let mut rng = rand::thread_rng();
|
||||
for i in 0..nb_partitions {
|
||||
for j in 0..self.replication_factor {
|
||||
if node_assignation[i][j] == None {
|
||||
let possible_nodes : Vec<usize> = (0..nb_nodes)
|
||||
.filter(
|
||||
|id| zone_id[&node_zone[*id]] == zone_assignation[i][j]
|
||||
&& part_per_nod[*id] > 0).collect();
|
||||
assert!(possible_nodes.len()>0);
|
||||
//We randomly pick a node
|
||||
if let Some(nod) = possible_nodes.choose(&mut rng){
|
||||
node_assignation[i][j] = Some(*nod);
|
||||
part_per_nod[*nod] -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//We get the id of the zones of the former assignation
|
||||
//(and the id no_zone if there is no node assignated)
|
||||
let no_zone = part_per_zone_vec.len();
|
||||
let old_zone_assignation: Vec<Vec<usize>> = old_node_assignation
|
||||
.iter()
|
||||
.map(|x| {
|
||||
x.iter()
|
||||
.map(|id| match *id {
|
||||
Some(i) => zone_id[&node_zone[i]],
|
||||
None => no_zone,
|
||||
})
|
||||
.collect()
|
||||
})
|
||||
.collect();
|
||||
|
||||
//We write the assignation in the 1D table
|
||||
self.ring_assignation_data = Vec::<CompactNodeType>::new();
|
||||
for i in 0..nb_partitions{
|
||||
for j in 0..self.replication_factor {
|
||||
if let Some(id) = node_assignation[i][j] {
|
||||
self.ring_assignation_data.push(id as CompactNodeType);
|
||||
}
|
||||
else {assert!(false)}
|
||||
}
|
||||
}
|
||||
//We minimize the distance to the former zone assignation
|
||||
zone_assignation =
|
||||
optimize_matching(&old_zone_assignation, &zone_assignation, nb_zones + 1); //+1 for no_zone
|
||||
|
||||
true
|
||||
}
|
||||
else { false }
|
||||
}
|
||||
//We need to assign partitions to nodes in their zone
|
||||
//We first put the nodes assignation that can stay the same
|
||||
for i in 0..nb_partitions {
|
||||
for j in 0..self.replication_factor {
|
||||
if let Some(Some(former_node)) = old_node_assignation[i].iter().find(|x| {
|
||||
if let Some(id) = x {
|
||||
zone_id[&node_zone[*id]] == zone_assignation[i][j]
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}) {
|
||||
if part_per_nod[*former_node] > 0 {
|
||||
node_assignation[i][j] = Some(*former_node);
|
||||
part_per_nod[*former_node] -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The LwwMap of node roles might have changed. This function updates the node_id_vec
|
||||
/// and returns the assignation given by ring, with the new indices of the nodes, and
|
||||
/// None of the node is not present anymore.
|
||||
/// We work with the assumption that only this function and calculate_new_assignation
|
||||
/// do modify assignation_ring and node_id_vec.
|
||||
fn update_nodes_and_ring(&mut self) -> Vec<Vec<Option<usize>>> {
|
||||
let nb_partitions = 1usize<<PARTITION_BITS;
|
||||
let mut node_assignation =
|
||||
vec![vec![None; self.replication_factor ];nb_partitions];
|
||||
let rf = self.replication_factor;
|
||||
let ring = &self.ring_assignation_data;
|
||||
|
||||
let new_node_id_vec : Vec::<Uuid> = self.roles.items().iter()
|
||||
.map(|(k, _, _)| *k)
|
||||
.collect();
|
||||
|
||||
if ring.len() == rf*nb_partitions {
|
||||
for i in 0..nb_partitions {
|
||||
for j in 0..self.replication_factor {
|
||||
node_assignation[i][j] = new_node_id_vec.iter()
|
||||
.position(|id| *id == self.node_id_vec[ring[i*rf + j] as usize]);
|
||||
}
|
||||
}
|
||||
}
|
||||
//We complete the assignation of partitions to nodes
|
||||
let mut rng = rand::thread_rng();
|
||||
for i in 0..nb_partitions {
|
||||
for j in 0..self.replication_factor {
|
||||
if node_assignation[i][j] == None {
|
||||
let possible_nodes: Vec<usize> = (0..nb_nodes)
|
||||
.filter(|id| {
|
||||
zone_id[&node_zone[*id]] == zone_assignation[i][j]
|
||||
&& part_per_nod[*id] > 0
|
||||
})
|
||||
.collect();
|
||||
assert!(possible_nodes.len() > 0);
|
||||
//We randomly pick a node
|
||||
if let Some(nod) = possible_nodes.choose(&mut rng) {
|
||||
node_assignation[i][j] = Some(*nod);
|
||||
part_per_nod[*nod] -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self.node_id_vec = new_node_id_vec;
|
||||
self.ring_assignation_data = vec![];
|
||||
return node_assignation;
|
||||
}
|
||||
|
||||
///This function compute the number of partition to assign to
|
||||
///every node and zone, so that every partition is replicated
|
||||
///self.replication_factor times and the capacity of a partition
|
||||
///is maximized.
|
||||
fn optimal_proportions(&mut self) -> Option<(Vec<usize>, HashMap<String, usize>)> {
|
||||
|
||||
let mut zone_capacity :HashMap<String, u32>= HashMap::new();
|
||||
|
||||
let (node_zone, node_capacity) = self.get_node_zone_capacity();
|
||||
let nb_nodes = self.node_id_vec.len();
|
||||
//We write the assignation in the 1D table
|
||||
self.ring_assignation_data = Vec::<CompactNodeType>::new();
|
||||
for i in 0..nb_partitions {
|
||||
for j in 0..self.replication_factor {
|
||||
if let Some(id) = node_assignation[i][j] {
|
||||
self.ring_assignation_data.push(id as CompactNodeType);
|
||||
} else {
|
||||
assert!(false)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..nb_nodes
|
||||
{
|
||||
if zone_capacity.contains_key(&node_zone[i]) {
|
||||
zone_capacity.insert(node_zone[i].clone(), zone_capacity[&node_zone[i]] + node_capacity[i]);
|
||||
}
|
||||
else{
|
||||
zone_capacity.insert(node_zone[i].clone(), node_capacity[i]);
|
||||
}
|
||||
}
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
//Compute the optimal number of partitions per zone
|
||||
let sum_capacities: u32 =zone_capacity.values().sum();
|
||||
|
||||
if sum_capacities <= 0 {
|
||||
println!("No storage capacity in the network.");
|
||||
return None;
|
||||
}
|
||||
/// The LwwMap of node roles might have changed. This function updates the node_id_vec
|
||||
/// and returns the assignation given by ring, with the new indices of the nodes, and
|
||||
/// None of the node is not present anymore.
|
||||
/// We work with the assumption that only this function and calculate_new_assignation
|
||||
/// do modify assignation_ring and node_id_vec.
|
||||
fn update_nodes_and_ring(&mut self) -> Vec<Vec<Option<usize>>> {
|
||||
let nb_partitions = 1usize << PARTITION_BITS;
|
||||
let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions];
|
||||
let rf = self.replication_factor;
|
||||
let ring = &self.ring_assignation_data;
|
||||
|
||||
let nb_partitions = 1<<PARTITION_BITS;
|
||||
|
||||
//Initially we would like to use zones porportionally to
|
||||
//their capacity.
|
||||
//However, a large zone can be associated to at most
|
||||
//nb_partitions to ensure replication of the date.
|
||||
//So we take the min with nb_partitions:
|
||||
let mut part_per_zone : HashMap<String, usize> =
|
||||
zone_capacity.iter()
|
||||
.map(|(k, v)| (k.clone(), min(nb_partitions,
|
||||
(self.replication_factor*nb_partitions
|
||||
**v as usize)/sum_capacities as usize) ) ).collect();
|
||||
let new_node_id_vec: Vec<Uuid> = self.roles.items().iter().map(|(k, _, _)| *k).collect();
|
||||
|
||||
//The replication_factor-1 upper bounds the number of
|
||||
//part_per_zones that are greater than nb_partitions
|
||||
for _ in 1..self.replication_factor {
|
||||
//The number of partitions that are not assignated to
|
||||
//a zone that takes nb_partitions.
|
||||
let sum_capleft : u32 = zone_capacity.keys()
|
||||
.filter(| k | {part_per_zone[*k] < nb_partitions} )
|
||||
.map(|k| zone_capacity[k]).sum();
|
||||
|
||||
//The number of replication of the data that we need
|
||||
//to ensure.
|
||||
let repl_left = self.replication_factor
|
||||
- part_per_zone.values()
|
||||
.filter(|x| {**x == nb_partitions})
|
||||
.count();
|
||||
if repl_left == 0 {
|
||||
break;
|
||||
}
|
||||
if ring.len() == rf * nb_partitions {
|
||||
for i in 0..nb_partitions {
|
||||
for j in 0..self.replication_factor {
|
||||
node_assignation[i][j] = new_node_id_vec
|
||||
.iter()
|
||||
.position(|id| *id == self.node_id_vec[ring[i * rf + j] as usize]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for k in zone_capacity.keys() {
|
||||
if part_per_zone[k] != nb_partitions
|
||||
{
|
||||
part_per_zone.insert(k.to_string() , min(nb_partitions,
|
||||
(nb_partitions*zone_capacity[k] as usize
|
||||
*repl_left)/sum_capleft as usize));
|
||||
}
|
||||
}
|
||||
}
|
||||
self.node_id_vec = new_node_id_vec;
|
||||
self.ring_assignation_data = vec![];
|
||||
return node_assignation;
|
||||
}
|
||||
|
||||
//Now we divide the zone's partition share proportionally
|
||||
//between their nodes.
|
||||
|
||||
let mut part_per_nod : Vec<usize> = (0..nb_nodes).map(
|
||||
|i| (part_per_zone[&node_zone[i]]*node_capacity[i] as usize)/zone_capacity[&node_zone[i]] as usize
|
||||
)
|
||||
.collect();
|
||||
///This function compute the number of partition to assign to
|
||||
///every node and zone, so that every partition is replicated
|
||||
///self.replication_factor times and the capacity of a partition
|
||||
///is maximized.
|
||||
fn optimal_proportions(&mut self) -> Option<(Vec<usize>, HashMap<String, usize>)> {
|
||||
let mut zone_capacity: HashMap<String, u32> = HashMap::new();
|
||||
|
||||
//We must update the part_per_zone to make it correspond to
|
||||
//part_per_nod (because of integer rounding)
|
||||
part_per_zone = part_per_zone.iter().map(|(k,_)|
|
||||
(k.clone(), 0))
|
||||
.collect();
|
||||
for i in 0..nb_nodes {
|
||||
part_per_zone.insert(
|
||||
node_zone[i].clone() ,
|
||||
part_per_zone[&node_zone[i]] + part_per_nod[i]);
|
||||
}
|
||||
let (node_zone, node_capacity) = self.get_node_zone_capacity();
|
||||
let nb_nodes = self.node_id_vec.len();
|
||||
|
||||
//Because of integer rounding, the total sum of part_per_nod
|
||||
//might not be replication_factor*nb_partitions.
|
||||
// We need at most to add 1 to every non maximal value of
|
||||
// part_per_nod. The capacity of a partition will be bounded
|
||||
// by the minimal value of
|
||||
// node_capacity_vec[i]/part_per_nod[i]
|
||||
// so we try to maximize this minimal value, keeping the
|
||||
// part_per_zone capped
|
||||
for i in 0..nb_nodes {
|
||||
if zone_capacity.contains_key(&node_zone[i]) {
|
||||
zone_capacity.insert(
|
||||
node_zone[i].clone(),
|
||||
zone_capacity[&node_zone[i]] + node_capacity[i],
|
||||
);
|
||||
} else {
|
||||
zone_capacity.insert(node_zone[i].clone(), node_capacity[i]);
|
||||
}
|
||||
}
|
||||
|
||||
let discrepancy : usize =
|
||||
nb_partitions*self.replication_factor
|
||||
- part_per_nod.iter().sum::<usize>();
|
||||
|
||||
//We use a stupid O(N^2) algorithm. If the number of nodes
|
||||
//is actually expected to be high, one should optimize this.
|
||||
//Compute the optimal number of partitions per zone
|
||||
let sum_capacities: u32 = zone_capacity.values().sum();
|
||||
|
||||
for _ in 0..discrepancy {
|
||||
if let Some(idmax) = (0..nb_nodes)
|
||||
.filter(|i| part_per_zone[&node_zone[*i]] < nb_partitions)
|
||||
.max_by( |i,j|
|
||||
(node_capacity[*i]*(part_per_nod[*j]+1) as u32)
|
||||
.cmp(&(node_capacity[*j]*(part_per_nod[*i]+1) as u32))
|
||||
)
|
||||
{
|
||||
part_per_nod[idmax] += 1;
|
||||
part_per_zone.insert(node_zone[idmax].clone(),part_per_zone[&node_zone[idmax]]+1);
|
||||
}
|
||||
}
|
||||
if sum_capacities <= 0 {
|
||||
println!("No storage capacity in the network.");
|
||||
return None;
|
||||
}
|
||||
|
||||
//We check the algorithm consistency
|
||||
|
||||
let discrepancy : usize =
|
||||
nb_partitions*self.replication_factor
|
||||
- part_per_nod.iter().sum::<usize>();
|
||||
assert!(discrepancy == 0);
|
||||
assert!(if let Some(v) = part_per_zone.values().max()
|
||||
{*v <= nb_partitions} else {false} );
|
||||
|
||||
Some((part_per_nod, part_per_zone))
|
||||
}
|
||||
|
||||
|
||||
//Returns vectors of zone and capacity; indexed by the same (temporary)
|
||||
//indices as node_id_vec.
|
||||
fn get_node_zone_capacity(& self) -> (Vec<String> , Vec<u32>) {
|
||||
|
||||
let node_zone = self.node_id_vec.iter().map(
|
||||
|id_nod| match self.node_role(id_nod) {
|
||||
Some(NodeRole{zone,capacity:_,tags:_}) => zone.clone() ,
|
||||
_ => "".to_string()
|
||||
}
|
||||
).collect();
|
||||
|
||||
let node_capacity = self.node_id_vec.iter().map(
|
||||
|id_nod| match self.node_role(id_nod) {
|
||||
Some(NodeRole{zone:_,capacity,tags:_}) =>
|
||||
if let Some(c)=capacity
|
||||
{*c}
|
||||
else {0},
|
||||
_ => 0
|
||||
}
|
||||
).collect();
|
||||
let nb_partitions = 1 << PARTITION_BITS;
|
||||
|
||||
(node_zone,node_capacity)
|
||||
}
|
||||
//Initially we would like to use zones porportionally to
|
||||
//their capacity.
|
||||
//However, a large zone can be associated to at most
|
||||
//nb_partitions to ensure replication of the date.
|
||||
//So we take the min with nb_partitions:
|
||||
let mut part_per_zone: HashMap<String, usize> = zone_capacity
|
||||
.iter()
|
||||
.map(|(k, v)| {
|
||||
(
|
||||
k.clone(),
|
||||
min(
|
||||
nb_partitions,
|
||||
(self.replication_factor * nb_partitions * *v as usize)
|
||||
/ sum_capacities as usize,
|
||||
),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
//The replication_factor-1 upper bounds the number of
|
||||
//part_per_zones that are greater than nb_partitions
|
||||
for _ in 1..self.replication_factor {
|
||||
//The number of partitions that are not assignated to
|
||||
//a zone that takes nb_partitions.
|
||||
let sum_capleft: u32 = zone_capacity
|
||||
.keys()
|
||||
.filter(|k| part_per_zone[*k] < nb_partitions)
|
||||
.map(|k| zone_capacity[k])
|
||||
.sum();
|
||||
|
||||
//The number of replication of the data that we need
|
||||
//to ensure.
|
||||
let repl_left = self.replication_factor
|
||||
- part_per_zone
|
||||
.values()
|
||||
.filter(|x| **x == nb_partitions)
|
||||
.count();
|
||||
if repl_left == 0 {
|
||||
break;
|
||||
}
|
||||
|
||||
for k in zone_capacity.keys() {
|
||||
if part_per_zone[k] != nb_partitions {
|
||||
part_per_zone.insert(
|
||||
k.to_string(),
|
||||
min(
|
||||
nb_partitions,
|
||||
(nb_partitions * zone_capacity[k] as usize * repl_left)
|
||||
/ sum_capleft as usize,
|
||||
),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Now we divide the zone's partition share proportionally
|
||||
//between their nodes.
|
||||
|
||||
let mut part_per_nod: Vec<usize> = (0..nb_nodes)
|
||||
.map(|i| {
|
||||
(part_per_zone[&node_zone[i]] * node_capacity[i] as usize)
|
||||
/ zone_capacity[&node_zone[i]] as usize
|
||||
})
|
||||
.collect();
|
||||
|
||||
//We must update the part_per_zone to make it correspond to
|
||||
//part_per_nod (because of integer rounding)
|
||||
part_per_zone = part_per_zone.iter().map(|(k, _)| (k.clone(), 0)).collect();
|
||||
for i in 0..nb_nodes {
|
||||
part_per_zone.insert(
|
||||
node_zone[i].clone(),
|
||||
part_per_zone[&node_zone[i]] + part_per_nod[i],
|
||||
);
|
||||
}
|
||||
|
||||
//Because of integer rounding, the total sum of part_per_nod
|
||||
//might not be replication_factor*nb_partitions.
|
||||
// We need at most to add 1 to every non maximal value of
|
||||
// part_per_nod. The capacity of a partition will be bounded
|
||||
// by the minimal value of
|
||||
// node_capacity_vec[i]/part_per_nod[i]
|
||||
// so we try to maximize this minimal value, keeping the
|
||||
// part_per_zone capped
|
||||
|
||||
let discrepancy: usize =
|
||||
nb_partitions * self.replication_factor - part_per_nod.iter().sum::<usize>();
|
||||
|
||||
//We use a stupid O(N^2) algorithm. If the number of nodes
|
||||
//is actually expected to be high, one should optimize this.
|
||||
|
||||
for _ in 0..discrepancy {
|
||||
if let Some(idmax) = (0..nb_nodes)
|
||||
.filter(|i| part_per_zone[&node_zone[*i]] < nb_partitions)
|
||||
.max_by(|i, j| {
|
||||
(node_capacity[*i] * (part_per_nod[*j] + 1) as u32)
|
||||
.cmp(&(node_capacity[*j] * (part_per_nod[*i] + 1) as u32))
|
||||
}) {
|
||||
part_per_nod[idmax] += 1;
|
||||
part_per_zone.insert(
|
||||
node_zone[idmax].clone(),
|
||||
part_per_zone[&node_zone[idmax]] + 1,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
//We check the algorithm consistency
|
||||
|
||||
let discrepancy: usize =
|
||||
nb_partitions * self.replication_factor - part_per_nod.iter().sum::<usize>();
|
||||
assert!(discrepancy == 0);
|
||||
assert!(if let Some(v) = part_per_zone.values().max() {
|
||||
*v <= nb_partitions
|
||||
} else {
|
||||
false
|
||||
});
|
||||
|
||||
Some((part_per_nod, part_per_zone))
|
||||
}
|
||||
|
||||
//Returns vectors of zone and capacity; indexed by the same (temporary)
|
||||
//indices as node_id_vec.
|
||||
fn get_node_zone_capacity(&self) -> (Vec<String>, Vec<u32>) {
|
||||
let node_zone = self
|
||||
.node_id_vec
|
||||
.iter()
|
||||
.map(|id_nod| match self.node_role(id_nod) {
|
||||
Some(NodeRole {
|
||||
zone,
|
||||
capacity: _,
|
||||
tags: _,
|
||||
}) => zone.clone(),
|
||||
_ => "".to_string(),
|
||||
})
|
||||
.collect();
|
||||
|
||||
let node_capacity = self
|
||||
.node_id_vec
|
||||
.iter()
|
||||
.map(|id_nod| match self.node_role(id_nod) {
|
||||
Some(NodeRole {
|
||||
zone: _,
|
||||
capacity,
|
||||
tags: _,
|
||||
}) => {
|
||||
if let Some(c) = capacity {
|
||||
*c
|
||||
} else {
|
||||
0
|
||||
}
|
||||
}
|
||||
_ => 0,
|
||||
})
|
||||
.collect();
|
||||
|
||||
(node_zone, node_capacity)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use itertools::Itertools;
|
||||
use super::*;
|
||||
use itertools::Itertools;
|
||||
|
||||
fn check_assignation(cl : &ClusterLayout) {
|
||||
|
||||
//Check that input data has the right format
|
||||
let nb_partitions = 1usize<<PARTITION_BITS;
|
||||
assert!([1,2,3].contains(&cl.replication_factor));
|
||||
assert!(cl.ring_assignation_data.len() == nb_partitions*cl.replication_factor);
|
||||
|
||||
let (node_zone, node_capacity) = cl.get_node_zone_capacity();
|
||||
|
||||
fn check_assignation(cl: &ClusterLayout) {
|
||||
//Check that input data has the right format
|
||||
let nb_partitions = 1usize << PARTITION_BITS;
|
||||
assert!([1, 2, 3].contains(&cl.replication_factor));
|
||||
assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor);
|
||||
|
||||
//Check that is is a correct assignation with zone redundancy
|
||||
let rf = cl.replication_factor;
|
||||
for i in 0..nb_partitions{
|
||||
assert!( rf ==
|
||||
cl.ring_assignation_data[rf*i..rf*(i+1)].iter()
|
||||
.map(|nod| node_zone[*nod as usize].clone())
|
||||
.unique()
|
||||
.count() );
|
||||
}
|
||||
let (node_zone, node_capacity) = cl.get_node_zone_capacity();
|
||||
|
||||
let nb_nodes = cl.node_id_vec.len();
|
||||
//Check optimality
|
||||
let node_nb_part =(0..nb_nodes).map(|i| cl.ring_assignation_data
|
||||
.iter()
|
||||
.filter(|x| **x==i as u8)
|
||||
.count())
|
||||
.collect::<Vec::<_>>();
|
||||
//Check that is is a correct assignation with zone redundancy
|
||||
let rf = cl.replication_factor;
|
||||
for i in 0..nb_partitions {
|
||||
assert!(
|
||||
rf == cl.ring_assignation_data[rf * i..rf * (i + 1)]
|
||||
.iter()
|
||||
.map(|nod| node_zone[*nod as usize].clone())
|
||||
.unique()
|
||||
.count()
|
||||
);
|
||||
}
|
||||
|
||||
let zone_vec = node_zone.iter().unique().collect::<Vec::<_>>();
|
||||
let zone_nb_part = zone_vec.iter().map( |z| cl.ring_assignation_data.iter()
|
||||
.filter(|x| node_zone[**x as usize] == **z)
|
||||
.count()
|
||||
).collect::<Vec::<_>>();
|
||||
|
||||
//Check optimality of the zone assignation : would it be better for the
|
||||
//node_capacity/node_partitions ratio to change the assignation of a partition
|
||||
|
||||
if let Some(idmin) = (0..nb_nodes).min_by(
|
||||
|i,j| (node_capacity[*i]*node_nb_part[*j] as u32)
|
||||
.cmp(&(node_capacity[*j]*node_nb_part[*i] as u32))
|
||||
){
|
||||
if let Some(idnew) = (0..nb_nodes)
|
||||
.filter( |i| if let Some(p) = zone_vec.iter().position(|z| **z==node_zone[*i])
|
||||
{zone_nb_part[p] < nb_partitions }
|
||||
else { false })
|
||||
.max_by(
|
||||
|i,j| (node_capacity[*i]*(node_nb_part[*j]as u32+1))
|
||||
.cmp(&(node_capacity[*j]*(node_nb_part[*i] as u32+1)))
|
||||
){
|
||||
assert!(node_capacity[idmin]*(node_nb_part[idnew] as u32+1) >=
|
||||
node_capacity[idnew]*node_nb_part[idmin] as u32);
|
||||
}
|
||||
let nb_nodes = cl.node_id_vec.len();
|
||||
//Check optimality
|
||||
let node_nb_part = (0..nb_nodes)
|
||||
.map(|i| {
|
||||
cl.ring_assignation_data
|
||||
.iter()
|
||||
.filter(|x| **x == i as u8)
|
||||
.count()
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
}
|
||||
let zone_vec = node_zone.iter().unique().collect::<Vec<_>>();
|
||||
let zone_nb_part = zone_vec
|
||||
.iter()
|
||||
.map(|z| {
|
||||
cl.ring_assignation_data
|
||||
.iter()
|
||||
.filter(|x| node_zone[**x as usize] == **z)
|
||||
.count()
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
//In every zone, check optimality of the nod assignation
|
||||
for z in zone_vec {
|
||||
let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z );
|
||||
if let Some(idmin) = node_of_z_iter.clone().min_by(
|
||||
|i,j| (node_capacity[*i]*node_nb_part[*j] as u32)
|
||||
.cmp(&(node_capacity[*j]*node_nb_part[*i] as u32))
|
||||
){
|
||||
if let Some(idnew) = node_of_z_iter.min_by(
|
||||
|i,j| (node_capacity[*i]*(node_nb_part[*j] as u32+1))
|
||||
.cmp(&(node_capacity[*j]*(node_nb_part[*i] as u32+1)))
|
||||
){
|
||||
assert!(node_capacity[idmin]*(node_nb_part[idnew] as u32+1) >=
|
||||
node_capacity[idnew]*node_nb_part[idmin] as u32);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
//Check optimality of the zone assignation : would it be better for the
|
||||
//node_capacity/node_partitions ratio to change the assignation of a partition
|
||||
|
||||
fn update_layout(cl : &mut ClusterLayout, node_id_vec : &Vec<u8>,
|
||||
node_capacity_vec : &Vec<u32> , node_zone_vec : &Vec<String>) {
|
||||
for i in 0..node_id_vec.len(){
|
||||
if let Some(x) = FixedBytes32::try_from(&[i as u8;32]) {
|
||||
cl.node_id_vec.push(x);
|
||||
}
|
||||
|
||||
let update = cl.roles.update_mutator(cl.node_id_vec[i] ,
|
||||
NodeRoleV(Some(NodeRole{
|
||||
zone : (node_zone_vec[i].to_string()),
|
||||
capacity : (Some(node_capacity_vec[i])),
|
||||
tags : (vec![])})));
|
||||
cl.roles.merge(&update);
|
||||
}
|
||||
}
|
||||
if let Some(idmin) = (0..nb_nodes).min_by(|i, j| {
|
||||
(node_capacity[*i] * node_nb_part[*j] as u32)
|
||||
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
|
||||
}) {
|
||||
if let Some(idnew) = (0..nb_nodes)
|
||||
.filter(|i| {
|
||||
if let Some(p) = zone_vec.iter().position(|z| **z == node_zone[*i]) {
|
||||
zone_nb_part[p] < nb_partitions
|
||||
} else {
|
||||
false
|
||||
}
|
||||
})
|
||||
.max_by(|i, j| {
|
||||
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
|
||||
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
|
||||
}) {
|
||||
assert!(
|
||||
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
|
||||
>= node_capacity[idnew] * node_nb_part[idmin] as u32
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_assignation() {
|
||||
//In every zone, check optimality of the nod assignation
|
||||
for z in zone_vec {
|
||||
let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z);
|
||||
if let Some(idmin) = node_of_z_iter.clone().min_by(|i, j| {
|
||||
(node_capacity[*i] * node_nb_part[*j] as u32)
|
||||
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
|
||||
}) {
|
||||
if let Some(idnew) = node_of_z_iter.min_by(|i, j| {
|
||||
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
|
||||
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
|
||||
}) {
|
||||
assert!(
|
||||
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
|
||||
>= node_capacity[idnew] * node_nb_part[idmin] as u32
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut node_id_vec = vec![1,2,3];
|
||||
let mut node_capacity_vec = vec![4000,1000,2000];
|
||||
let mut node_zone_vec= vec!["A", "B", "C"].into_iter().map(|x| x.to_string()).collect();
|
||||
|
||||
let mut cl = ClusterLayout {
|
||||
node_id_vec: vec![],
|
||||
|
||||
roles : LwwMap::new(),
|
||||
fn update_layout(
|
||||
cl: &mut ClusterLayout,
|
||||
node_id_vec: &Vec<u8>,
|
||||
node_capacity_vec: &Vec<u32>,
|
||||
node_zone_vec: &Vec<String>,
|
||||
) {
|
||||
for i in 0..node_id_vec.len() {
|
||||
if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) {
|
||||
cl.node_id_vec.push(x);
|
||||
}
|
||||
|
||||
replication_factor: 3,
|
||||
ring_assignation_data : vec![],
|
||||
version:0,
|
||||
staging: LwwMap::new(),
|
||||
staging_hash: sha256sum(&[1;32]),
|
||||
};
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
let update = cl.roles.update_mutator(
|
||||
cl.node_id_vec[i],
|
||||
NodeRoleV(Some(NodeRole {
|
||||
zone: (node_zone_vec[i].to_string()),
|
||||
capacity: (Some(node_capacity_vec[i])),
|
||||
tags: (vec![]),
|
||||
})),
|
||||
);
|
||||
cl.roles.merge(&update);
|
||||
}
|
||||
}
|
||||
|
||||
node_id_vec = vec![1,2,3, 4, 5, 6, 7, 8, 9];
|
||||
node_capacity_vec = vec![4000,1000,1000, 3000, 1000, 1000, 2000, 10000, 2000];
|
||||
node_zone_vec= vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"].into_iter().map(|x| x.to_string()).collect();
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
#[test]
|
||||
fn test_assignation() {
|
||||
let mut node_id_vec = vec![1, 2, 3];
|
||||
let mut node_capacity_vec = vec![4000, 1000, 2000];
|
||||
let mut node_zone_vec = vec!["A", "B", "C"]
|
||||
.into_iter()
|
||||
.map(|x| x.to_string())
|
||||
.collect();
|
||||
|
||||
node_capacity_vec = vec![4000,1000,2000, 7000, 1000, 1000, 2000, 10000, 2000];
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
let mut cl = ClusterLayout {
|
||||
node_id_vec: vec![],
|
||||
|
||||
roles: LwwMap::new(),
|
||||
|
||||
node_capacity_vec = vec![4000,4000,2000, 7000, 1000, 9000, 2000, 10, 2000];
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
|
||||
}
|
||||
replication_factor: 3,
|
||||
ring_assignation_data: vec![],
|
||||
version: 0,
|
||||
staging: LwwMap::new(),
|
||||
staging_hash: sha256sum(&[1; 32]),
|
||||
};
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
|
||||
node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||
node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
|
||||
node_zone_vec = vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"]
|
||||
.into_iter()
|
||||
.map(|x| x.to_string())
|
||||
.collect();
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
|
||||
node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
|
||||
node_capacity_vec = vec![4000, 4000, 2000, 7000, 1000, 9000, 2000, 10, 2000];
|
||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||
cl.calculate_partition_assignation();
|
||||
check_assignation(&cl);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,378 +1,376 @@
|
|||
/*
|
||||
* This module deals with graph algorithm in complete bipartite
|
||||
* This module deals with graph algorithm in complete bipartite
|
||||
* graphs. It is used in layout.rs to build the partition to node
|
||||
* assignation.
|
||||
* */
|
||||
|
||||
use std::cmp::{min,max};
|
||||
use std::collections::VecDeque;
|
||||
use rand::prelude::SliceRandom;
|
||||
use std::cmp::{max, min};
|
||||
use std::collections::VecDeque;
|
||||
|
||||
//Graph data structure for the flow algorithm.
|
||||
#[derive(Clone,Copy,Debug)]
|
||||
struct EdgeFlow{
|
||||
c : i32,
|
||||
flow : i32,
|
||||
v : usize,
|
||||
rev : usize,
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct EdgeFlow {
|
||||
c: i32,
|
||||
flow: i32,
|
||||
v: usize,
|
||||
rev: usize,
|
||||
}
|
||||
|
||||
//Graph data structure for the detection of positive cycles.
|
||||
#[derive(Clone,Copy,Debug)]
|
||||
struct WeightedEdge{
|
||||
w : i32,
|
||||
u : usize,
|
||||
v : usize,
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct WeightedEdge {
|
||||
w: i32,
|
||||
u: usize,
|
||||
v: usize,
|
||||
}
|
||||
|
||||
|
||||
/* This function takes two matchings (old_match and new_match) in a
|
||||
* complete bipartite graph. It returns a matching that has the
|
||||
/* This function takes two matchings (old_match and new_match) in a
|
||||
* complete bipartite graph. It returns a matching that has the
|
||||
* same degree as new_match at every vertex, and that is as close
|
||||
* as possible to old_match.
|
||||
* */
|
||||
pub fn optimize_matching( old_match : &Vec<Vec<usize>> ,
|
||||
new_match : &Vec<Vec<usize>> ,
|
||||
nb_right : usize )
|
||||
-> Vec<Vec<usize>> {
|
||||
let nb_left = old_match.len();
|
||||
let ed = WeightedEdge{w:-1,u:0,v:0};
|
||||
let mut edge_vec = vec![ed ; nb_left*nb_right];
|
||||
|
||||
//We build the complete bipartite graph structure, represented
|
||||
//by the list of all edges.
|
||||
for i in 0..nb_left {
|
||||
for j in 0..nb_right{
|
||||
edge_vec[i*nb_right + j].u = i;
|
||||
edge_vec[i*nb_right + j].v = nb_left+j;
|
||||
}
|
||||
}
|
||||
pub fn optimize_matching(
|
||||
old_match: &Vec<Vec<usize>>,
|
||||
new_match: &Vec<Vec<usize>>,
|
||||
nb_right: usize,
|
||||
) -> Vec<Vec<usize>> {
|
||||
let nb_left = old_match.len();
|
||||
let ed = WeightedEdge { w: -1, u: 0, v: 0 };
|
||||
let mut edge_vec = vec![ed; nb_left * nb_right];
|
||||
|
||||
for i in 0..edge_vec.len() {
|
||||
//We add the old matchings
|
||||
if old_match[edge_vec[i].u].contains(&(edge_vec[i].v-nb_left)) {
|
||||
edge_vec[i].w *= -1;
|
||||
}
|
||||
//We add the new matchings
|
||||
if new_match[edge_vec[i].u].contains(&(edge_vec[i].v-nb_left)) {
|
||||
(edge_vec[i].u,edge_vec[i].v) =
|
||||
(edge_vec[i].v,edge_vec[i].u);
|
||||
edge_vec[i].w *= -1;
|
||||
}
|
||||
}
|
||||
//Now edge_vec is a graph where edges are oriented LR if we
|
||||
//can add them to new_match, and RL otherwise. If
|
||||
//adding/removing them makes the matching closer to old_match
|
||||
//they have weight 1; and -1 otherwise.
|
||||
|
||||
//We shuffle the edge list so that there is no bias depending in
|
||||
//partitions/zone label in the triplet dispersion
|
||||
let mut rng = rand::thread_rng();
|
||||
edge_vec.shuffle(&mut rng);
|
||||
|
||||
//Discovering and flipping a cycle with positive weight in this
|
||||
//graph will make the matching closer to old_match.
|
||||
//We use Bellman Ford algorithm to discover positive cycles
|
||||
loop{
|
||||
if let Some(cycle) = positive_cycle(&edge_vec, nb_left, nb_right) {
|
||||
for i in cycle {
|
||||
//We flip the edges of the cycle.
|
||||
(edge_vec[i].u,edge_vec[i].v) =
|
||||
(edge_vec[i].v,edge_vec[i].u);
|
||||
edge_vec[i].w *= -1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
//If there is no cycle, we return the optimal matching.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//The optimal matching is build from the graph structure.
|
||||
let mut matching = vec![Vec::<usize>::new() ; nb_left];
|
||||
for e in edge_vec {
|
||||
if e.u > e.v {
|
||||
matching[e.v].push(e.u-nb_left);
|
||||
}
|
||||
}
|
||||
matching
|
||||
//We build the complete bipartite graph structure, represented
|
||||
//by the list of all edges.
|
||||
for i in 0..nb_left {
|
||||
for j in 0..nb_right {
|
||||
edge_vec[i * nb_right + j].u = i;
|
||||
edge_vec[i * nb_right + j].v = nb_left + j;
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..edge_vec.len() {
|
||||
//We add the old matchings
|
||||
if old_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) {
|
||||
edge_vec[i].w *= -1;
|
||||
}
|
||||
//We add the new matchings
|
||||
if new_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) {
|
||||
(edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u);
|
||||
edge_vec[i].w *= -1;
|
||||
}
|
||||
}
|
||||
//Now edge_vec is a graph where edges are oriented LR if we
|
||||
//can add them to new_match, and RL otherwise. If
|
||||
//adding/removing them makes the matching closer to old_match
|
||||
//they have weight 1; and -1 otherwise.
|
||||
|
||||
//We shuffle the edge list so that there is no bias depending in
|
||||
//partitions/zone label in the triplet dispersion
|
||||
let mut rng = rand::thread_rng();
|
||||
edge_vec.shuffle(&mut rng);
|
||||
|
||||
//Discovering and flipping a cycle with positive weight in this
|
||||
//graph will make the matching closer to old_match.
|
||||
//We use Bellman Ford algorithm to discover positive cycles
|
||||
loop {
|
||||
if let Some(cycle) = positive_cycle(&edge_vec, nb_left, nb_right) {
|
||||
for i in cycle {
|
||||
//We flip the edges of the cycle.
|
||||
(edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u);
|
||||
edge_vec[i].w *= -1;
|
||||
}
|
||||
} else {
|
||||
//If there is no cycle, we return the optimal matching.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//The optimal matching is build from the graph structure.
|
||||
let mut matching = vec![Vec::<usize>::new(); nb_left];
|
||||
for e in edge_vec {
|
||||
if e.u > e.v {
|
||||
matching[e.v].push(e.u - nb_left);
|
||||
}
|
||||
}
|
||||
matching
|
||||
}
|
||||
|
||||
//This function finds a positive cycle in a bipartite wieghted graph.
|
||||
fn positive_cycle( edge_vec : &Vec<WeightedEdge>, nb_left : usize,
|
||||
nb_right : usize) -> Option<Vec<usize>> {
|
||||
let nb_side_min = min(nb_left, nb_right);
|
||||
let nb_vertices = nb_left+nb_right;
|
||||
let weight_lowerbound = -((nb_left +nb_right) as i32) -1;
|
||||
let mut accessed = vec![false ; nb_left];
|
||||
|
||||
//We try to find a positive cycle accessible from the left
|
||||
//vertex i.
|
||||
for i in 0..nb_left{
|
||||
if accessed[i] {
|
||||
continue;
|
||||
}
|
||||
let mut weight =vec![weight_lowerbound ; nb_vertices];
|
||||
let mut prev =vec![ edge_vec.len() ; nb_vertices];
|
||||
weight[i] = 0;
|
||||
//We compute largest weighted paths from i.
|
||||
//Since the graph is bipartite, any simple cycle has length
|
||||
//at most 2*nb_side_min. In the general Bellman-Ford
|
||||
//algorithm, the bound here is the number of vertices. Since
|
||||
//the number of partitions can be much larger than the
|
||||
//number of nodes, we optimize that.
|
||||
for _ in 0..(2*nb_side_min) {
|
||||
for j in 0..edge_vec.len() {
|
||||
let e = edge_vec[j];
|
||||
if weight[e.v] < weight[e.u]+e.w {
|
||||
weight[e.v] = weight[e.u]+e.w;
|
||||
prev[e.v] = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
//We update the accessed table
|
||||
for i in 0..nb_left {
|
||||
if weight[i] > weight_lowerbound {
|
||||
accessed[i] = true;
|
||||
}
|
||||
}
|
||||
//We detect positive cycle
|
||||
for e in edge_vec {
|
||||
if weight[e.v] < weight[e.u]+e.w {
|
||||
//it means e is on a path branching from a positive cycle
|
||||
let mut was_seen = vec![false ; nb_vertices];
|
||||
let mut curr = e.u;
|
||||
//We track back with prev until we reach the cycle.
|
||||
while !was_seen[curr]{
|
||||
was_seen[curr] = true;
|
||||
curr = edge_vec[prev[curr]].u;
|
||||
}
|
||||
//Now curr is on the cycle. We collect the edges ids.
|
||||
let mut cycle = Vec::<usize>::new();
|
||||
cycle.push(prev[curr]);
|
||||
let mut cycle_vert = edge_vec[prev[curr]].u;
|
||||
while cycle_vert != curr {
|
||||
cycle.push(prev[cycle_vert]);
|
||||
cycle_vert = edge_vec[prev[cycle_vert]].u;
|
||||
}
|
||||
fn positive_cycle(
|
||||
edge_vec: &Vec<WeightedEdge>,
|
||||
nb_left: usize,
|
||||
nb_right: usize,
|
||||
) -> Option<Vec<usize>> {
|
||||
let nb_side_min = min(nb_left, nb_right);
|
||||
let nb_vertices = nb_left + nb_right;
|
||||
let weight_lowerbound = -((nb_left + nb_right) as i32) - 1;
|
||||
let mut accessed = vec![false; nb_left];
|
||||
|
||||
return Some(cycle);
|
||||
}
|
||||
}
|
||||
}
|
||||
//We try to find a positive cycle accessible from the left
|
||||
//vertex i.
|
||||
for i in 0..nb_left {
|
||||
if accessed[i] {
|
||||
continue;
|
||||
}
|
||||
let mut weight = vec![weight_lowerbound; nb_vertices];
|
||||
let mut prev = vec![edge_vec.len(); nb_vertices];
|
||||
weight[i] = 0;
|
||||
//We compute largest weighted paths from i.
|
||||
//Since the graph is bipartite, any simple cycle has length
|
||||
//at most 2*nb_side_min. In the general Bellman-Ford
|
||||
//algorithm, the bound here is the number of vertices. Since
|
||||
//the number of partitions can be much larger than the
|
||||
//number of nodes, we optimize that.
|
||||
for _ in 0..(2 * nb_side_min) {
|
||||
for j in 0..edge_vec.len() {
|
||||
let e = edge_vec[j];
|
||||
if weight[e.v] < weight[e.u] + e.w {
|
||||
weight[e.v] = weight[e.u] + e.w;
|
||||
prev[e.v] = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
//We update the accessed table
|
||||
for i in 0..nb_left {
|
||||
if weight[i] > weight_lowerbound {
|
||||
accessed[i] = true;
|
||||
}
|
||||
}
|
||||
//We detect positive cycle
|
||||
for e in edge_vec {
|
||||
if weight[e.v] < weight[e.u] + e.w {
|
||||
//it means e is on a path branching from a positive cycle
|
||||
let mut was_seen = vec![false; nb_vertices];
|
||||
let mut curr = e.u;
|
||||
//We track back with prev until we reach the cycle.
|
||||
while !was_seen[curr] {
|
||||
was_seen[curr] = true;
|
||||
curr = edge_vec[prev[curr]].u;
|
||||
}
|
||||
//Now curr is on the cycle. We collect the edges ids.
|
||||
let mut cycle = Vec::<usize>::new();
|
||||
cycle.push(prev[curr]);
|
||||
let mut cycle_vert = edge_vec[prev[curr]].u;
|
||||
while cycle_vert != curr {
|
||||
cycle.push(prev[cycle_vert]);
|
||||
cycle_vert = edge_vec[prev[cycle_vert]].u;
|
||||
}
|
||||
|
||||
None
|
||||
return Some(cycle);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
|
||||
// This function takes two arrays of capacity and computes the
|
||||
// maximal matching in the complete bipartite graph such that the
|
||||
// This function takes two arrays of capacity and computes the
|
||||
// maximal matching in the complete bipartite graph such that the
|
||||
// left vertex i is matched to left_cap_vec[i] right vertices, and
|
||||
// the right vertex j is matched to right_cap_vec[j] left vertices.
|
||||
// To do so, we use Dinic's maximum flow algorithm.
|
||||
pub fn dinic_compute_matching( left_cap_vec : Vec<u32>,
|
||||
right_cap_vec : Vec<u32>) -> Vec< Vec<usize> >
|
||||
{
|
||||
let mut graph = Vec::<Vec::<EdgeFlow> >::new();
|
||||
let ed = EdgeFlow{c:0,flow:0,v:0, rev:0};
|
||||
pub fn dinic_compute_matching(left_cap_vec: Vec<u32>, right_cap_vec: Vec<u32>) -> Vec<Vec<usize>> {
|
||||
let mut graph = Vec::<Vec<EdgeFlow>>::new();
|
||||
let ed = EdgeFlow {
|
||||
c: 0,
|
||||
flow: 0,
|
||||
v: 0,
|
||||
rev: 0,
|
||||
};
|
||||
|
||||
// 0 will be the source
|
||||
graph.push(vec![ed ; left_cap_vec.len()]);
|
||||
for i in 0..left_cap_vec.len()
|
||||
{
|
||||
graph[0][i].c = left_cap_vec[i] as i32;
|
||||
graph[0][i].v = i+2;
|
||||
graph[0][i].rev = 0;
|
||||
}
|
||||
// 0 will be the source
|
||||
graph.push(vec![ed; left_cap_vec.len()]);
|
||||
for i in 0..left_cap_vec.len() {
|
||||
graph[0][i].c = left_cap_vec[i] as i32;
|
||||
graph[0][i].v = i + 2;
|
||||
graph[0][i].rev = 0;
|
||||
}
|
||||
|
||||
//1 will be the sink
|
||||
graph.push(vec![ed ; right_cap_vec.len()]);
|
||||
for i in 0..right_cap_vec.len()
|
||||
{
|
||||
graph[1][i].c = right_cap_vec[i] as i32;
|
||||
graph[1][i].v = i+2+left_cap_vec.len();
|
||||
graph[1][i].rev = 0;
|
||||
}
|
||||
|
||||
//we add left vertices
|
||||
for i in 0..left_cap_vec.len() {
|
||||
graph.push(vec![ed ; 1+right_cap_vec.len()]);
|
||||
graph[i+2][0].c = 0; //directed
|
||||
graph[i+2][0].v = 0;
|
||||
graph[i+2][0].rev = i;
|
||||
//1 will be the sink
|
||||
graph.push(vec![ed; right_cap_vec.len()]);
|
||||
for i in 0..right_cap_vec.len() {
|
||||
graph[1][i].c = right_cap_vec[i] as i32;
|
||||
graph[1][i].v = i + 2 + left_cap_vec.len();
|
||||
graph[1][i].rev = 0;
|
||||
}
|
||||
|
||||
for j in 0..right_cap_vec.len() {
|
||||
graph[i+2][j+1].c = 1;
|
||||
graph[i+2][j+1].v = 2+left_cap_vec.len()+j;
|
||||
graph[i+2][j+1].rev = i+1;
|
||||
}
|
||||
}
|
||||
//we add left vertices
|
||||
for i in 0..left_cap_vec.len() {
|
||||
graph.push(vec![ed; 1 + right_cap_vec.len()]);
|
||||
graph[i + 2][0].c = 0; //directed
|
||||
graph[i + 2][0].v = 0;
|
||||
graph[i + 2][0].rev = i;
|
||||
|
||||
//we add right vertices
|
||||
for i in 0..right_cap_vec.len() {
|
||||
let lft_ln = left_cap_vec.len();
|
||||
graph.push(vec![ed ; 1+lft_ln]);
|
||||
graph[i+lft_ln+2][0].c = graph[1][i].c;
|
||||
graph[i+lft_ln+2][0].v = 1;
|
||||
graph[i+lft_ln+2][0].rev = i;
|
||||
for j in 0..right_cap_vec.len() {
|
||||
graph[i + 2][j + 1].c = 1;
|
||||
graph[i + 2][j + 1].v = 2 + left_cap_vec.len() + j;
|
||||
graph[i + 2][j + 1].rev = i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
for j in 0..left_cap_vec.len() {
|
||||
graph[i+2+lft_ln][j+1].c = 0; //directed
|
||||
graph[i+2+lft_ln][j+1].v = j+2;
|
||||
graph[i+2+lft_ln][j+1].rev = i+1;
|
||||
}
|
||||
}
|
||||
//we add right vertices
|
||||
for i in 0..right_cap_vec.len() {
|
||||
let lft_ln = left_cap_vec.len();
|
||||
graph.push(vec![ed; 1 + lft_ln]);
|
||||
graph[i + lft_ln + 2][0].c = graph[1][i].c;
|
||||
graph[i + lft_ln + 2][0].v = 1;
|
||||
graph[i + lft_ln + 2][0].rev = i;
|
||||
|
||||
//To ensure the dispersion of the triplets generated by the
|
||||
//assignation, we shuffle the neighbours of the nodes. Hence,
|
||||
//left vertices do not consider the right ones in the same order.
|
||||
let mut rng = rand::thread_rng();
|
||||
for i in 0..graph.len() {
|
||||
graph[i].shuffle(&mut rng);
|
||||
//We need to update the ids of the reverse edges.
|
||||
for j in 0..graph[i].len() {
|
||||
let target_v = graph[i][j].v;
|
||||
let target_rev = graph[i][j].rev;
|
||||
graph[target_v][target_rev].rev = j;
|
||||
}
|
||||
}
|
||||
for j in 0..left_cap_vec.len() {
|
||||
graph[i + 2 + lft_ln][j + 1].c = 0; //directed
|
||||
graph[i + 2 + lft_ln][j + 1].v = j + 2;
|
||||
graph[i + 2 + lft_ln][j + 1].rev = i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
let nb_vertices = graph.len();
|
||||
|
||||
//We run Dinic's max flow algorithm
|
||||
loop{
|
||||
//We build the level array from Dinic's algorithm.
|
||||
let mut level = vec![-1; nb_vertices];
|
||||
//To ensure the dispersion of the triplets generated by the
|
||||
//assignation, we shuffle the neighbours of the nodes. Hence,
|
||||
//left vertices do not consider the right ones in the same order.
|
||||
let mut rng = rand::thread_rng();
|
||||
for i in 0..graph.len() {
|
||||
graph[i].shuffle(&mut rng);
|
||||
//We need to update the ids of the reverse edges.
|
||||
for j in 0..graph[i].len() {
|
||||
let target_v = graph[i][j].v;
|
||||
let target_rev = graph[i][j].rev;
|
||||
graph[target_v][target_rev].rev = j;
|
||||
}
|
||||
}
|
||||
|
||||
let mut fifo = VecDeque::new();
|
||||
fifo.push_back((0,0));
|
||||
while !fifo.is_empty() {
|
||||
if let Some((id,lvl)) = fifo.pop_front(){
|
||||
if level[id] == -1 {
|
||||
level[id] = lvl;
|
||||
for e in graph[id].iter(){
|
||||
if e.c-e.flow > 0{
|
||||
fifo.push_back((e.v,lvl+1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if level[1] == -1 {
|
||||
//There is no residual flow
|
||||
break;
|
||||
}
|
||||
let nb_vertices = graph.len();
|
||||
|
||||
//Now we run DFS respecting the level array
|
||||
let mut next_nbd = vec![0; nb_vertices];
|
||||
let mut lifo = VecDeque::new();
|
||||
|
||||
let flow_upper_bound;
|
||||
if let Some(x) = left_cap_vec.iter().max() {
|
||||
flow_upper_bound=*x as i32;
|
||||
}
|
||||
else {
|
||||
flow_upper_bound = 0;
|
||||
assert!(false);
|
||||
}
|
||||
|
||||
lifo.push_back((0,flow_upper_bound));
|
||||
|
||||
loop
|
||||
{
|
||||
if let Some((id_tmp, f_tmp)) = lifo.back() {
|
||||
let id = *id_tmp;
|
||||
let f = *f_tmp;
|
||||
if id == 1 {
|
||||
//The DFS reached the sink, we can add a
|
||||
//residual flow.
|
||||
lifo.pop_back();
|
||||
while !lifo.is_empty() {
|
||||
if let Some((id,_)) = lifo.pop_back(){
|
||||
let nbd=next_nbd[id];
|
||||
graph[id][nbd].flow += f;
|
||||
let id_v = graph[id][nbd].v;
|
||||
let nbd_v = graph[id][nbd].rev;
|
||||
graph[id_v][nbd_v].flow -= f;
|
||||
}
|
||||
}
|
||||
lifo.push_back((0,flow_upper_bound));
|
||||
continue;
|
||||
}
|
||||
//else we did not reach the sink
|
||||
let nbd = next_nbd[id];
|
||||
if nbd >= graph[id].len() {
|
||||
//There is nothing to explore from id anymore
|
||||
lifo.pop_back();
|
||||
if let Some((parent, _)) = lifo.back(){
|
||||
next_nbd[*parent] +=1;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
//else we can try to send flow from id to its nbd
|
||||
let new_flow = min(f,graph[id][nbd].c
|
||||
- graph[id][nbd].flow);
|
||||
if level[graph[id][nbd].v] <= level[id] ||
|
||||
new_flow == 0 {
|
||||
//We cannot send flow to nbd.
|
||||
next_nbd[id] += 1;
|
||||
continue;
|
||||
}
|
||||
//otherwise, we send flow to nbd.
|
||||
lifo.push_back((graph[id][nbd].v, new_flow));
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//We return the association
|
||||
let assoc_table = (0..left_cap_vec.len()).map(
|
||||
|id| graph[id+2].iter()
|
||||
.filter(|e| e.flow > 0)
|
||||
.map( |e| e.v-2-left_cap_vec.len())
|
||||
.collect()).collect();
|
||||
//We run Dinic's max flow algorithm
|
||||
loop {
|
||||
//We build the level array from Dinic's algorithm.
|
||||
let mut level = vec![-1; nb_vertices];
|
||||
|
||||
//consistency check
|
||||
|
||||
//it is a flow
|
||||
for i in 3..graph.len(){
|
||||
assert!( graph[i].iter().map(|e| e.flow).sum::<i32>() == 0);
|
||||
for e in graph[i].iter(){
|
||||
assert!(e.flow + graph[e.v][e.rev].flow == 0);
|
||||
}
|
||||
}
|
||||
|
||||
//it solves the matching problem
|
||||
for i in 0..left_cap_vec.len(){
|
||||
assert!(left_cap_vec[i] as i32 ==
|
||||
graph[i+2].iter().map(|e| max(0,e.flow)).sum::<i32>());
|
||||
}
|
||||
for i in 0..right_cap_vec.len(){
|
||||
assert!(right_cap_vec[i] as i32 ==
|
||||
graph[i+2+left_cap_vec.len()].iter()
|
||||
.map(|e| max(0,e.flow)).sum::<i32>());
|
||||
}
|
||||
let mut fifo = VecDeque::new();
|
||||
fifo.push_back((0, 0));
|
||||
while !fifo.is_empty() {
|
||||
if let Some((id, lvl)) = fifo.pop_front() {
|
||||
if level[id] == -1 {
|
||||
level[id] = lvl;
|
||||
for e in graph[id].iter() {
|
||||
if e.c - e.flow > 0 {
|
||||
fifo.push_back((e.v, lvl + 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if level[1] == -1 {
|
||||
//There is no residual flow
|
||||
break;
|
||||
}
|
||||
|
||||
//Now we run DFS respecting the level array
|
||||
let mut next_nbd = vec![0; nb_vertices];
|
||||
let mut lifo = VecDeque::new();
|
||||
|
||||
assoc_table
|
||||
let flow_upper_bound;
|
||||
if let Some(x) = left_cap_vec.iter().max() {
|
||||
flow_upper_bound = *x as i32;
|
||||
} else {
|
||||
flow_upper_bound = 0;
|
||||
assert!(false);
|
||||
}
|
||||
|
||||
lifo.push_back((0, flow_upper_bound));
|
||||
|
||||
loop {
|
||||
if let Some((id_tmp, f_tmp)) = lifo.back() {
|
||||
let id = *id_tmp;
|
||||
let f = *f_tmp;
|
||||
if id == 1 {
|
||||
//The DFS reached the sink, we can add a
|
||||
//residual flow.
|
||||
lifo.pop_back();
|
||||
while !lifo.is_empty() {
|
||||
if let Some((id, _)) = lifo.pop_back() {
|
||||
let nbd = next_nbd[id];
|
||||
graph[id][nbd].flow += f;
|
||||
let id_v = graph[id][nbd].v;
|
||||
let nbd_v = graph[id][nbd].rev;
|
||||
graph[id_v][nbd_v].flow -= f;
|
||||
}
|
||||
}
|
||||
lifo.push_back((0, flow_upper_bound));
|
||||
continue;
|
||||
}
|
||||
//else we did not reach the sink
|
||||
let nbd = next_nbd[id];
|
||||
if nbd >= graph[id].len() {
|
||||
//There is nothing to explore from id anymore
|
||||
lifo.pop_back();
|
||||
if let Some((parent, _)) = lifo.back() {
|
||||
next_nbd[*parent] += 1;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
//else we can try to send flow from id to its nbd
|
||||
let new_flow = min(f, graph[id][nbd].c - graph[id][nbd].flow);
|
||||
if level[graph[id][nbd].v] <= level[id] || new_flow == 0 {
|
||||
//We cannot send flow to nbd.
|
||||
next_nbd[id] += 1;
|
||||
continue;
|
||||
}
|
||||
//otherwise, we send flow to nbd.
|
||||
lifo.push_back((graph[id][nbd].v, new_flow));
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//We return the association
|
||||
let assoc_table = (0..left_cap_vec.len())
|
||||
.map(|id| {
|
||||
graph[id + 2]
|
||||
.iter()
|
||||
.filter(|e| e.flow > 0)
|
||||
.map(|e| e.v - 2 - left_cap_vec.len())
|
||||
.collect()
|
||||
})
|
||||
.collect();
|
||||
|
||||
//consistency check
|
||||
|
||||
//it is a flow
|
||||
for i in 3..graph.len() {
|
||||
assert!(graph[i].iter().map(|e| e.flow).sum::<i32>() == 0);
|
||||
for e in graph[i].iter() {
|
||||
assert!(e.flow + graph[e.v][e.rev].flow == 0);
|
||||
}
|
||||
}
|
||||
|
||||
//it solves the matching problem
|
||||
for i in 0..left_cap_vec.len() {
|
||||
assert!(left_cap_vec[i] as i32 == graph[i + 2].iter().map(|e| max(0, e.flow)).sum::<i32>());
|
||||
}
|
||||
for i in 0..right_cap_vec.len() {
|
||||
assert!(
|
||||
right_cap_vec[i] as i32
|
||||
== graph[i + 2 + left_cap_vec.len()]
|
||||
.iter()
|
||||
.map(|e| max(0, e.flow))
|
||||
.sum::<i32>()
|
||||
);
|
||||
}
|
||||
|
||||
assoc_table
|
||||
}
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_flow() {
|
||||
let left_vec = vec![3;8];
|
||||
let right_vec = vec![0,4,8,4,8];
|
||||
//There are asserts in the function that computes the flow
|
||||
let _ = dinic_compute_matching(left_vec, right_vec);
|
||||
}
|
||||
use super::*;
|
||||
|
||||
//maybe add tests relative to the matching optilization ?
|
||||
#[test]
|
||||
fn test_flow() {
|
||||
let left_vec = vec![3; 8];
|
||||
let right_vec = vec![0, 4, 8, 4, 8];
|
||||
//There are asserts in the function that computes the flow
|
||||
let _ = dinic_compute_matching(left_vec, right_vec);
|
||||
}
|
||||
|
||||
//maybe add tests relative to the matching optilization ?
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue