Use weighted averages

This commit is contained in:
Mouse Reeve 2022-01-06 09:39:51 -08:00
parent 840746754d
commit d690224559
2 changed files with 15 additions and 8 deletions

View file

@ -30,7 +30,7 @@
</div>
<div class="media-content">
{% blocktrans trimmed with title=top_rated|book_title site_name=site.name rating=top_rated.rating|floatformat:1 %}
<em>{{ title }}</em> is {{ site_name }}'s most beloved book, with a {{ rating }} rating out of 5
<em>{{ title }}</em> is {{ site_name }}'s most beloved book, with an average rating of {{ rating }} out of 5.
{% endblocktrans %}
</div>
</div>
@ -44,7 +44,7 @@
</div>
<div class="media-content">
{% blocktrans trimmed with title=wanted|book_title site_name=site.name %}
More {{ site_name }} users want to read <em>{{ title }}</em>
More {{ site_name }} users want to read <em>{{ title }}</em>.
{% endblocktrans %}
</div>
</div>
@ -58,7 +58,7 @@
</div>
<div class="media-content">
{% blocktrans trimmed with title=controversial|book_title site_name=site.name %}
<em>{{ title }}</em> has the most divisive ratings of any book on {{ site_name }}
<em>{{ title }}</em> has the most divisive ratings of any book on {{ site_name }}.
{% endblocktrans %}
</div>
</div>

View file

@ -1,6 +1,6 @@
""" non-interactive pages """
from dateutil.relativedelta import relativedelta
from django.db.models import Avg, StdDev, Count, Q
from django.db.models import Avg, StdDev, Count, F, Q
from django.template.response import TemplateResponse
from django.utils import timezone
from django.views import View
@ -29,13 +29,20 @@ def about(request):
books = models.Edition.objects.exclude(cover__exact="")
total_ratings = models.Review.objects.filter(user__local=True).count()
data["top_rated"] = books.annotate(
rating=Avg("review__rating", filter=Q(review__user__local=True))
).filter(rating__gt=0).order_by("-rating").first()
rating=Avg("review__rating", filter=Q(review__user__local=True)),
rating_count=Count("review__rating", filter=Q(review__user__local=True)),
).annotate(
weighted=F("rating") * F("rating_count") / total_ratings
).filter(weighted__gt=0).order_by("-weighted").first()
data["controversial"] = books.annotate(
deviation=StdDev("review__rating")
).filter(deviation__gt=0).order_by("-deviation").first()
deviation=StdDev("review__rating", filter=Q(review__user__local=True)),
rating_count=Count("review__rating", filter=Q(review__user__local=True)),
).annotate(
weighted=F("deviation") * F("rating_count") / total_ratings
).filter(weighted__gt=0).order_by("-weighted").first()
data["wanted"] = books.annotate(
shelf_count=Count("shelves", filter=Q(shelves__identifier="to-read"))