pinetime-rs/src/monotonic_nrf52.rs

284 lines
7.2 KiB
Rust

//! Using NRF52 as monotonic timer
//!
//! Source:
//! https://github.com/rtfm-rs/rtfm-examples/blob/master/rtfm_v5/monotonic_nrf52/src/monotonic_nrf52.rs
use core::u32;
use core::{
cmp::Ordering,
convert::{Infallible, TryInto},
fmt, ops,
};
use nrf52832_hal::target;
/// A measurement of the counter. Opaque and useful only with `Duration`
///
/// # Correctness
///
/// Adding or subtracting a `Duration` of more than `(1 << 31)` cycles to an `Instant` effectively
/// makes it "wrap around" and creates an incorrect value. This is also true if the operation is
/// done in steps, e.g. `(instant + dur) + dur` where `dur` is `(1 << 30)` ticks.
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Instant {
inner: i32,
}
impl Instant {
/// Returns an instant corresponding to "now"
pub fn now() -> Self {
let now = {
let timer = unsafe { &*target::TIMER1::ptr() };
timer.tasks_capture[0].write(|w| unsafe { w.bits(1) });
timer.cc[0].read().bits()
};
Instant { inner: now as i32 }
}
/// Returns the amount of time elapsed since this instant was created.
pub fn elapsed(&self) -> Duration {
Instant::now() - *self
}
/// Returns the underlying count
pub fn counts(&self) -> u32 {
self.inner as u32
}
/// Returns the amount of time elapsed from another instant to this one.
pub fn duration_since(&self, earlier: Instant) -> Duration {
let diff = self.inner - earlier.inner;
assert!(diff >= 0, "second instant is later than self");
Duration { inner: diff as u32 }
}
}
impl fmt::Debug for Instant {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Instant")
.field(&(self.inner as u32))
.finish()
}
}
impl ops::AddAssign<Duration> for Instant {
fn add_assign(&mut self, dur: Duration) {
// NOTE this is a debug assertion because there's no foolproof way to detect a wrap around;
// the user may write `(instant + dur) + dur` where `dur` is `(1<<31)-1` ticks.
debug_assert!(dur.inner < (1 << 31));
self.inner = self.inner.wrapping_add(dur.inner as i32);
}
}
impl ops::Add<Duration> for Instant {
type Output = Self;
fn add(mut self, dur: Duration) -> Self {
self += dur;
self
}
}
impl ops::SubAssign<Duration> for Instant {
fn sub_assign(&mut self, dur: Duration) {
// NOTE see the NOTE in `<Instant as AddAssign<Duration>>::add_assign`
debug_assert!(dur.inner < (1 << 31));
self.inner = self.inner.wrapping_sub(dur.inner as i32);
}
}
impl ops::Sub<Duration> for Instant {
type Output = Self;
fn sub(mut self, dur: Duration) -> Self {
self -= dur;
self
}
}
impl ops::Sub<Instant> for Instant {
type Output = Duration;
fn sub(self, other: Instant) -> Duration {
self.duration_since(other)
}
}
impl Ord for Instant {
fn cmp(&self, rhs: &Self) -> Ordering {
self.inner.wrapping_sub(rhs.inner).cmp(&0)
}
}
impl PartialOrd for Instant {
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
Some(self.cmp(rhs))
}
}
/// A `Duration` type to represent a span of time.
///
/// This data type is only available on ARMv7-M
///
/// # Correctness
///
/// This type is *not* appropriate for representing time spans in the order of, or larger than,
/// seconds because it can hold a maximum of `(1 << 31)` "ticks" where each tick is the inverse of
/// the CPU frequency, which usually is dozens of MHz.
#[derive(Clone, Copy, Default, Eq, Ord, PartialEq, PartialOrd)]
pub struct Duration {
inner: u32,
}
impl Duration {
/// Creates a new `Duration` from the specified number of clock cycles
pub fn from_cycles(cycles: u32) -> Self {
Duration { inner: cycles }
}
/// Returns the total number of clock cycles contained by this `Duration`
pub fn as_cycles(&self) -> u32 {
self.inner
}
}
// Used internally by RTFM to convert the duration into a known type
impl TryInto<u32> for Duration {
type Error = Infallible;
fn try_into(self) -> Result<u32, Infallible> {
Ok(self.as_cycles())
}
}
impl ops::AddAssign for Duration {
fn add_assign(&mut self, dur: Duration) {
self.inner += dur.inner;
}
}
impl ops::Add<Duration> for Duration {
type Output = Self;
fn add(self, other: Self) -> Self {
Duration {
inner: self.inner + other.inner,
}
}
}
impl ops::Mul<u32> for Duration {
type Output = Self;
fn mul(self, other: u32) -> Self {
Duration {
inner: self.inner * other,
}
}
}
impl ops::MulAssign<u32> for Duration {
fn mul_assign(&mut self, other: u32) {
*self = *self * other;
}
}
impl ops::SubAssign for Duration {
fn sub_assign(&mut self, rhs: Duration) {
self.inner -= rhs.inner;
}
}
impl ops::Sub<Duration> for Duration {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Duration {
inner: self.inner - rhs.inner,
}
}
}
/// Adds the `millis` and `micros` methods to the `u32` type
///
/// This trait is only available on ARMv7-M
pub trait U32Ext {
/// Converts the `u32` value as seconds into ticks
fn secs(self) -> Duration;
/// Converts the `u32` value as milliseconds into ticks
fn millis(self) -> Duration;
/// Converts the `u32` value as microseconds into ticks
fn micros(self) -> Duration;
/// Converts the `u32` value as hertz into ticks
fn hz(self) -> Duration;
}
impl U32Ext for u32 {
fn secs(self) -> Duration {
self.millis() * 1_000
}
fn millis(self) -> Duration {
self.micros() * 1_000
}
fn micros(self) -> Duration {
Duration { inner: self }
}
fn hz(self) -> Duration {
(1_000_000 / self).micros()
}
}
/// Implementor of the `rtfm::Monotonic` traits and used to consume the timer
/// to not allow for erroneous configuration.
///
/// The timer must be initialized through `initialize()`.
pub struct Tim1;
impl Tim1 {
pub fn initialize(timer: target::TIMER1) {
// Auto restart, make sure the entire timer won't stop for any event
timer.shorts.write(|w| {
w.compare0_clear()
.enabled()
.compare0_stop()
.disabled()
.compare1_clear()
.enabled()
.compare1_stop()
.disabled()
.compare2_clear()
.enabled()
.compare2_stop()
.disabled()
.compare3_clear()
.enabled()
.compare3_stop()
.disabled()
});
// 1 MHz mode
timer.prescaler.write(|w| unsafe { w.prescaler().bits(4) });
// 32 bit mode
timer.bitmode.write(|w| w.bitmode()._32bit());
// Set compare value to max, not sure if this is needed
timer.cc[0].write(|w| unsafe { w.cc().bits(u32::MAX) });
// Clear the counter value
timer.tasks_clear.write(|w| unsafe { w.bits(1) });
// Start the timer
timer.tasks_start.write(|w| unsafe { w.bits(1) });
// Throw away the timer, it is now setup and consumed
drop(timer);
}
}