New FPGA self test routine

Signed-off-by: Sylvain Munaut <tnt@246tNt.com>
This commit is contained in:
Sylvain Munaut 2022-05-31 16:13:38 +02:00 committed by Renze Nicolai
parent a1ae09acdd
commit 68da02427c

View file

@ -1,17 +1,20 @@
#include "fpga_test.h"
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <unistd.h>
#include <esp_log.h> #include <esp_log.h>
#include <freertos/FreeRTOS.h> #include <freertos/FreeRTOS.h>
#include <freertos/queue.h> #include <freertos/queue.h>
#include <driver/gpio.h>
#include "hardware.h"
#include "ili9341.h" #include "ili9341.h"
#include "ice40.h" #include "ice40.h"
#include "rp2040.h" #include "rp2040.h"
#include "hardware.h" #include "fpga_test.h"
extern const uint8_t fpga_selftest_bin_start[] asm("_binary_fpga_selftest_bin_start"); extern const uint8_t fpga_selftest_bin_start[] asm("_binary_fpga_selftest_bin_start");
extern const uint8_t fpga_selftest_bin_end[] asm("_binary_fpga_selftest_bin_end"); extern const uint8_t fpga_selftest_bin_end[] asm("_binary_fpga_selftest_bin_end");
static const char *TAG = "fpga_test"; static const char *TAG = "fpga_test";
esp_err_t load_file_into_psram(ICE40* ice40, FILE* fd) { esp_err_t load_file_into_psram(ICE40* ice40, FILE* fd) {
@ -22,207 +25,553 @@ esp_err_t load_file_into_psram(ICE40* ice40, FILE* fd) {
uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE); uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (tx_buffer == NULL) return ESP_FAIL; if (tx_buffer == NULL) return ESP_FAIL;
while(1) { /* SPI commands */
tx_buffer[0] = write_cmd; #define SPI_CMD_NOP1 0x00
tx_buffer[1] = (position >> 16); #define SPI_CMD_SOC_MSG 0x10
tx_buffer[2] = (position >> 8) & 0xFF; #define SPI_CMD_REG_ACCESS 0xf0
tx_buffer[3] = position & 0xFF; #define SPI_CMD_LOOPBACK 0xf1
amount_read = fread(&tx_buffer[4], 1, SPI_MAX_TRANSFER_SIZE - 4, fd); #define SPI_CMD_LCD_PASSTHROUGH 0xf2
if (amount_read < 1) break; #define SPI_CMD_BUTTON_REPORT 0xf4
ESP_LOGI(TAG, "Writing PSRAM @ %u (%u bytes)", position, amount_read); #define SPI_CMD_IRQ_ACK 0xfd
esp_err_t res = ice40_transaction(ice40, tx_buffer, amount_read + 4, NULL, 0); #define SPI_CMD_RESP_ACK 0xfe
if (res != ESP_OK) { #define SPI_CMD_NOP2 0xff
ESP_LOGE(TAG, "Write transaction failed @ %u", position);
free(tx_buffer);
return res;
}
position += amount_read;
};
free(tx_buffer);
return ESP_OK;
}
esp_err_t load_buffer_into_psram(ICE40* ice40, uint8_t* buffer, uint32_t buffer_length) { /* Messages to self-test SoC */
const uint8_t write_cmd = 0x02; #define SOC_CMD_PING 0x00
uint32_t position = 0; #define SOC_CMD_PING_PARAM 0xc0ffee
uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE); #define SOC_CMD_PING_RESP 0xcafebabe
if (tx_buffer == NULL) return ESP_FAIL;
while(1) {
tx_buffer[0] = write_cmd;
tx_buffer[1] = (position >> 16);
tx_buffer[2] = (position >> 8) & 0xFF;
tx_buffer[3] = position & 0xFF;
uint32_t length = buffer_length - position;
if (length > SPI_MAX_TRANSFER_SIZE - 4) length = SPI_MAX_TRANSFER_SIZE - 4;
memcpy(&tx_buffer[4], &buffer[position], length);
if (length == 0) break;
ESP_LOGI(TAG, "Writing PSRAM @ %u (%u bytes)", position, length);
esp_err_t res = ice40_transaction(ice40, tx_buffer, length + 4, NULL, 0);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Write transaction failed @ %u", position);
free(tx_buffer);
return res;
}
position += length;
};
free(tx_buffer);
return ESP_OK;
}
esp_err_t verify_file_in_psram(ICE40* ice40, FILE* fd) { #define SOC_CMD_RGB_STATE_SET 0x10
fseek(fd, 0, SEEK_SET); #define SOC_CMD_IRQN_SET 0x11
const uint8_t read_cmd = 0x03; #define SOC_CMD_LCD_RGB_CYCLE_SET 0x12
uint32_t amount_read; #define SOC_CMD_PMOD_CYCLE_SET 0x13
uint32_t position = 0; #define SOC_CMD_LCD_PASSTHROUGH_SET 0x14
uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (tx_buffer == NULL) return ESP_FAIL;
memset(tx_buffer, 0, SPI_MAX_TRANSFER_SIZE);
uint8_t* verify_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (verify_buffer == NULL) return ESP_FAIL;
uint8_t* rx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (rx_buffer == NULL) return ESP_FAIL;
while(1) { #define SOC_CMD_PSRAM_TEST 0x20
tx_buffer[0] = read_cmd; #define SOC_CMD_UART_LOOPBACK_TEST 0x21
tx_buffer[1] = (position >> 16); #define SOC_CMD_PMOD_OPEN_TEST 0x22
tx_buffer[2] = (position >> 8) & 0xFF; #define SOC_CMD_PMOD_PLUG_TEST 0x23
tx_buffer[3] = position & 0xFF; #define SOC_CMD_LCD_INIT_TEST 0x24
amount_read = fread(&verify_buffer[4], 1, SPI_MAX_TRANSFER_SIZE - 4, fd);
if (amount_read < 1) break;
ESP_LOGI(TAG, "Reading PSRAM @ %u (%u bytes)", position, amount_read);
esp_err_t res = ice40_transaction(ice40, tx_buffer, amount_read + 4, rx_buffer, amount_read + 4);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Read transaction failed @ %u", position);
free(tx_buffer);
return res;
}
position += amount_read;
ESP_LOGI(TAG, "Verifying PSRAM @ %u (%u bytes)", position, amount_read);
for (uint32_t i = 4; i < amount_read; i++) {
if (rx_buffer[i] != verify_buffer[i]) {
ESP_LOGE(TAG, "Verifying PSRAM @ %u failed: %02X != %02X", position + i, rx_buffer[i], verify_buffer[i]);
free(tx_buffer);
free(rx_buffer);
free(verify_buffer);
return ESP_FAIL;
}
}
};
free(tx_buffer);
free(rx_buffer);
free(verify_buffer);
ESP_LOGI(TAG, "PSRAM contents verified!");
return ESP_OK;
}
bool test_spi(ICE40* ice40) { #define SOC_CMD_LCD_CHECK_MODE 0x30
#define SOC_RESP_OK 0x00000000
/* SoC commands */
static bool soc_message(ICE40* ice40, uint8_t cmd, uint32_t param, uint32_t *resp, TickType_t ticks_to_wait) {
esp_err_t res; esp_err_t res;
uint8_t data_tx[256]; uint8_t data_tx[6];
uint8_t data_rx[128]; uint8_t data_rx[6];
// Generate pseudo random sequence /* Default delay */
data_tx[0] = 1; ticks_to_wait /= 10; /* We do 10 retries */
for (int i = 1; i < 256; i++) if (!ticks_to_wait)
ticks_to_wait = pdMS_TO_TICKS(50);
/* Prepare message */
data_tx[0] = SPI_CMD_SOC_MSG;
data_tx[1] = cmd;
data_tx[2] = (param >> 16) & 0xff;
data_tx[3] = (param >> 8) & 0xff;
data_tx[4] = (param ) & 0xff;
/* Send message to PicoRV */
res = ice40_send_turbo(ice40, data_tx, 5);
if (res != ESP_OK) {
ESP_LOGE(TAG, "SoC message TX failed");
return false;
}
/* Poll until we get a response */
data_tx[0] = SPI_CMD_RESP_ACK;
for (int i=0; i<10; i++) {
/* Poll */
res = ice40_transaction(ice40, data_tx, 6, data_rx, 6);
if (res != ESP_OK) {
ESP_LOGE(TAG, "SoC response RX failed");
return false;
}
/* Was response valid ? */
if (data_rx[1] & 0x80)
break;
/* Wait before retry */
vTaskDelay(ticks_to_wait);
}
if (!(data_rx[1] & 0x80)) {
ESP_LOGE(TAG, "SoC response RX timeout");
return false;
}
/* Report response */
if (resp) {
*resp = 0;
for (int i=0; i<4; i++)
*resp = (*resp << 8) | data_rx[2+i];
}
return true;
}
/* Test routines */
static bool test_bitstream_load(ICE40* ice40, uint32_t *rc) {
esp_err_t res;
res = ice40_load_bitstream(ice40, fpga_selftest_bin_start, fpga_selftest_bin_end - fpga_selftest_bin_start);
if (res != ESP_OK) {
*rc = res;
return false;
}
*rc = 0;
return true;
}
static bool test_spi_loopback_one(ICE40* ice40) {
esp_err_t res;
uint8_t data_tx[257];
uint8_t data_rx[258];
/* Generate pseudo random sequence */
data_tx[1] = 1;
for (int i = 2; i < 257; i++)
data_tx[i] = (data_tx[i-1] << 1) ^ ((data_tx[i-1] & 0x80) ? 0x1d : 0x00); data_tx[i] = (data_tx[i-1] << 1) ^ ((data_tx[i-1] & 0x80) ? 0x1d : 0x00);
// Send first 128 byte at high speed /* Send 256 bytes at high speed with echo command */
res = ice40_send_turbo(ice40, &data_tx[0], 128); data_tx[0] = SPI_CMD_LOOPBACK;
res = ice40_send_turbo(ice40, data_tx, 257);
if (res != ESP_OK) { if (res != ESP_OK) {
ESP_LOGE(TAG, "Transaction 1 failed (Turbo TX)"); ESP_LOGE(TAG, "SPI loopback transaction 1 failed (Turbo TX)");
return false; return false;
} }
// Execute full duplex transaction with next 128 bytes /* Execute full duplex transaction with next 128 bytes */
res = ice40_transaction(ice40, &data_tx[128], 128, data_rx, 128); res = ice40_transaction(ice40, data_tx, 257, data_rx, 257);
if (res != ESP_OK) { if (res != ESP_OK) {
ESP_LOGE(TAG, "Transaction 2 failed (Full Duplex)"); ESP_LOGE(TAG, "SPI loopback transaction 2 failed (Full Duplex)");
return false; return false;
} }
// Validate RX data /* Validate response present */
if (memcmp(&data_rx[1], &data_tx[0], 127)) { if ((data_rx[1] & 0x80) == 0) {
printf("Transaction 1->2 integrity fail:\n"); ESP_LOGE(TAG, "SPI loopback transaction 2 reports no response available\n");
for (int i = 0; i < 128; i++) return false;
}
/* Validate RX data (only 254 byte got read) */
if (memcmp(&data_rx[2], &data_tx[1], 254)) {
ESP_LOGE(TAG, "SPI loopback transaction 1->2 integrity fail:\n");
for (int i = 0; i < 254; i++)
printf("%02X%c", data_rx[i], ((i&0xf)==0xf) ? '\n' : ' '); printf("%02X%c", data_rx[i], ((i&0xf)==0xf) ? '\n' : ' ');
printf("\n"); printf("\n");
return false; return false;
} }
// Receive half duplex /* Read two responses and ack them */
res = ice40_receive(ice40, data_rx, 128); for (int t = 0; t < 2; t++) {
/* Receive half duplex */
res = ice40_receive(ice40, data_rx, 258);
if (res != ESP_OK) { if (res != ESP_OK) {
ESP_LOGE(TAG, "Transaction 3 failed (Half Duplex RX)"); ESP_LOGE(TAG, "SPI loopback transaction 3.%d failed (Half Duplex RX)", t);
return false; return false;
} }
// Validate RX data /* Short acknowledge command */
if (memcmp(&data_rx[1], &data_tx[128], 127)) { data_tx[0] = SPI_CMD_RESP_ACK;
printf("Transaction 2->3 integrity fail:\n");
for (int i = 0; i < 128; i++) res = ice40_send_turbo(ice40, data_tx, 1);
if (res != ESP_OK) {
ESP_LOGE(TAG, "SPI loopback transaction 4.%d failed (Turbo ACK)", t);
return false;
}
/* Validate response present */
if ((data_rx[1] & 0x80) == 0) {
ESP_LOGE(TAG, "SPI loopback transaction 3.%d reports no response available\n", t);
return false;
}
/* Validate RX data (only 254 byte got read) */
if (memcmp(&data_rx[2], &data_tx[1], 254)) {
ESP_LOGE(TAG, "SPI loopback transaction %d->3.%d integrity fail:\n", 1+t, t);
for (int i = 0; i < 254; i++)
printf("%02X%c", data_rx[i], ((i&0xf)==0xf) ? '\n' : ' '); printf("%02X%c", data_rx[i], ((i&0xf)==0xf) ? '\n' : ' ');
printf("\n"); printf("\n");
return false; return false;
} }
}
/* Check there is no more responses pending */
data_tx[0] = SPI_CMD_NOP2;
res = ice40_transaction(ice40, data_tx, 2, data_rx, 2);
if (res != ESP_OK) {
ESP_LOGE(TAG, "SPI loopback transaction 5 failed (Full Duplex)");
return false;
}
if ((data_rx[1] & 0x80) != 0) {
ESP_LOGE(TAG, "SPI loopback transaction 5 reports response available\n");
return false;
}
return true; return true;
} }
void fpga_test(ILI9341* ili9341, ICE40* ice40, xQueueHandle buttonQueue) { static bool test_spi_loopback(ICE40* ice40, uint32_t *rc) {
esp_err_t res; int i;
bool reload_fpga = false;
do {
printf("Start FPGA test...\n");
reload_fpga = false;
printf("LCD deinit...\n");
ili9341_deinit(ili9341);
printf("FPGA load...\n"); /* Run test 256 times */
res = ice40_load_bitstream(ice40, fpga_selftest_bin_start, fpga_selftest_bin_end - fpga_selftest_bin_start); for (i=0; i<256; i++) {
if (res != ESP_OK) { if (!test_spi_loopback_one(ice40))
printf("Failed to load app bitstream into FPGA (%d)\n", res); break;
ice40_disable(ice40);
ili9341_init(ili9341);
return;
} else {
printf("Bitstream loaded succesfully!\n");
} }
int i; /* Failure ? */
for (i = 0; i < 256; i++) if (i != 256) {
if (!test_spi(ice40)) *rc = i + 1;
break; return false;
if (i == 256) }
printf("SPI test success\n");
else
printf("SPI test failure at iteration %d\n", i);
bool waitForChoice = true; /* OK ! */
while (waitForChoice) { *rc = 0;
return true;
}
static bool test_soc_loopback(ICE40 *ice40, uint32_t *rc) {
/* Execute command */
if (!soc_message(ice40, SOC_CMD_PING, SOC_CMD_PING_PARAM, rc, 0)) {
*rc = -1;
return false;
}
/* Check response */
if (*rc != SOC_CMD_PING_RESP)
return false;
/* Success */
*rc = 0;
return true;
}
static bool test_uart_loopback(ICE40* ice40, uint32_t *rc) {
/* Enable loopback mode of RP2040 */
rp2040_set_fpga_loopback(get_rp2040(), true, true);
vTaskDelay(pdMS_TO_TICKS(10));
/* Execute command */
if (!soc_message(ice40, SOC_CMD_UART_LOOPBACK_TEST, 0, rc, 0)) {
*rc = -1;
return false;
}
/* Disable loopback mode of RP2040 */
rp2040_set_fpga_loopback(get_rp2040(), true, false);
/* Check response */
return *rc == SOC_RESP_OK;
}
static bool test_psram(ICE40* ice40, uint32_t *rc) {
/* Execute command */
if (!soc_message(ice40, SOC_CMD_PSRAM_TEST, 0, rc, pdMS_TO_TICKS(1000))) {
*rc = -1;
return false;
}
/* Check response */
return *rc == SOC_RESP_OK;
}
static bool test_irq_n(ICE40* ice40, uint32_t *rc) {
esp_err_t res;
/* Set pin as input */
res = gpio_set_direction(GPIO_INT_FPGA, GPIO_MODE_INPUT);
if (res != ESP_OK) {
*rc = 32;
return false;
}
/* Assert interrupt line */
if (!soc_message(ice40, SOC_CMD_IRQN_SET, 1, rc, 0)) {
*rc = -1;
return false;
}
if (*rc != SOC_RESP_OK)
return false;
/* Check level is 0 */
if (gpio_get_level(GPIO_INT_FPGA) != 0) {
*rc = 16;
return false;
}
/* Release interrupt line */
if (!soc_message(ice40, SOC_CMD_IRQN_SET, 0, rc, 0)) {
*rc = -1;
return false;
}
if (*rc != SOC_RESP_OK)
return false;
/* Check level is 1 */
if (gpio_get_level(GPIO_INT_FPGA) != 1) {
*rc = 16;
return false;
}
return true;
}
static bool test_lcd_mode(ICE40* ice40, uint32_t *rc) {
esp_err_t res;
bool ok;
/* Defaults */
ok = true;
*rc = 0;
/* Check state is 0 */
if (!soc_message(ice40, SOC_CMD_LCD_CHECK_MODE, 0, rc, 0)) {
*rc = 16;
return false;
}
if (*rc != SOC_RESP_OK)
return false;
/* Set LCD mode to 1 */
res = gpio_set_level(GPIO_LCD_MODE, 1);
if (res != ESP_OK) {
*rc = 32;
return false;
}
/* Check state is 1 */
if (!soc_message(ice40, SOC_CMD_LCD_CHECK_MODE, 1, rc, 0)) {
*rc = 17;
ok = false;
}
if (*rc != SOC_RESP_OK)
ok = false;
/* Set LCD mode back to 0 */
res = gpio_set_level(GPIO_LCD_MODE, 0);
if (res != ESP_OK) {
*rc = 33;
return false;
}
/* All good */
return ok;
}
static bool test_pmod_open(ICE40* ice40, uint32_t *rc) {
/* Execute command */
if (!soc_message(ice40, SOC_CMD_PMOD_OPEN_TEST, 0, rc, 0)) {
*rc = -1;
return false;
}
/* Check response */
return *rc == SOC_RESP_OK;
}
static bool test_pmod_plug(ICE40* ice40, uint32_t *rc) {
/* Execute command */
if (!soc_message(ice40, SOC_CMD_PMOD_PLUG_TEST, 0, rc, 0)) {
*rc = -1;
return false;
}
/* Check response */
return *rc == SOC_RESP_OK;
}
static bool test_lcd_init(ICE40* ice40, uint32_t *rc) {
/* Execute command */
if (!soc_message(ice40, SOC_CMD_LCD_INIT_TEST, 0, rc, 0)) {
*rc = -1;
return false;
}
/* Check response */
return *rc == SOC_RESP_OK;
}
typedef bool (*test_fn)(ICE40 *ice40, uint32_t *rc);
static bool wait_button(xQueueHandle buttonQueue) {
rp2040_input_message_t buttonMessage = {0}; rp2040_input_message_t buttonMessage = {0};
printf("Waiting for button press...\n");
if (xQueueReceive(buttonQueue, &buttonMessage, portMAX_DELAY) == pdTRUE) { while (1) {
printf("Button: %u, %u\n", buttonMessage.input, buttonMessage.state); if (xQueueReceive(buttonQueue, &buttonMessage, 0) == pdTRUE) {
if (buttonMessage.state) { if (buttonMessage.state) {
switch(buttonMessage.input) { switch(buttonMessage.input) {
case RP2040_INPUT_BUTTON_HOME: case RP2040_INPUT_BUTTON_HOME:
case RP2040_INPUT_BUTTON_MENU: case RP2040_INPUT_BUTTON_MENU:
waitForChoice = false;
break;
case RP2040_INPUT_BUTTON_BACK: case RP2040_INPUT_BUTTON_BACK:
reload_fpga = true; return false;
waitForChoice = false;
break;
case RP2040_INPUT_BUTTON_ACCEPT: case RP2040_INPUT_BUTTON_ACCEPT:
reload_fpga = true; return true;
waitForChoice = false;
break;
default: default:
break; break;
} }
} }
} else {
vTaskDelay(pdMS_TO_TICKS(10));
} }
} }
ice40_disable(ice40); }
static bool run_test(ICE40* ice40, pax_buf_t* pax_buffer, const pax_font_t *font, ILI9341* ili9341, int line,
const char *test_name, test_fn fn) {
bool rv;
uint32_t rc;
/* Test name */
pax_draw_text(pax_buffer, 0xffffffff, font, 18, 0, 20*line, test_name);
if (ili9341)
ili9341_write(ili9341, pax_buffer->buf);
/* Run the test */
rv = fn(ice40, &rc);
/* Display result */
if (!rv) {
/* Error */
char buf[10];
snprintf(buf, sizeof(buf), "%08x", rc);
pax_draw_text(pax_buffer, 0xffff0000, font, 18, 200, 20*line, buf);
} else {
/* OK ! */
pax_draw_text(pax_buffer, 0xff00ff00, font, 18, 200, 20*line, " OK");
}
if (ili9341)
ili9341_write(ili9341, pax_buffer->buf);
/* Pass through the 'OK' status */
return rv;
}
#define RUN_TEST(name, fn) do {\
ok &= run_test(ice40, pax_buffer, font, ili9341, line++, name, fn); \
} while (0)
#define RUN_TEST_MANDATORY(name, fn) do {\
if (!run_test(ice40, pax_buffer, font, ili9341, line++, name, fn)) { \
pax_draw_text(pax_buffer, 0xffff0000, font, 18, 0, 20*line, "Aborted"); \
ili9341_write(ili9341, pax_buffer->buf); \
ok = false; \
goto error; \
} \
} while (0)
#define RUN_TEST_BLIND(name, fn) do {\
ok &= run_test(ice40, pax_buffer, font, NULL, line++, name, fn); \
} while (0)
static void
run_all_tests(xQueueHandle buttonQueue, ICE40* ice40, pax_buf_t* pax_buffer, ILI9341* ili9341)
{
const pax_font_t *font;
int line = 0;
bool ok = true;
/* Screen init */
font = pax_get_font("sky mono");
pax_noclip(pax_buffer);
pax_background(pax_buffer, 0x8060f0);
ili9341_write(ili9341, pax_buffer->buf);
/* Run mandatory tests */
RUN_TEST_MANDATORY("Bitstream load", test_bitstream_load);
RUN_TEST_MANDATORY("SPI loopback", test_spi_loopback);
RUN_TEST_MANDATORY("SoC loopback", test_soc_loopback);
/* Set indicator to "in-progress" */
soc_message(ice40, SOC_CMD_RGB_STATE_SET, 1, NULL, 0);
/* Run non-interactive tests */
RUN_TEST("UART loopback", test_uart_loopback);
RUN_TEST("PSRAM", test_psram);
RUN_TEST("IRQ_n signal", test_irq_n);
RUN_TEST("LCD_MODE signal", test_lcd_mode);
RUN_TEST("PMOD open", test_pmod_open);
/* Show instructions for interactive test */
pax_draw_text(pax_buffer, 0xffc0c0c0, font, 9, 25, 20*line+ 0, "Insert PMOD plug");
pax_draw_text(pax_buffer, 0xffc0c0c0, font, 9, 25, 20*line+10, "Then press button for interactive test");
pax_draw_text(pax_buffer, 0xffc0c0c0, font, 9, 25, 20*line+20, " - Check LCD color bars");
pax_draw_text(pax_buffer, 0xffc0c0c0, font, 9, 25, 20*line+30, " - Then LCD & RGB led color cycling");
ili9341_write(ili9341, pax_buffer->buf);
/* Wait for button */
wait_button(buttonQueue);
/* Clear the instructions from buffer */
pax_draw_rect(pax_buffer, 0xff8060f0, 0, 20*line, 320, 240-20*line);
/* Handover LCD to FPGA */
ili9341_deinit(ili9341);
/* Run interactive tests */
RUN_TEST("PMOD plug", test_pmod_plug);
RUN_TEST("LCD init", test_lcd_init);
/* Wait a second (for user to see color bars) */
vTaskDelay(pdMS_TO_TICKS(1000));
/* Start LCD / RGB cycling */
soc_message(ice40, SOC_CMD_LCD_RGB_CYCLE_SET, 1, NULL, 0);
/* Wait for button */
wait_button(buttonQueue);
/* Stop LCD / RGB cycling */
soc_message(ice40, SOC_CMD_LCD_RGB_CYCLE_SET, 0, NULL, 0);
/* Take control of the LCD back and refresh screen */
ili9341_init(ili9341); ili9341_init(ili9341);
} while (reload_fpga);
error:
/* Update indicator */
soc_message(ice40, SOC_CMD_RGB_STATE_SET, ok ? 2 : 3, NULL, 0);
/* Pass / Fail result on screen */
if (ok)
pax_draw_text(pax_buffer, 0xff00ff00, font, 36, 100, 20*line, "PASS");
else
pax_draw_text(pax_buffer, 0xffff0000, font, 36, 100, 20*line, "FAIL");
ili9341_write(ili9341, pax_buffer->buf);
/* Done, just wait for button */
wait_button(buttonQueue);
/* Cleanup */
ice40_disable(ice40);
return;
}
void fpga_test(xQueueHandle buttonQueue, ICE40* ice40, pax_buf_t* pax_buffer, ILI9341* ili9341) {
run_all_tests(buttonQueue, ice40, pax_buffer, ili9341);
} }