forked from mirrors/LibreTranslate
allow batch processing for language detection
This commit is contained in:
parent
d4cb859c8d
commit
36fee9bf1b
1 changed files with 38 additions and 4 deletions
|
@ -9,12 +9,25 @@ __lang_codes = [l.code for l in languages]
|
|||
|
||||
|
||||
def detect_languages(text):
|
||||
f = Detector(text).languages
|
||||
# detect batch processing
|
||||
if isinstance(text, list):
|
||||
is_batch = True
|
||||
else:
|
||||
is_batch = False
|
||||
text = [text]
|
||||
|
||||
# get the candidates
|
||||
candidate_langs = list(filter(lambda l: l.read_bytes != 0 and l.code in __lang_codes, f))
|
||||
candidates = []
|
||||
for t in text:
|
||||
candidates.extend(Detector(t).languages)
|
||||
|
||||
# this happens if no language can be detected
|
||||
# total read bytes of the provided text
|
||||
read_bytes_total = sum(c.read_bytes for c in candidates)
|
||||
|
||||
# only use candidates that are supported by argostranslate
|
||||
candidate_langs = list(filter(lambda l: l.read_bytes != 0 and l.code in __lang_codes, candidates))
|
||||
|
||||
# this happens if no language could be detected
|
||||
if not candidate_langs:
|
||||
# use language "en" by default but with zero confidence
|
||||
return [
|
||||
|
@ -24,8 +37,29 @@ def detect_languages(text):
|
|||
}
|
||||
]
|
||||
|
||||
# for multiple occurrences of the same language (can happen on batch detection)
|
||||
# calculate the average confidence for each language
|
||||
if is_batch:
|
||||
temp_average_list = []
|
||||
for lang_code in __lang_codes:
|
||||
# get all candidates for a specific language
|
||||
lc = list(filter(lambda l: l.code == lang_code, candidate_langs))
|
||||
if len(lc) > 1:
|
||||
# if more than one is present, calculate the average confidence
|
||||
lang = lc[0]
|
||||
lang.confidence = sum(l.confidence for l in lc) / len(lc)
|
||||
lang.read_bytes = sum(l.read_bytes for l in lc)
|
||||
temp_average_list.append(lang)
|
||||
elif lc:
|
||||
# otherwise just add it to the temporary list
|
||||
temp_average_list.append(lc[0])
|
||||
|
||||
if temp_average_list:
|
||||
# replace the list
|
||||
candidate_langs = temp_average_list
|
||||
|
||||
# sort the candidates descending based on the detected confidence
|
||||
candidate_langs.sort(key=lambda l: l.confidence, reverse=True)
|
||||
candidate_langs.sort(key=lambda l: (l.confidence * l.read_bytes) / read_bytes_total, reverse=True)
|
||||
|
||||
return [
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue