whispering/whisper_streaming/transcriber.py
2022-09-23 20:41:44 +09:00

219 lines
7.8 KiB
Python

#!/usr/bin/env python3
from typing import Iterator, List, Optional, Union
import numpy as np
import torch
from whisper import Whisper, load_model
from whisper.audio import (
HOP_LENGTH,
N_FRAMES,
SAMPLE_RATE,
log_mel_spectrogram,
pad_or_trim,
)
from whisper.decoding import DecodingOptions, DecodingResult
from whisper.tokenizer import get_tokenizer
from whisper.utils import exact_div
from whisper_streaming.schema import ParsedChunk, WhisperConfig
class WhisperStreamingTranscriber:
def __init__(self, *, config: WhisperConfig):
self.config: WhisperConfig = config
self.model: Whisper = load_model(config.model_name, device=config.device)
self.tokenizer = get_tokenizer(
self.model.is_multilingual,
language=config.language,
task="transcribe",
)
self.dtype = torch.float16
self.timestamp: float = 0.0
self.input_stride = exact_div(
N_FRAMES, self.model.dims.n_audio_ctx
) # mel frames per output token: 2
self.time_precision = (
self.input_stride * HOP_LENGTH / SAMPLE_RATE
) # time per output token: 0.02 (seconds)
self.buffer_tokens = []
def _get_decoding_options(
self,
*,
t,
beam_size: Optional[int],
patience: float,
best_of: Optional[int],
) -> DecodingOptions:
return DecodingOptions(
task="transcribe",
language=None,
temperature=t,
sample_len=None,
best_of=best_of,
beam_size=beam_size,
patience=patience,
length_penalty=None,
prompt=None,
prefix=None,
suppress_blank=True,
suppress_tokens="-1",
without_timestamps=False,
max_initial_timestamp=0.0,
fp16=True,
)
def _decode_with_fallback(self, *, segment: np.ndarray) -> List[DecodingResult]:
assert len(self.config.temperatures) >= 1
t = self.config.temperatures[0]
_decode_options1: DecodingOptions = self._get_decoding_options(
t=t,
beam_size=self.config.beam_size,
patience=0.0,
best_of=None,
)
results: List[DecodingResult] = self.model.decode(segment, _decode_options1) # type: ignore
for t in self.config.temperatures[1:]:
needs_fallback = [
self.config.compression_ratio_threshold is not None
and result.compression_ratio > self.config.compression_ratio_threshold
or self.config.logprob_threshold is not None
and result.avg_logprob < self.config.logprob_threshold
for result in results
]
if any(needs_fallback):
_decode_options2: DecodingOptions = self._get_decoding_options(
t=t,
beam_size=None,
patience=0.0,
best_of=self.config.best_of,
)
retries: List[DecodingResult] = self.model.decode(
segment[needs_fallback], _decode_options2 # type: ignore
)
for retry_index, original_index in enumerate(
np.nonzero(needs_fallback)[0]
):
results[original_index] = retries[retry_index]
return results
def _get_chunk(
self,
*,
start: float,
end: float,
text_tokens: torch.Tensor,
result: DecodingResult,
) -> Optional[ParsedChunk]:
text = self.tokenizer.decode(
[token for token in text_tokens if token < self.tokenizer.eot] # type: ignore
)
if len(text.strip()) == 0: # skip empty text output
return
return ParsedChunk(
start=start,
end=end,
text=text,
tokens=result.tokens,
temperature=result.temperature,
avg_logprob=result.avg_logprob,
compression_ratio=result.compression_ratio,
no_speech_prob=result.no_speech_prob,
)
def _deal_timestamp(
self, *, result, segment_duration
) -> Iterator[Union[ParsedChunk, int]]:
tokens = torch.tensor(result.tokens)
timestamp_tokens: torch.Tensor = tokens.ge(self.tokenizer.timestamp_begin)
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(
1
)
if (
len(consecutive) > 0
): # if the output contains two consecutive timestamp tokens
last_slice = 0
for current_slice in consecutive:
sliced_tokens = tokens[last_slice:current_slice]
start_timestamp_position = (
sliced_tokens[0].item() - self.tokenizer.timestamp_begin
)
end_timestamp_position = (
sliced_tokens[-1].item() - self.tokenizer.timestamp_begin
)
chunk = self._get_chunk(
start=self.timestamp
+ start_timestamp_position * self.time_precision,
end=self.timestamp + end_timestamp_position * self.time_precision,
text_tokens=sliced_tokens[1:-1],
result=result,
)
if chunk is not None:
yield chunk
last_slice = current_slice
last_timestamp_position0: int = (
tokens[last_slice - 1].item()
- self.tokenizer.timestamp_begin # type:ignore
)
self.buffer_tokens.extend(tokens[: last_slice + 1].tolist())
self.timestamp += last_timestamp_position0 * self.time_precision
yield last_timestamp_position0
else:
duration = segment_duration
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
if len(timestamps) > 0:
# no consecutive timestamps but it has a timestamp; use the last one.
# single timestamp at the end means no speech after the last timestamp.
last_timestamp_position = (
timestamps[-1].item() - self.tokenizer.timestamp_begin
)
duration = last_timestamp_position * self.time_precision
chunk = self._get_chunk(
start=self.timestamp,
end=self.timestamp + duration,
text_tokens=tokens,
result=result,
)
if chunk is not None:
yield chunk
self.timestamp += float(segment_duration * HOP_LENGTH / SAMPLE_RATE)
if result.temperature > 0.5:
# do not feed the prompt tokens if a high temperature was used
del self.buffer_tokens
self.buffer_tokens = []
def transcribe(
self,
*,
segment: np.ndarray,
) -> Iterator[ParsedChunk]:
log_spec = log_mel_spectrogram(audio=segment).unsqueeze(0)
segment = (
pad_or_trim(log_spec, N_FRAMES)
.to(self.model.device) # type:ignore
.to(self.dtype) # type:ignore
)
results = self._decode_with_fallback(segment=segment)
result = results[0]
if self.config.no_speech_threshold is not None:
if (result.no_speech_prob > self.config.no_speech_threshold) and not (
self.config.logprob_threshold is not None
and result.avg_logprob > self.config.logprob_threshold
):
return
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
for v in self._deal_timestamp(result=result, segment_duration=segment_duration):
if isinstance(v, int):
# FIXME: save log_spec
pass
else:
yield v