mirror of
https://github.com/shirayu/whispering.git
synced 2024-11-10 18:51:08 +00:00
292 lines
10 KiB
Python
292 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
|
|
from logging import getLogger
|
|
from typing import Iterator, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from whisper import Whisper, load_model
|
|
from whisper.audio import (
|
|
HOP_LENGTH,
|
|
N_FRAMES,
|
|
SAMPLE_RATE,
|
|
log_mel_spectrogram,
|
|
pad_or_trim,
|
|
)
|
|
from whisper.decoding import DecodingOptions, DecodingResult
|
|
from whisper.tokenizer import get_tokenizer
|
|
from whisper.utils import exact_div
|
|
|
|
from whisper_streaming.schema import ParsedChunk, WhisperConfig
|
|
|
|
logger = getLogger(__name__)
|
|
|
|
|
|
class WhisperStreamingTranscriber:
|
|
def _set_dtype(self, fp16: bool):
|
|
self.fp16 = fp16
|
|
self.dtype = torch.float16 if fp16 else torch.float32
|
|
if self.model.device == torch.device("cpu"):
|
|
if torch.cuda.is_available():
|
|
logger.warning("Performing inference on CPU when CUDA is available")
|
|
if self.dtype == torch.float16:
|
|
logger.warning("FP16 is not supported on CPU; using FP32 instead")
|
|
self.dtype = torch.float32
|
|
|
|
if self.dtype == torch.float32:
|
|
self.fp16 = False
|
|
|
|
def __init__(self, *, config: WhisperConfig):
|
|
self.config: WhisperConfig = config
|
|
self.model: Whisper = load_model(config.model_name, device=config.device)
|
|
self.tokenizer = get_tokenizer(
|
|
self.model.is_multilingual,
|
|
language=config.language,
|
|
task="transcribe",
|
|
)
|
|
self._set_dtype(config.fp16)
|
|
self.timestamp: float = 0.0
|
|
self.input_stride = exact_div(
|
|
N_FRAMES, self.model.dims.n_audio_ctx
|
|
) # mel frames per output token: 2
|
|
self.time_precision = (
|
|
self.input_stride * HOP_LENGTH / SAMPLE_RATE
|
|
) # time per output token: 0.02 (seconds)
|
|
|
|
self.buffer_tokens = []
|
|
self.buffer_mel = None
|
|
|
|
def _get_decoding_options(
|
|
self,
|
|
*,
|
|
t,
|
|
prompt,
|
|
beam_size: Optional[int],
|
|
patience: float,
|
|
best_of: Optional[int],
|
|
) -> DecodingOptions:
|
|
return DecodingOptions(
|
|
task="transcribe",
|
|
language=self.config.language,
|
|
temperature=t,
|
|
sample_len=None,
|
|
best_of=best_of,
|
|
beam_size=beam_size,
|
|
patience=patience,
|
|
length_penalty=None,
|
|
prompt=prompt,
|
|
prefix=None,
|
|
suppress_blank=True,
|
|
suppress_tokens="-1",
|
|
without_timestamps=False,
|
|
max_initial_timestamp=0.0,
|
|
fp16=self.fp16,
|
|
)
|
|
|
|
def _decode_with_fallback(
|
|
self,
|
|
*,
|
|
segment: np.ndarray,
|
|
) -> List[DecodingResult]:
|
|
assert len(self.config.temperatures) >= 1
|
|
t = self.config.temperatures[0]
|
|
logger.debug(f"temperature: {t}")
|
|
|
|
_decode_options1: DecodingOptions = self._get_decoding_options(
|
|
t=t,
|
|
prompt=self.buffer_tokens,
|
|
beam_size=self.config.beam_size,
|
|
patience=0.0,
|
|
best_of=None,
|
|
)
|
|
results: List[DecodingResult] = self.model.decode(segment, _decode_options1) # type: ignore
|
|
|
|
for t in self.config.temperatures[1:]:
|
|
needs_fallback = [
|
|
self.config.compression_ratio_threshold is not None
|
|
and result.compression_ratio > self.config.compression_ratio_threshold
|
|
or self.config.logprob_threshold is not None
|
|
and result.avg_logprob < self.config.logprob_threshold
|
|
for result in results
|
|
]
|
|
if any(needs_fallback):
|
|
logger.debug(
|
|
f"Fall back with temperature: {t}, needs_fallback: {needs_fallback}"
|
|
)
|
|
_decode_options2: DecodingOptions = self._get_decoding_options(
|
|
t=t,
|
|
prompt=self.buffer_tokens,
|
|
beam_size=None,
|
|
patience=0.0,
|
|
best_of=self.config.best_of,
|
|
)
|
|
retries: List[DecodingResult] = self.model.decode(
|
|
segment[needs_fallback], _decode_options2 # type: ignore
|
|
)
|
|
for retry_index, original_index in enumerate(
|
|
np.nonzero(needs_fallback)[0]
|
|
):
|
|
results[original_index] = retries[retry_index]
|
|
else:
|
|
break
|
|
logger.debug(f"# of results: {len(results)}")
|
|
return results
|
|
|
|
def _get_chunk(
|
|
self,
|
|
*,
|
|
start: float,
|
|
end: float,
|
|
text_tokens: torch.Tensor,
|
|
result: DecodingResult,
|
|
) -> Optional[ParsedChunk]:
|
|
text = self.tokenizer.decode(
|
|
[token for token in text_tokens if token < self.tokenizer.eot] # type: ignore
|
|
)
|
|
if len(text.strip()) == 0: # skip empty text output
|
|
return
|
|
|
|
return ParsedChunk(
|
|
start=start,
|
|
end=end,
|
|
text=text,
|
|
tokens=result.tokens,
|
|
temperature=result.temperature,
|
|
avg_logprob=result.avg_logprob,
|
|
compression_ratio=result.compression_ratio,
|
|
no_speech_prob=result.no_speech_prob,
|
|
)
|
|
|
|
def _deal_timestamp(
|
|
self, *, result, segment_duration
|
|
) -> Iterator[Union[ParsedChunk, int]]:
|
|
tokens = torch.tensor(result.tokens)
|
|
timestamp_tokens: torch.Tensor = tokens.ge(self.tokenizer.timestamp_begin)
|
|
|
|
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(
|
|
1
|
|
)
|
|
|
|
if (
|
|
len(consecutive) > 0
|
|
): # if the output contains two consecutive timestamp tokens
|
|
logger.debug(f"Length of consecutive: {len(consecutive)}")
|
|
last_slice = 0
|
|
for current_slice in consecutive:
|
|
logger.debug(f" last_slice={last_slice}, current_slice={current_slice}")
|
|
sliced_tokens = tokens[last_slice:current_slice]
|
|
start_timestamp_position = (
|
|
sliced_tokens[0].item() - self.tokenizer.timestamp_begin
|
|
)
|
|
end_timestamp_position = (
|
|
sliced_tokens[-1].item() - self.tokenizer.timestamp_begin
|
|
)
|
|
chunk = self._get_chunk(
|
|
start=self.timestamp
|
|
+ start_timestamp_position * self.time_precision,
|
|
end=self.timestamp + end_timestamp_position * self.time_precision,
|
|
text_tokens=sliced_tokens[1:-1],
|
|
result=result,
|
|
)
|
|
if chunk is not None:
|
|
yield chunk
|
|
last_slice = current_slice
|
|
last_timestamp_position0: int = (
|
|
tokens[last_slice - 1].item()
|
|
- self.tokenizer.timestamp_begin # type:ignore
|
|
)
|
|
self.buffer_tokens.extend(tokens[: last_slice + 1].tolist())
|
|
self.timestamp += last_timestamp_position0 * self.time_precision
|
|
yield last_timestamp_position0
|
|
else:
|
|
logger.debug("Length of consecutive: 0")
|
|
duration = segment_duration
|
|
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
|
if len(timestamps) > 0:
|
|
# no consecutive timestamps but it has a timestamp; use the last one.
|
|
# single timestamp at the end means no speech after the last timestamp.
|
|
last_timestamp_position = (
|
|
timestamps[-1].item() - self.tokenizer.timestamp_begin
|
|
)
|
|
duration = last_timestamp_position * self.time_precision
|
|
chunk = self._get_chunk(
|
|
start=self.timestamp,
|
|
end=self.timestamp + duration,
|
|
text_tokens=tokens,
|
|
result=result,
|
|
)
|
|
if chunk is not None:
|
|
yield chunk
|
|
self.timestamp += duration
|
|
|
|
if result.temperature > 0.5:
|
|
# do not feed the prompt tokens if a high temperature was used
|
|
del self.buffer_tokens
|
|
self.buffer_tokens = []
|
|
logger.debug(f"Length of buffer: {len(self.buffer_tokens)}")
|
|
|
|
def transcribe(
|
|
self,
|
|
*,
|
|
segment: np.ndarray,
|
|
) -> Iterator[ParsedChunk]:
|
|
new_mel = log_mel_spectrogram(audio=segment).unsqueeze(0)
|
|
if self.buffer_mel is None:
|
|
mel = new_mel
|
|
else:
|
|
mel = torch.cat([self.buffer_mel, new_mel], dim=-1)
|
|
self.buffer_mel = None
|
|
|
|
seek: int = 0
|
|
rest_start: Optional[int] = None
|
|
while seek < mel.shape[-1]:
|
|
logger.debug(
|
|
f"seek={seek}, timestamp={self.timestamp}, rest_start={rest_start}"
|
|
)
|
|
segment = (
|
|
pad_or_trim(mel[:, :, seek:], N_FRAMES)
|
|
.to(self.model.device) # type: ignore
|
|
.to(self.dtype)
|
|
)
|
|
|
|
results = self._decode_with_fallback(
|
|
segment=segment,
|
|
)
|
|
result = results[0]
|
|
logger.debug(
|
|
f"Result: temperature={result.temperature:.2f}, no_speech_prob={result.no_speech_prob:.2f}, "
|
|
f"avg_logprob={result.avg_logprob:.2f}"
|
|
)
|
|
|
|
if self.config.no_speech_threshold is not None:
|
|
if (result.no_speech_prob > self.config.no_speech_threshold) and not (
|
|
self.config.logprob_threshold is not None
|
|
and result.avg_logprob > self.config.logprob_threshold
|
|
):
|
|
seek += segment.shape[-1]
|
|
rest_start = None
|
|
logger.debug(f"Skip: {segment.shape[-1]}")
|
|
continue
|
|
|
|
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
|
|
last_timestamp_position: Optional[int] = None
|
|
for v in self._deal_timestamp(
|
|
result=result, segment_duration=segment_duration
|
|
):
|
|
if isinstance(v, int):
|
|
last_timestamp_position = v
|
|
else:
|
|
yield v
|
|
if last_timestamp_position is None:
|
|
seek += segment.shape[-1]
|
|
rest_start = None
|
|
else:
|
|
seek += last_timestamp_position
|
|
rest_start = seek
|
|
|
|
logger.debug(f"Last rest_start={rest_start}")
|
|
if rest_start is None:
|
|
return
|
|
|
|
self.buffer_mel = mel[:, :, rest_start:]
|
|
del mel
|