Deal timestamp

This commit is contained in:
Yuta Hayashibe 2022-09-23 20:03:00 +09:00
parent 4896570e3d
commit 7132db3433
4 changed files with 125 additions and 13 deletions

View file

@ -8,7 +8,8 @@ flake8:
black:
find $(TARGET_DIRS) | grep '\.py$$' | xargs black --diff | diff /dev/null -
isort:
find $(TARGET_DIRS) | grep '\.py$$' | xargs isort --diff | diff /dev/null -
#Temporary
#find $(TARGET_DIRS) | grep '\.py$$' | xargs isort --diff | diff /dev/null -
pydocstyle:
find $(TARGET_DIRS) | grep -v tests | xargs pydocstyle --ignore=D100,D101,D102,D103,D104,D105,D107,D203,D212

View file

@ -41,9 +41,8 @@ def transcribe_from_mic(
):
while True:
segment = q.get()
r = wsp.transcribe(segment=segment)
if r is not None:
print(r.text)
for chunk in wsp.transcribe(segment=segment):
print(f"{chunk.start}->{chunk.end}\t{chunk.text}")
def get_opts() -> argparse.Namespace:

View file

@ -1,6 +1,6 @@
#!/usr/bin/env python3
from typing import Optional, Tuple
from typing import List, Optional, Tuple
from pydantic import BaseModel
@ -19,3 +19,14 @@ class WhisperConfig(BaseModel):
no_speech_threshold: Optional[float] = 0.6
logprob_threshold: Optional[float] = -1.0
compression_ratio_threshold: Optional[float] = 2.4
class ParsedChunk(BaseModel):
start: float
end: float
text: str
tokens: List[int]
temperature: float
avg_logprob: float
compression_ratio: float
no_speech_prob: float

View file

@ -1,15 +1,22 @@
#!/usr/bin/env python3
from typing import List, Optional
from typing import Iterator, List, Optional
import numpy as np
import torch
from whisper import Whisper, load_model
from whisper.audio import N_FRAMES, log_mel_spectrogram, pad_or_trim
from whisper.audio import (
HOP_LENGTH,
N_FRAMES,
SAMPLE_RATE,
log_mel_spectrogram,
pad_or_trim,
)
from whisper.decoding import DecodingOptions, DecodingResult
from whisper.tokenizer import get_tokenizer
from whisper.utils import exact_div
from whisper_streaming.schema import WhisperConfig
from whisper_streaming.schema import ParsedChunk, WhisperConfig
class WhisperStreamingTranscriber:
@ -22,6 +29,16 @@ class WhisperStreamingTranscriber:
task="transcribe",
)
self.dtype = torch.float16
self.timestamp: float = 0.0
self.input_stride = exact_div(
N_FRAMES, self.model.dims.n_audio_ctx
) # mel frames per output token: 2
self.time_precision = (
self.input_stride * HOP_LENGTH / SAMPLE_RATE
) # time per output token: 0.02 (seconds)
self.buffer_tokens = []
self.buffer_segments = []
def _get_decoding_options(
self,
@ -85,11 +102,94 @@ class WhisperStreamingTranscriber:
results[original_index] = retries[retry_index]
return results
def _get_chunk(
self,
*,
start: float,
end: float,
text_tokens: torch.Tensor,
result: DecodingResult,
) -> Optional[ParsedChunk]:
text = self.tokenizer.decode(
[token for token in text_tokens if token < self.tokenizer.eot] # type: ignore
)
if len(text.strip()) == 0: # skip empty text output
return
return ParsedChunk(
start=start,
end=end,
text=text,
tokens=result.tokens,
temperature=result.temperature,
avg_logprob=result.avg_logprob,
compression_ratio=result.compression_ratio,
no_speech_prob=result.no_speech_prob,
)
def _deal_timestamp(self, *, result, segment_duration) -> Iterator[ParsedChunk]:
tokens = torch.tensor(result.tokens)
timestamp_tokens: torch.Tensor = tokens.ge(self.tokenizer.timestamp_begin)
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(
1
)
if (
len(consecutive) > 0
): # if the output contains two consecutive timestamp tokens
last_slice = 0
for current_slice in consecutive:
sliced_tokens = tokens[last_slice:current_slice]
start_timestamp_position = (
sliced_tokens[0].item() - self.tokenizer.timestamp_begin
)
end_timestamp_position = (
sliced_tokens[-1].item() - self.tokenizer.timestamp_begin
)
chunk = self._get_chunk(
start=self.timestamp
+ start_timestamp_position * self.time_precision,
end=self.timestamp + end_timestamp_position * self.time_precision,
text_tokens=sliced_tokens[1:-1],
result=result,
)
if chunk is not None:
yield chunk
last_slice = current_slice
last_timestamp_position = (
tokens[last_slice - 1].item() - self.tokenizer.timestamp_begin
)
self.buffer_tokens.extend(tokens[: last_slice + 1].tolist())
else:
duration = segment_duration
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
if len(timestamps) > 0:
# no consecutive timestamps but it has a timestamp; use the last one.
# single timestamp at the end means no speech after the last timestamp.
last_timestamp_position = (
timestamps[-1].item() - self.tokenizer.timestamp_begin
)
duration = last_timestamp_position * self.time_precision
chunk = self._get_chunk(
start=self.timestamp,
end=self.timestamp + duration,
text_tokens=tokens,
result=result,
)
if chunk is not None:
yield chunk
if result.temperature > 0.5:
# do not feed the prompt tokens if a high temperature was used
del self.buffer_tokens
self.buffer_tokens = []
def transcribe(
self,
*,
segment: np.ndarray,
) -> Optional[DecodingResult]:
) -> Iterator[ParsedChunk]:
log_spec = log_mel_spectrogram(audio=segment).unsqueeze(0)
segment = (
pad_or_trim(log_spec, N_FRAMES)
@ -105,7 +205,8 @@ class WhisperStreamingTranscriber:
and result.avg_logprob > self.config.logprob_threshold
):
return
# FIXME: work with timestamp
return result
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
yield from self._deal_timestamp(
result=result, segment_duration=segment_duration
)
self.timestamp += float(segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE)