2022-11-09 06:06:29 +00:00
|
|
|
import datetime
|
2022-11-10 05:29:33 +00:00
|
|
|
import traceback
|
2023-07-07 21:14:06 +00:00
|
|
|
from typing import ClassVar
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2023-07-07 21:14:06 +00:00
|
|
|
from asgiref.sync import async_to_sync, iscoroutinefunction
|
2022-11-09 06:06:29 +00:00
|
|
|
from django.db import models, transaction
|
2023-01-01 17:58:13 +00:00
|
|
|
from django.db.models.signals import class_prepared
|
2022-11-09 06:06:29 +00:00
|
|
|
from django.utils import timezone
|
|
|
|
from django.utils.functional import classproperty
|
|
|
|
|
2022-11-20 21:20:28 +00:00
|
|
|
from core import exceptions
|
2022-12-20 10:17:52 +00:00
|
|
|
from stator.exceptions import TryAgainLater
|
2022-11-10 06:48:31 +00:00
|
|
|
from stator.graph import State, StateGraph
|
2022-11-09 06:06:29 +00:00
|
|
|
|
|
|
|
|
|
|
|
class StateField(models.CharField):
|
|
|
|
"""
|
|
|
|
A special field that automatically gets choices from a state graph
|
|
|
|
"""
|
|
|
|
|
2022-12-05 17:38:37 +00:00
|
|
|
def __init__(self, graph: type[StateGraph], **kwargs):
|
2022-11-09 06:06:29 +00:00
|
|
|
# Sensible default for state length
|
|
|
|
kwargs.setdefault("max_length", 100)
|
|
|
|
# Add choices and initial
|
|
|
|
self.graph = graph
|
|
|
|
kwargs["choices"] = self.graph.choices
|
|
|
|
kwargs["default"] = self.graph.initial_state.name
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
def deconstruct(self):
|
|
|
|
name, path, args, kwargs = super().deconstruct()
|
|
|
|
kwargs["graph"] = self.graph
|
|
|
|
return name, path, args, kwargs
|
|
|
|
|
|
|
|
def get_prep_value(self, value):
|
|
|
|
if isinstance(value, State):
|
|
|
|
return value.name
|
|
|
|
return value
|
|
|
|
|
|
|
|
|
2023-01-01 17:58:13 +00:00
|
|
|
def add_stator_indexes(sender, **kwargs):
|
|
|
|
"""
|
|
|
|
Inject Indexes used by StatorModel in to any subclasses. This sidesteps the
|
|
|
|
current Django inability to inherit indexes when the Model subclass defines
|
|
|
|
its own indexes.
|
|
|
|
"""
|
|
|
|
if issubclass(sender, StatorModel):
|
|
|
|
indexes = [
|
|
|
|
models.Index(
|
2023-07-07 21:14:06 +00:00
|
|
|
fields=["state", "state_next_attempt", "state_locked_until"],
|
|
|
|
name=f"ix_{sender.__name__.lower()[:11]}_state_next",
|
2023-01-01 17:58:13 +00:00
|
|
|
),
|
|
|
|
]
|
|
|
|
|
|
|
|
if not sender._meta.indexes:
|
|
|
|
# Meta.indexes needs to not be None to trigger Django behaviors
|
|
|
|
sender.Meta.indexes = []
|
2023-07-07 21:14:06 +00:00
|
|
|
sender._meta.indexes = []
|
2023-01-01 17:58:13 +00:00
|
|
|
|
|
|
|
for idx in indexes:
|
|
|
|
sender._meta.indexes.append(idx)
|
|
|
|
|
|
|
|
|
|
|
|
# class_prepared might become deprecated [1]. If it's removed, the named Index
|
|
|
|
# injection would need to happen in a metaclass subclass of ModelBase's _prepare()
|
|
|
|
#
|
|
|
|
# [1] https://code.djangoproject.com/ticket/24313
|
|
|
|
class_prepared.connect(add_stator_indexes)
|
|
|
|
|
|
|
|
|
2022-11-09 06:06:29 +00:00
|
|
|
class StatorModel(models.Model):
|
|
|
|
"""
|
|
|
|
A model base class that has a state machine backing it, with tasks to work
|
|
|
|
out when to move the state to the next one.
|
|
|
|
|
|
|
|
You need to provide a "state" field as an instance of StateField on the
|
|
|
|
concrete model yourself.
|
|
|
|
"""
|
|
|
|
|
2023-07-07 21:14:06 +00:00
|
|
|
CLEAN_BATCH_SIZE = 1000
|
|
|
|
DELETE_BATCH_SIZE = 500
|
2023-05-15 17:33:31 +00:00
|
|
|
|
2022-12-29 17:35:14 +00:00
|
|
|
state: StateField
|
|
|
|
|
2022-11-09 06:06:29 +00:00
|
|
|
# When the state last actually changed, or the date of instance creation
|
|
|
|
state_changed = models.DateTimeField(auto_now_add=True)
|
|
|
|
|
2023-07-07 21:14:06 +00:00
|
|
|
# When the next state change should be attempted (null means immediately)
|
|
|
|
state_next_attempt = models.DateTimeField(blank=True, null=True)
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-11-10 05:29:33 +00:00
|
|
|
# If a lock is out on this row, when it is locked until
|
|
|
|
# (we don't identify the lock owner, as there's no heartbeats)
|
2023-07-07 21:14:06 +00:00
|
|
|
state_locked_until = models.DateTimeField(null=True, blank=True, db_index=True)
|
2022-11-10 05:29:33 +00:00
|
|
|
|
|
|
|
# Collection of subclasses of us
|
2022-12-05 17:38:37 +00:00
|
|
|
subclasses: ClassVar[list[type["StatorModel"]]] = []
|
2022-11-10 05:29:33 +00:00
|
|
|
|
2022-11-09 06:06:29 +00:00
|
|
|
class Meta:
|
|
|
|
abstract = True
|
|
|
|
|
2022-11-10 05:29:33 +00:00
|
|
|
def __init_subclass__(cls) -> None:
|
|
|
|
if cls is not StatorModel:
|
|
|
|
cls.subclasses.append(cls)
|
|
|
|
|
|
|
|
@classproperty
|
2022-12-05 17:38:37 +00:00
|
|
|
def state_graph(cls) -> type[StateGraph]:
|
2022-11-10 05:29:33 +00:00
|
|
|
return cls._meta.get_field("state").graph
|
|
|
|
|
2022-11-28 00:05:31 +00:00
|
|
|
@property
|
2022-12-29 17:35:14 +00:00
|
|
|
def state_age(self) -> float:
|
2022-11-28 00:05:31 +00:00
|
|
|
return (timezone.now() - self.state_changed).total_seconds()
|
|
|
|
|
2022-11-10 05:29:33 +00:00
|
|
|
@classmethod
|
|
|
|
def transition_get_with_lock(
|
|
|
|
cls, number: int, lock_expiry: datetime.datetime
|
2022-12-05 17:38:37 +00:00
|
|
|
) -> list["StatorModel"]:
|
2022-11-10 05:29:33 +00:00
|
|
|
"""
|
|
|
|
Returns up to `number` tasks for execution, having locked them.
|
|
|
|
"""
|
|
|
|
with transaction.atomic():
|
2023-07-07 21:14:06 +00:00
|
|
|
# Query for `number` rows that:
|
|
|
|
# - Have a next_attempt that's either null or in the past
|
|
|
|
# - Have one of the states we care about
|
|
|
|
# Then, sort them by next_attempt NULLS FIRST, so that we handle the
|
|
|
|
# rows in a roughly FIFO order.
|
2022-11-10 05:29:33 +00:00
|
|
|
selected = list(
|
2022-11-16 01:30:30 +00:00
|
|
|
cls.objects.filter(
|
2023-07-07 21:14:06 +00:00
|
|
|
models.Q(state_next_attempt__isnull=True)
|
|
|
|
| models.Q(state_next_attempt__lte=timezone.now()),
|
2022-11-16 01:30:30 +00:00
|
|
|
state__in=cls.state_graph.automatic_states,
|
2023-07-07 21:14:06 +00:00
|
|
|
state_locked_until__isnull=True,
|
2022-11-16 01:30:30 +00:00
|
|
|
)[:number].select_for_update()
|
2022-11-10 05:29:33 +00:00
|
|
|
)
|
|
|
|
cls.objects.filter(pk__in=[i.pk for i in selected]).update(
|
2022-11-10 06:48:31 +00:00
|
|
|
state_locked_until=lock_expiry
|
2022-11-10 05:29:33 +00:00
|
|
|
)
|
|
|
|
return selected
|
|
|
|
|
|
|
|
@classmethod
|
2023-07-07 21:14:06 +00:00
|
|
|
def transition_delete_due(cls) -> int | None:
|
|
|
|
"""
|
|
|
|
Finds instances of this model that need to be deleted and deletes them
|
|
|
|
in small batches. Returns how many were deleted.
|
|
|
|
"""
|
|
|
|
if cls.state_graph.deletion_states:
|
|
|
|
constraints = models.Q()
|
|
|
|
for state in cls.state_graph.deletion_states:
|
|
|
|
constraints |= models.Q(
|
|
|
|
state=state,
|
|
|
|
state_changed__lte=(
|
|
|
|
timezone.now() - datetime.timedelta(seconds=state.delete_after)
|
|
|
|
),
|
|
|
|
)
|
|
|
|
select_query = cls.objects.filter(
|
|
|
|
models.Q(state_next_attempt__isnull=True)
|
|
|
|
| models.Q(state_next_attempt__lte=timezone.now()),
|
|
|
|
constraints,
|
|
|
|
)[: cls.DELETE_BATCH_SIZE]
|
|
|
|
return cls.objects.filter(pk__in=select_query).delete()[0]
|
|
|
|
return None
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
@classmethod
|
2023-07-07 21:14:06 +00:00
|
|
|
def transition_ready_count(cls) -> int:
|
2022-12-15 19:26:17 +00:00
|
|
|
"""
|
|
|
|
Returns how many instances are "queued"
|
|
|
|
"""
|
2023-07-07 21:14:06 +00:00
|
|
|
return cls.objects.filter(
|
|
|
|
models.Q(state_next_attempt__isnull=True)
|
|
|
|
| models.Q(state_next_attempt__lte=timezone.now()),
|
2023-05-13 17:30:42 +00:00
|
|
|
state_locked_until__isnull=True,
|
|
|
|
state__in=cls.state_graph.automatic_states,
|
2023-07-07 21:14:06 +00:00
|
|
|
).count()
|
2022-12-15 19:26:17 +00:00
|
|
|
|
2022-11-10 05:29:33 +00:00
|
|
|
@classmethod
|
2023-07-07 21:14:06 +00:00
|
|
|
def transition_clean_locks(cls):
|
2022-11-09 06:06:29 +00:00
|
|
|
"""
|
2023-07-07 21:14:06 +00:00
|
|
|
Deletes stale locks (in batches, to avoid a giant query)
|
2022-11-09 06:06:29 +00:00
|
|
|
"""
|
2023-07-07 21:14:06 +00:00
|
|
|
select_query = cls.objects.filter(state_locked_until__lte=timezone.now())[
|
|
|
|
: cls.CLEAN_BATCH_SIZE
|
|
|
|
]
|
|
|
|
cls.objects.filter(pk__in=select_query).update(state_locked_until=None)
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2023-07-07 21:14:06 +00:00
|
|
|
def transition_attempt(self) -> State | None:
|
2022-11-09 06:06:29 +00:00
|
|
|
"""
|
|
|
|
Attempts to transition the current state by running its handler(s).
|
|
|
|
"""
|
2022-12-20 06:23:50 +00:00
|
|
|
current_state: State = self.state_graph.states[self.state]
|
2023-07-07 21:14:06 +00:00
|
|
|
|
2022-11-11 06:42:43 +00:00
|
|
|
# If it's a manual progression state don't even try
|
|
|
|
# We shouldn't really be here in this case, but it could be a race condition
|
|
|
|
if current_state.externally_progressed:
|
2022-11-16 01:30:30 +00:00
|
|
|
print(
|
|
|
|
f"Warning: trying to progress externally progressed state {self.state}!"
|
|
|
|
)
|
2022-11-11 06:42:43 +00:00
|
|
|
return None
|
2023-07-07 21:14:06 +00:00
|
|
|
|
|
|
|
# Try running its handler function
|
2022-11-10 06:48:31 +00:00
|
|
|
try:
|
2023-07-07 21:14:06 +00:00
|
|
|
if iscoroutinefunction(current_state.handler):
|
|
|
|
next_state = async_to_sync(current_state.handler)(self)
|
|
|
|
else:
|
|
|
|
next_state = current_state.handler(self)
|
2022-12-20 10:17:52 +00:00
|
|
|
except TryAgainLater:
|
|
|
|
pass
|
2022-11-10 06:48:31 +00:00
|
|
|
except BaseException as e:
|
2023-07-07 21:14:06 +00:00
|
|
|
exceptions.capture_exception(e)
|
2022-11-10 06:48:31 +00:00
|
|
|
traceback.print_exc()
|
|
|
|
else:
|
|
|
|
if next_state:
|
2022-11-11 06:42:43 +00:00
|
|
|
# Ensure it's a State object
|
|
|
|
if isinstance(next_state, str):
|
|
|
|
next_state = self.state_graph.states[next_state]
|
|
|
|
# Ensure it's a child
|
|
|
|
if next_state not in current_state.children:
|
|
|
|
raise ValueError(
|
|
|
|
f"Cannot transition from {current_state} to {next_state} - not a declared transition"
|
|
|
|
)
|
2023-07-07 21:14:06 +00:00
|
|
|
self.transition_perform(next_state)
|
2022-11-10 06:48:31 +00:00
|
|
|
return next_state
|
2023-07-07 21:14:06 +00:00
|
|
|
|
|
|
|
# See if it timed out since its last state change
|
2022-12-20 06:23:50 +00:00
|
|
|
if (
|
|
|
|
current_state.timeout_value
|
|
|
|
and current_state.timeout_value
|
|
|
|
<= (timezone.now() - self.state_changed).total_seconds()
|
|
|
|
):
|
2023-07-07 21:14:06 +00:00
|
|
|
self.transition_perform(current_state.timeout_state) # type: ignore
|
2022-12-20 06:23:50 +00:00
|
|
|
return current_state.timeout_state
|
2023-07-07 21:14:06 +00:00
|
|
|
|
|
|
|
# Nothing happened, set next execution and unlock it
|
|
|
|
self.__class__.objects.filter(pk=self.pk).update(
|
|
|
|
state_next_attempt=(
|
|
|
|
timezone.now() + datetime.timedelta(seconds=current_state.try_interval) # type: ignore
|
|
|
|
),
|
2022-11-10 05:29:33 +00:00
|
|
|
state_locked_until=None,
|
2022-11-09 06:06:29 +00:00
|
|
|
)
|
2022-11-10 06:48:31 +00:00
|
|
|
return None
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-12-05 17:38:37 +00:00
|
|
|
def transition_perform(self, state: State | str):
|
2022-11-09 06:06:29 +00:00
|
|
|
"""
|
2022-11-10 05:29:33 +00:00
|
|
|
Transitions the instance to the given state name, forcibly.
|
2022-11-09 06:06:29 +00:00
|
|
|
"""
|
2022-12-27 18:53:12 +00:00
|
|
|
self.transition_perform_queryset(
|
|
|
|
self.__class__.objects.filter(pk=self.pk),
|
|
|
|
state,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def transition_perform_queryset(
|
|
|
|
cls,
|
|
|
|
queryset: models.QuerySet,
|
|
|
|
state: State | str,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Transitions every instance in the queryset to the given state name, forcibly.
|
|
|
|
"""
|
2023-07-07 21:14:06 +00:00
|
|
|
# Really ensure we have the right state object
|
2022-11-10 06:48:31 +00:00
|
|
|
if isinstance(state, State):
|
2023-07-07 21:14:06 +00:00
|
|
|
state_obj = cls.state_graph.states[state.name]
|
|
|
|
else:
|
|
|
|
state_obj = cls.state_graph.states[state]
|
2022-11-28 00:05:31 +00:00
|
|
|
# See if it's ready immediately (if not, delay until first try_interval)
|
2023-07-07 21:14:06 +00:00
|
|
|
if state_obj.attempt_immediately or state_obj.try_interval is None:
|
2022-12-27 18:53:12 +00:00
|
|
|
queryset.update(
|
2023-07-07 21:14:06 +00:00
|
|
|
state=state_obj,
|
2022-11-28 00:05:31 +00:00
|
|
|
state_changed=timezone.now(),
|
2023-07-07 21:14:06 +00:00
|
|
|
state_next_attempt=None,
|
2022-11-28 00:05:31 +00:00
|
|
|
state_locked_until=None,
|
|
|
|
)
|
|
|
|
else:
|
2022-12-27 18:53:12 +00:00
|
|
|
queryset.update(
|
2023-07-07 21:14:06 +00:00
|
|
|
state=state_obj,
|
2022-11-28 00:05:31 +00:00
|
|
|
state_changed=timezone.now(),
|
2023-07-07 21:14:06 +00:00
|
|
|
state_next_attempt=(
|
|
|
|
timezone.now() + datetime.timedelta(seconds=state_obj.try_interval)
|
|
|
|
),
|
2022-11-28 00:05:31 +00:00
|
|
|
state_locked_until=None,
|
|
|
|
)
|
2022-11-09 06:06:29 +00:00
|
|
|
|
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
class Stats(models.Model):
|
2022-11-10 05:29:33 +00:00
|
|
|
"""
|
2022-12-15 19:26:17 +00:00
|
|
|
Tracks summary statistics of each model over time.
|
2022-11-09 06:06:29 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
# appname.modelname (lowercased) label for the model this represents
|
2022-12-15 19:26:17 +00:00
|
|
|
model_label = models.CharField(max_length=200, primary_key=True)
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
statistics = models.JSONField()
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
created = models.DateTimeField(auto_now_add=True)
|
|
|
|
updated = models.DateTimeField(auto_now=True)
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
class Meta:
|
|
|
|
verbose_name_plural = "Stats"
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
@classmethod
|
|
|
|
def get_for_model(cls, model: type[StatorModel]) -> "Stats":
|
|
|
|
instance = cls.objects.filter(model_label=model._meta.label_lower).first()
|
|
|
|
if instance is None:
|
|
|
|
instance = cls(model_label=model._meta.label_lower)
|
|
|
|
if not instance.statistics:
|
|
|
|
instance.statistics = {}
|
|
|
|
# Ensure there are the right keys
|
|
|
|
for key in ["queued", "hourly", "daily", "monthly"]:
|
|
|
|
if key not in instance.statistics:
|
|
|
|
instance.statistics[key] = {}
|
|
|
|
return instance
|
2022-11-09 06:06:29 +00:00
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
def set_queued(self, number: int):
|
|
|
|
"""
|
|
|
|
Sets the current queued amount.
|
|
|
|
|
|
|
|
The queue is an instantaneous value (a "gauge") rather than a
|
|
|
|
sum ("counter"). It's mostly used for reporting what things are right
|
|
|
|
now, but basic trend analysis is also used to see if we think the
|
|
|
|
queue is backing up.
|
|
|
|
"""
|
|
|
|
self.statistics["queued"][
|
|
|
|
int(timezone.now().replace(second=0, microsecond=0).timestamp())
|
|
|
|
] = number
|
|
|
|
|
|
|
|
def add_handled(self, number: int):
|
|
|
|
"""
|
|
|
|
Adds the "handled" number to the current stats.
|
|
|
|
"""
|
|
|
|
hour = timezone.now().replace(minute=0, second=0, microsecond=0)
|
|
|
|
day = hour.replace(hour=0)
|
|
|
|
hour_timestamp = str(int(hour.timestamp()))
|
|
|
|
day_timestamp = str(int(day.timestamp()))
|
|
|
|
month_timestamp = str(int(day.replace(day=1).timestamp()))
|
|
|
|
self.statistics["hourly"][hour_timestamp] = (
|
|
|
|
self.statistics["hourly"].get(hour_timestamp, 0) + number
|
|
|
|
)
|
|
|
|
self.statistics["daily"][day_timestamp] = (
|
|
|
|
self.statistics["daily"].get(day_timestamp, 0) + number
|
|
|
|
)
|
|
|
|
self.statistics["monthly"][month_timestamp] = (
|
|
|
|
self.statistics["monthly"].get(month_timestamp, 0) + number
|
|
|
|
)
|
2022-11-12 05:02:43 +00:00
|
|
|
|
2022-12-15 19:26:17 +00:00
|
|
|
def trim_data(self):
|
|
|
|
"""
|
|
|
|
Removes excessively old data from the field
|
|
|
|
"""
|
|
|
|
queued_horizon = int((timezone.now() - datetime.timedelta(hours=2)).timestamp())
|
|
|
|
hourly_horizon = int(
|
|
|
|
(timezone.now() - datetime.timedelta(hours=50)).timestamp()
|
|
|
|
)
|
|
|
|
daily_horizon = int((timezone.now() - datetime.timedelta(days=62)).timestamp())
|
|
|
|
monthly_horizon = int(
|
|
|
|
(timezone.now() - datetime.timedelta(days=3653)).timestamp()
|
|
|
|
)
|
|
|
|
self.statistics["queued"] = {
|
|
|
|
ts: v
|
|
|
|
for ts, v in self.statistics["queued"].items()
|
|
|
|
if int(ts) >= queued_horizon
|
|
|
|
}
|
|
|
|
self.statistics["hourly"] = {
|
|
|
|
ts: v
|
|
|
|
for ts, v in self.statistics["hourly"].items()
|
|
|
|
if int(ts) >= hourly_horizon
|
|
|
|
}
|
|
|
|
self.statistics["daily"] = {
|
|
|
|
ts: v
|
|
|
|
for ts, v in self.statistics["daily"].items()
|
|
|
|
if int(ts) >= daily_horizon
|
|
|
|
}
|
|
|
|
self.statistics["monthly"] = {
|
|
|
|
ts: v
|
|
|
|
for ts, v in self.statistics["monthly"].items()
|
|
|
|
if int(ts) >= monthly_horizon
|
|
|
|
}
|
|
|
|
|
|
|
|
def most_recent_queued(self) -> int:
|
|
|
|
"""
|
|
|
|
Returns the most recent number of how many were queued
|
|
|
|
"""
|
|
|
|
queued = [(int(ts), v) for ts, v in self.statistics["queued"].items()]
|
|
|
|
queued.sort(reverse=True)
|
|
|
|
if queued:
|
|
|
|
return queued[0][1]
|
|
|
|
else:
|
|
|
|
return 0
|
|
|
|
|
|
|
|
def most_recent_handled(self) -> tuple[int, int, int]:
|
|
|
|
"""
|
|
|
|
Returns the current handling numbers for hour, day, month
|
|
|
|
"""
|
|
|
|
hour = timezone.now().replace(minute=0, second=0, microsecond=0)
|
|
|
|
day = hour.replace(hour=0)
|
|
|
|
hour_timestamp = str(int(hour.timestamp()))
|
|
|
|
day_timestamp = str(int(day.timestamp()))
|
|
|
|
month_timestamp = str(int(day.replace(day=1).timestamp()))
|
|
|
|
return (
|
|
|
|
self.statistics["hourly"].get(hour_timestamp, 0),
|
|
|
|
self.statistics["daily"].get(day_timestamp, 0),
|
|
|
|
self.statistics["monthly"].get(month_timestamp, 0),
|
2022-11-09 06:06:29 +00:00
|
|
|
)
|