StatsD to Prometheus metrics exporter
Find a file
Wangchong Zhou 4d9ce8c70a
add readmes
Signed-off-by: Wangchong Zhou <fffonion@gmail.com>
2018-10-04 10:55:33 -07:00
.circleci Update CircleCI to 2.0 2018-07-03 09:19:40 +02:00
pkg/mapper add readmes 2018-10-04 10:55:33 -07:00
vendor Cleanup vendor github.com/Sirupsen/logrus 2017-08-30 17:53:27 +02:00
.dockerignore Use promu/docker/circleci based release process 2016-05-03 23:08:02 +02:00
.gitignore Use promu/docker/circleci based release process 2016-05-03 23:08:02 +02:00
.promu.yml Use promu default go version + use 1.6 tag for cicleci tests 2016-08-31 08:05:49 +02:00
.travis.yml travis: switch to Go 1.10.x and 1.x 2018-05-23 14:04:34 +02:00
bridge_test.go Add TCP StatsD listener support (#71) 2017-08-01 12:21:00 +02:00
CHANGELOG.md Changelog: use ENHANCEMENT 2018-08-22 08:18:23 +00:00
CONTRIBUTING.md Replace AUTHORS.md by an updated MAINTAINERS.md 2017-02-16 20:19:09 +01:00
Dockerfile Use maintainer label in Dockerfile 2018-08-30 08:24:49 +00:00
exporter.go Move mapper -> pkg/mapper 2018-08-14 09:20:00 +00:00
exporter_benchmark_test.go Add TCP StatsD listener support (#71) 2017-08-01 12:21:00 +02:00
exporter_test.go Move mapper -> pkg/mapper 2018-08-14 09:20:00 +00:00
LICENSE License cleanup 2015-01-22 17:56:04 +01:00
main.go tidy up and use go benchmark 2018-09-28 12:58:25 -07:00
MAINTAINERS.md Change maintainership to Matthias 2017-11-09 11:34:34 +01:00
Makefile Use Makefile.common from Prometheus 2018-05-23 12:49:57 +02:00
Makefile.common add benchmark test to ci 2018-09-28 14:42:09 -07:00
NOTICE rename bridge -> exporter 2015-10-09 20:34:28 -04:00
README.md add readmes 2018-10-04 10:55:33 -07:00
telemetry.go Inject the mappings count metric into the library package 2018-08-14 09:31:38 +00:00
VERSION Release v0.7.0 2018-08-22 07:49:02 +00:00

statsd exporter Build Status

CircleCI Docker Repository on Quay Docker Pulls

statsd_exporter receives StatsD-style metrics and exports them as Prometheus metrics.

Overview

With StatsD

To pipe metrics from an existing StatsD environment into Prometheus, configure StatsD's repeater backend to repeat all received metrics to a statsd_exporter process. This exporter translates StatsD metrics to Prometheus metrics via configured mapping rules.

+----------+                         +-------------------+                        +--------------+
|  StatsD  |---(UDP/TCP repeater)--->|  statsd_exporter  |<---(scrape /metrics)---|  Prometheus  |
+----------+                         +-------------------+                        +--------------+

Without StatsD

Since the StatsD exporter uses the same line protocol as StatsD itself, you can also configure your applications to send StatsD metrics directly to the exporter. In that case, you don't need to run a StatsD server anymore.

We recommend this only as an intermediate solution and recommend switching to native Prometheus instrumentation in the long term.

DogStatsD extensions

The exporter will convert DogStatsD-style tags to prometheus labels. See Tags in the DogStatsD documentation for the concept description and Datagram Format for specifics. It boils down to appending |#tag:value,another_tag:another_value to the normal StatsD format. Tags without values (#some_tag) are not supported.

Building and Running

NOTE: Version 0.7.0 switched to the kingpin flags library. With this change, flag behaviour is POSIX-ish:

  • long flags start with two dashes (--version)

  • multiple short flags can be combined (but there currently is only one)

  • flag processing stops at the first --

    $ go build $ ./statsd_exporter --help usage: statsd_exporter []

    Flags: -h, --help Show context-sensitive help (also try --help-long and --help-man). --web.listen-address=":9102"
    The address on which to expose the web interface and generated Prometheus metrics. --web.telemetry-path="/metrics"
    Path under which to expose metrics. --statsd.listen-udp=":9125"
    The UDP address on which to receive statsd metric lines. "" disables it. --statsd.listen-tcp=":9125"
    The TCP address on which to receive statsd metric lines. "" disables it. --statsd.mapping-config=STATSD.MAPPING-CONFIG
    Metric mapping configuration file name. --statsd.read-buffer=STATSD.READ-BUFFER
    Size (in bytes) of the operating system's transmit read buffer associated with the UDP connection. Please make sure the kernel parameters net.core.rmem_max is set to a value greater than the value specified. --debug.dump-fsm="" The path to dump internal FSM generated for glob matching as Dot file. --log.level="info" Only log messages with the given severity or above. Valid levels: [debug, info, warn, error, fatal] --log.format="logger:stderr"
    Set the log target and format. Example: "logger:syslog?appname=bob&local=7" or "logger:stdout?json=true" --version Show application version.

Tests

$ go test

Metric Mapping and Configuration

The statsd_exporter can be configured to translate specific dot-separated StatsD metrics into labeled Prometheus metrics via a simple mapping language. A mapping definition starts with a line matching the StatsD metric in question, with *s acting as wildcards for each dot-separated metric component. The lines following the matching expression must contain one label="value" pair each, and at least define the metric name (label name name). The Prometheus metric is then constructed from these labels. $n-style references in the label value are replaced by the n-th wildcard match in the matching line, starting at 1. Multiple matching definitions are separated by one or more empty lines. The first mapping rule that matches a StatsD metric wins.

Metrics that don't match any mapping in the configuration file are translated into Prometheus metrics without any labels and with any non-alphanumeric characters, including periods, translated into underscores.

In general, the different metric types are translated as follows:

StatsD gauge   -> Prometheus gauge

StatsD counter -> Prometheus counter

StatsD timer   -> Prometheus summary                    <-- indicates timer quantiles
               -> Prometheus counter (suffix `_total`)  <-- indicates total time spent
               -> Prometheus counter (suffix `_count`)  <-- indicates total number of timer events

An example mapping configuration:

mappings:
- match: test.dispatcher.*.*.*
  name: "dispatcher_events_total"
  labels:
    processor: "$1"
    action: "$2"
    outcome: "$3"
    job: "test_dispatcher"
- match: *.signup.*.*
  name: "signup_events_total"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"

This would transform these example StatsD metrics into Prometheus metrics as follows:

test.dispatcher.FooProcessor.send.success
 => dispatcher_events_total{processor="FooProcessor", action="send", outcome="success", job="test_dispatcher"}

foo_product.signup.facebook.failure
 => signup_events_total{provider="facebook", outcome="failure", job="foo_product_server"}

test.web-server.foo.bar
 => test_web_server_foo_bar{}

Each mapping in the configuration file must define a name for the metric. The metric's name can contain $n-style references to be replaced by the n-th wildcard match in the matching line. That allows for dynamic rewrites, such as:

mappings:
- match: test.*.*.counter
  name: "${2}_total"
  labels:
    provider: "$1"

The metric name can also contain references to regex matches. The mapping above could be written as:

mappings:
- match: test\.(\w+)\.(\w+)\.counter
  match_type: regex
  name: "${2}_total"
  labels:
    provider: "$1"

Please note that metrics with the same name must also have the same set of label names.

If the default metric help text is insufficient for your needs you may use the YAML configuration to specify a custom help text for each mapping:

mappings:
- match: http.request.*
  help: "Total number of http requests"
  name: "http_requests_total"
  labels:
    code: "$1"

StatsD timers

By default, statsd timers are represented as a Prometheus summary with quantiles. You may optionally configure the quantiles and acceptable error:

mappings:
- match: test.timing.*.*.*
  timer_type: summary
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"
  quantiles:
    - quantile: 0.99
      error: 0.001
    - quantile: 0.95
      error: 0.01
    - quantile: 0.9
      error: 0.05
    - quantile: 0.5
      error: 0.005

The default quantiles are 0.99, 0.9, and 0.5.

In the configuration, one may also set the timer type to "histogram". The default is "summary" as in the plain text configuration format. For example, to set the timer type for a single metric:

mappings:
- match: test.timing.*.*.*
  timer_type: histogram
  buckets: [ 0.01, 0.025, 0.05, 0.1 ]
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"

Regular expression matching

Another capability when using YAML configuration is the ability to define matches using raw regular expressions as opposed to the default globbing style of match. This may allow for pulling structured data from otherwise poorly named statsd metrics AND allow for more precise targetting of match rules. When no match_type paramter is specified the default value of glob will be assumed:

mappings:
- match: (.*)\.(.*)--(.*)\.status\.(.*)\.count
  match_type: regex
  name: "request_total"
  labels:
    hostname: "$1"
    exec: "$2"
    protocol: "$3"
    code: "$4"

Note, that one may also set the histogram buckets. If not set, then the default Prometheus client values are used: [.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10]. +Inf is added automatically.

timer_type is only used when the statsd metric type is a timer. buckets is only used when the statsd metric type is a timerand the timer_type is set to "histogram."

Global defaults

One may also set defaults for the timer type, buckets or quantiles, and match_type. These will be used by all mappings that do not define these.

An option that can only be configured in defaults is glob_disable_ordering, which is false if omitted. By setting this to true, glob match type will not honor the occurance of rules in the mapping rules file and always treat * as lower priority than a general string.

defaults:
  timer_type: histogram
  buckets: [.005, .01, .025, .05, .1, .25, .5, 1, 2.5 ]
  match_type: glob
  glob_disable_ordering: false
mappings:
# This will be a histogram using the buckets set in `defaults`.
- match: test.timing.*.*.*
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"
# This will be a summary timer.
- match: other.timing.*.*.*
  timer_type: summary
  name: "other_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server_other"

Choose between glob or regex match type

Despite from the missing flexibility of using regular expression in mapping and formatting labels, glob matching is optimized to have better performance than regex in certain use cases. In short, glob will have best performance if the rules amount is not so less and captures (using of *) is not to much in a single rule. Whether disabling ordering in glob or not won't have a noticable effect on performance in general use cases. In edge cases like the below however, disabling ordering will be beneficial:

a.*.*.*.*
a.b.*.*.*
a.b.c.*.*
a.b.c.d.*

The reason is the list assignment of captures (using of *) is the most expensive operation in glob. Honoring ordering will result fsm to do 10 times of list assignment at most, while disabling ordering it will need only 4 at most.

See also pkg/mapper/fsm/README.md. Also running go test -bench . in pkg/mapper directory will produce a detailed comparation between the two match type.

drop action

You may also drop metrics by specifying a "drop" action on a match. For example:

mappings:
# This metric would match as normal.
- match: test.timing.*.*.*
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"
# Any metric not matched will be dropped because "." matches all metrics.
- match: .
  match_type: regex
  action: drop
  name: "dropped"

You can drop any metric using the normal match syntax. The default action is "map" which does the normal metrics mapping.

Explicit metric type mapping

StatsD allows emitting of different metric types under the same metric name, but the Prometheus client library can't merge those. For this use-case the mapping definition allows you to specify which metric type to match:

mappings:
- match: test.foo.*
  name: "test_foo"
  match_metric_type: counter
  labels:
    provider: "$1"

Possible values for match_metric_type are gauge, counter and timer.

Using Docker

You can deploy this exporter using the prom/statsd-exporter Docker image.

For example:

docker pull prom/statsd-exporter

docker run -d -p 9102:9102 -p 9125:9125 -p 9125:9125/udp \
        -v $PWD/statsd_mapping.yml:/tmp/statsd_mapping.yml \
        prom/statsd-exporter --statsd.mapping-config=/tmp/statsd_mapping.yml