mirror of
https://github.com/searxng/searxng.git
synced 2025-01-12 11:25:25 +00:00
2499899554
Partial reverse engineering of the Google engines including a improved language and region handling based on the engine.traits_v1 data. When ever possible the implementations of the Google engines try to make use of the async REST APIs. The get_lang_info() has been generalized to a get_google_info() function / especially the region handling has been improved by adding the cr parameter. searx/data/engine_traits.json Add data type "traits_v1" generated by the fetch_traits() functions from: - Google (WEB), - Google images, - Google news, - Google scholar and - Google videos and remove data from obsolete data type "supported_languages". A traits.custom type that maps region codes to *supported_domains* is fetched from https://www.google.com/supported_domains searx/autocomplete.py: Reversed engineered autocomplete from Google WEB. Supports Google's languages and subdomains. The old API suggestqueries.google.com/complete has been replaced by the async REST API: https://{subdomain}/complete/search?{args} searx/engines/google.py Reverse engineering and extensive testing .. - fetch_traits(): Fetch languages & regions from Google properties. - always use the async REST API (formally known as 'use_mobile_ui') - use *supported_domains* from traits - improved the result list by fetching './/div[@data-content-feature]' and parsing the type of the various *content features* --> thumbnails are added searx/engines/google_images.py Reverse engineering and extensive testing .. - fetch_traits(): Fetch languages & regions from Google properties. - use *supported_domains* from traits - if exists, freshness_date is added to the result - issue 1864: result list has been improved a lot (due to the new cr parameter) searx/engines/google_news.py Reverse engineering and extensive testing .. - fetch_traits(): Fetch languages & regions from Google properties. *supported_domains* is not needed but a ceid list has been added. - different region handling compared to Google WEB - fixed for various languages & regions (due to the new ceid parameter) / avoid CONSENT page - Google News do no longer support time range - result list has been fixed: XPath of pub_date and pub_origin searx/engines/google_videos.py - fetch_traits(): Fetch languages & regions from Google properties. - use *supported_domains* from traits - add paging support - implement a async request ('asearch': 'arc' & 'async': 'use_ac:true,_fmt:html') - simplified code (thanks to '_fmt:html' request) - issue 1359: fixed xpath of video length data searx/engines/google_scholar.py - fetch_traits(): Fetch languages & regions from Google properties. - use *supported_domains* from traits - request(): include patents & citations - response(): fixed CAPTCHA detection (Scholar has its own CATCHA manager) - hardening XPath to iterate over results - fixed XPath of pub_type (has been change from gs_ct1 to gs_cgt2 class) - issue 1769 fixed: new request implementation is no longer incompatible Signed-off-by: Markus Heiser <markus.heiser@darmarit.de>
217 lines
6.5 KiB
Python
217 lines
6.5 KiB
Python
# SPDX-License-Identifier: AGPL-3.0-or-later
|
|
# lint: pylint
|
|
"""This is the implementation of the Google Scholar engine.
|
|
|
|
Compared to other Google services the Scholar engine has a simple GET REST-API
|
|
and there does not exists `async` API. Even though the API slightly vintage we
|
|
can make use of the :ref:`google API` to assemble the arguments of the GET
|
|
request.
|
|
"""
|
|
|
|
from typing import TYPE_CHECKING
|
|
from typing import Optional
|
|
|
|
from urllib.parse import urlencode
|
|
from datetime import datetime
|
|
from lxml import html
|
|
|
|
from searx.utils import (
|
|
eval_xpath,
|
|
eval_xpath_getindex,
|
|
eval_xpath_list,
|
|
extract_text,
|
|
)
|
|
|
|
from searx.exceptions import SearxEngineCaptchaException
|
|
|
|
from searx.engines.google import fetch_traits # pylint: disable=unused-import
|
|
from searx.engines.google import (
|
|
get_google_info,
|
|
time_range_dict,
|
|
)
|
|
from searx.enginelib.traits import EngineTraits
|
|
|
|
if TYPE_CHECKING:
|
|
import logging
|
|
|
|
logger: logging.Logger
|
|
|
|
traits: EngineTraits
|
|
|
|
# about
|
|
about = {
|
|
"website": 'https://scholar.google.com',
|
|
"wikidata_id": 'Q494817',
|
|
"official_api_documentation": 'https://developers.google.com/custom-search',
|
|
"use_official_api": False,
|
|
"require_api_key": False,
|
|
"results": 'HTML',
|
|
}
|
|
|
|
# engine dependent config
|
|
categories = ['science', 'scientific publications']
|
|
paging = True
|
|
language_support = True
|
|
time_range_support = True
|
|
safesearch = False
|
|
send_accept_language_header = True
|
|
|
|
|
|
def time_range_args(params):
|
|
"""Returns a dictionary with a time range arguments based on
|
|
``params['time_range']``.
|
|
|
|
Google Scholar supports a detailed search by year. Searching by *last
|
|
month* or *last week* (as offered by SearXNG) is uncommon for scientific
|
|
publications and is not supported by Google Scholar.
|
|
|
|
To limit the result list when the users selects a range, all the SearXNG
|
|
ranges (*day*, *week*, *month*, *year*) are mapped to *year*. If no range
|
|
is set an empty dictionary of arguments is returned. Example; when
|
|
user selects a time range (current year minus one in 2022):
|
|
|
|
.. code:: python
|
|
|
|
{ 'as_ylo' : 2021 }
|
|
|
|
"""
|
|
ret_val = {}
|
|
if params['time_range'] in time_range_dict:
|
|
ret_val['as_ylo'] = datetime.now().year - 1
|
|
return ret_val
|
|
|
|
|
|
def detect_google_captcha(dom):
|
|
"""In case of CAPTCHA Google Scholar open its own *not a Robot* dialog and is
|
|
not redirected to ``sorry.google.com``.
|
|
"""
|
|
if eval_xpath(dom, "//form[@id='gs_captcha_f']"):
|
|
raise SearxEngineCaptchaException()
|
|
|
|
|
|
def request(query, params):
|
|
"""Google-Scholar search request"""
|
|
|
|
google_info = get_google_info(params, traits)
|
|
# subdomain is: scholar.google.xy
|
|
google_info['subdomain'] = google_info['subdomain'].replace("www.", "scholar.")
|
|
|
|
args = {
|
|
'q': query,
|
|
**google_info['params'],
|
|
'start': (params['pageno'] - 1) * 10,
|
|
'as_sdt': '2007', # include patents / to disable set '0,5'
|
|
'as_vis': '0', # include citations / to disable set '1'
|
|
}
|
|
args.update(time_range_args(params))
|
|
|
|
params['url'] = 'https://' + google_info['subdomain'] + '/scholar?' + urlencode(args)
|
|
params['cookies'] = google_info['cookies']
|
|
params['headers'].update(google_info['headers'])
|
|
return params
|
|
|
|
|
|
def parse_gs_a(text: Optional[str]):
|
|
"""Parse the text written in green.
|
|
|
|
Possible formats:
|
|
* "{authors} - {journal}, {year} - {publisher}"
|
|
* "{authors} - {year} - {publisher}"
|
|
* "{authors} - {publisher}"
|
|
"""
|
|
if text is None or text == "":
|
|
return None, None, None, None
|
|
|
|
s_text = text.split(' - ')
|
|
authors = s_text[0].split(', ')
|
|
publisher = s_text[-1]
|
|
if len(s_text) != 3:
|
|
return authors, None, publisher, None
|
|
|
|
# the format is "{authors} - {journal}, {year} - {publisher}" or "{authors} - {year} - {publisher}"
|
|
# get journal and year
|
|
journal_year = s_text[1].split(', ')
|
|
# journal is optional and may contains some coma
|
|
if len(journal_year) > 1:
|
|
journal = ', '.join(journal_year[0:-1])
|
|
if journal == '…':
|
|
journal = None
|
|
else:
|
|
journal = None
|
|
# year
|
|
year = journal_year[-1]
|
|
try:
|
|
publishedDate = datetime.strptime(year.strip(), '%Y')
|
|
except ValueError:
|
|
publishedDate = None
|
|
return authors, journal, publisher, publishedDate
|
|
|
|
|
|
def response(resp): # pylint: disable=too-many-locals
|
|
"""Parse response from Google Scholar"""
|
|
results = []
|
|
|
|
# convert the text to dom
|
|
dom = html.fromstring(resp.text)
|
|
detect_google_captcha(dom)
|
|
|
|
# parse results
|
|
for result in eval_xpath_list(dom, '//div[@data-rp]'):
|
|
|
|
title = extract_text(eval_xpath(result, './/h3[1]//a'))
|
|
|
|
if not title:
|
|
# this is a [ZITATION] block
|
|
continue
|
|
|
|
pub_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
|
|
if pub_type:
|
|
pub_type = pub_type[1:-1].lower()
|
|
|
|
url = eval_xpath_getindex(result, './/h3[1]//a/@href', 0)
|
|
content = extract_text(eval_xpath(result, './/div[@class="gs_rs"]'))
|
|
authors, journal, publisher, publishedDate = parse_gs_a(
|
|
extract_text(eval_xpath(result, './/div[@class="gs_a"]'))
|
|
)
|
|
if publisher in url:
|
|
publisher = None
|
|
|
|
# cited by
|
|
comments = extract_text(eval_xpath(result, './/div[@class="gs_fl"]/a[starts-with(@href,"/scholar?cites=")]'))
|
|
|
|
# link to the html or pdf document
|
|
html_url = None
|
|
pdf_url = None
|
|
doc_url = eval_xpath_getindex(result, './/div[@class="gs_or_ggsm"]/a/@href', 0, default=None)
|
|
doc_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
|
|
if doc_type == "[PDF]":
|
|
pdf_url = doc_url
|
|
else:
|
|
html_url = doc_url
|
|
|
|
results.append(
|
|
{
|
|
'template': 'paper.html',
|
|
'type': pub_type,
|
|
'url': url,
|
|
'title': title,
|
|
'authors': authors,
|
|
'publisher': publisher,
|
|
'journal': journal,
|
|
'publishedDate': publishedDate,
|
|
'content': content,
|
|
'comments': comments,
|
|
'html_url': html_url,
|
|
'pdf_url': pdf_url,
|
|
}
|
|
)
|
|
|
|
# parse suggestion
|
|
for suggestion in eval_xpath(dom, '//div[contains(@class, "gs_qsuggest_wrap")]//li//a'):
|
|
# append suggestion
|
|
results.append({'suggestion': extract_text(suggestion)})
|
|
|
|
for correction in eval_xpath(dom, '//div[@class="gs_r gs_pda"]/a'):
|
|
results.append({'correction': extract_text(correction)})
|
|
|
|
return results
|