searxng/searx/metrics/__init__.py

306 lines
11 KiB
Python
Raw Normal View History

2021-04-14 15:23:15 +00:00
# SPDX-License-Identifier: AGPL-3.0-or-later
# pylint: disable=missing-module-docstring
2021-04-14 15:23:15 +00:00
import typing
import math
import contextlib
from timeit import default_timer
from operator import itemgetter
from searx.engines import engines
from searx.openmetrics import OpenMetricsFamily
from .models import HistogramStorage, CounterStorage, VoidHistogram, VoidCounterStorage
2021-04-14 15:23:15 +00:00
from .error_recorder import count_error, count_exception, errors_per_engines
__all__ = [
"initialize",
"get_engines_stats",
"get_engine_errors",
"histogram",
"histogram_observe",
"histogram_observe_time",
"counter",
"counter_inc",
"counter_add",
"count_error",
"count_exception",
]
2021-04-14 15:23:15 +00:00
ENDPOINTS = {'search'}
histogram_storage: typing.Optional[HistogramStorage] = None
counter_storage: typing.Optional[CounterStorage] = None
@contextlib.contextmanager
def histogram_observe_time(*args):
h = histogram_storage.get(*args)
before = default_timer()
yield before
duration = default_timer() - before
if h:
h.observe(duration)
else:
raise ValueError("histogram " + repr((*args,)) + " doesn't not exist")
def histogram_observe(duration, *args):
histogram_storage.get(*args).observe(duration)
def histogram(*args, raise_on_not_found=True):
h = histogram_storage.get(*args)
if raise_on_not_found and h is None:
raise ValueError("histogram " + repr((*args,)) + " doesn't not exist")
return h
def counter_inc(*args):
counter_storage.add(1, *args)
def counter_add(value, *args):
counter_storage.add(value, *args)
def counter(*args):
return counter_storage.get(*args)
def initialize(engine_names=None, enabled=True):
2021-04-14 15:23:15 +00:00
"""
Initialize metrics
"""
2021-04-24 05:19:44 +00:00
global counter_storage, histogram_storage # pylint: disable=global-statement
2021-04-14 15:23:15 +00:00
if enabled:
counter_storage = CounterStorage()
histogram_storage = HistogramStorage()
else:
counter_storage = VoidCounterStorage()
histogram_storage = HistogramStorage(histogram_class=VoidHistogram)
2021-04-14 15:23:15 +00:00
# max_timeout = max of all the engine.timeout
max_timeout = 2
for engine_name in engine_names or engines:
2021-04-14 15:23:15 +00:00
if engine_name in engines:
max_timeout = max(max_timeout, engines[engine_name].timeout)
# histogram configuration
histogram_width = 0.1
histogram_size = int(1.5 * max_timeout / histogram_width)
# engines
for engine_name in engine_names or engines:
2021-04-14 15:23:15 +00:00
# search count
counter_storage.configure('engine', engine_name, 'search', 'count', 'sent')
counter_storage.configure('engine', engine_name, 'search', 'count', 'successful')
# global counter of errors
counter_storage.configure('engine', engine_name, 'search', 'count', 'error')
# score of the engine
counter_storage.configure('engine', engine_name, 'score')
# result count per requests
histogram_storage.configure(1, 100, 'engine', engine_name, 'result', 'count')
# time doing HTTP requests
histogram_storage.configure(histogram_width, histogram_size, 'engine', engine_name, 'time', 'http')
# total time
# .time.request and ...response times may overlap .time.http time.
histogram_storage.configure(histogram_width, histogram_size, 'engine', engine_name, 'time', 'total')
def get_engine_errors(engline_name_list):
2021-04-14 15:23:15 +00:00
result = {}
engine_names = list(errors_per_engines.keys())
engine_names.sort()
for engine_name in engine_names:
if engine_name not in engline_name_list:
2021-04-14 15:23:15 +00:00
continue
error_stats = errors_per_engines[engine_name]
sent_search_count = max(counter('engine', engine_name, 'search', 'count', 'sent'), 1)
sorted_context_count_list = sorted(error_stats.items(), key=lambda context_count: context_count[1])
r = []
for context, count in sorted_context_count_list:
percentage = round(20 * count / sent_search_count) * 5
r.append(
{
'filename': context.filename,
'function': context.function,
'line_no': context.line_no,
'code': context.code,
'exception_classname': context.exception_classname,
'log_message': context.log_message,
'log_parameters': context.log_parameters,
'secondary': context.secondary,
'percentage': percentage,
}
)
2021-04-14 15:23:15 +00:00
result[engine_name] = sorted(r, reverse=True, key=lambda d: d['percentage'])
return result
def get_reliabilities(engline_name_list, checker_results):
reliabilities = {}
engine_errors = get_engine_errors(engline_name_list)
for engine_name in engline_name_list:
checker_result = checker_results.get(engine_name, {})
checker_success = checker_result.get('success', True)
errors = engine_errors.get(engine_name) or []
sent_count = counter('engine', engine_name, 'search', 'count', 'sent')
if sent_count == 0:
# no request
2023-09-15 07:53:03 +00:00
reliability = None
elif checker_success and not errors:
2023-09-15 07:53:03 +00:00
reliability = 100
elif 'simple' in checker_result.get('errors', {}):
2023-09-15 07:53:03 +00:00
# the basic (simple) test doesn't work: the engine is broken according to the checker
# even if there is no exception
2023-09-15 07:53:03 +00:00
reliability = 0
2021-04-14 15:23:15 +00:00
else:
# pylint: disable=consider-using-generator
2023-09-15 07:53:03 +00:00
reliability = 100 - sum([error['percentage'] for error in errors if not error.get('secondary')])
2021-04-14 15:23:15 +00:00
reliabilities[engine_name] = {
2023-09-15 07:53:03 +00:00
'reliability': reliability,
'sent_count': sent_count,
'errors': errors,
'checker': checker_result.get('errors', {}),
}
return reliabilities
2021-04-14 15:23:15 +00:00
def get_engines_stats(engine_name_list):
2021-04-14 15:23:15 +00:00
assert counter_storage is not None
assert histogram_storage is not None
list_time = []
max_time_total = max_result_count = None
2021-04-14 15:23:15 +00:00
for engine_name in engine_name_list:
sent_count = counter('engine', engine_name, 'search', 'count', 'sent')
if sent_count == 0:
2021-04-14 15:23:15 +00:00
continue
result_count = histogram('engine', engine_name, 'result', 'count').percentage(50)
result_count_sum = histogram('engine', engine_name, 'result', 'count').sum
successful_count = counter('engine', engine_name, 'search', 'count', 'successful')
2021-04-14 15:23:15 +00:00
time_total = histogram('engine', engine_name, 'time', 'total').percentage(50)
max_time_total = max(time_total or 0, max_time_total or 0)
max_result_count = max(result_count or 0, max_result_count or 0)
2021-04-14 15:23:15 +00:00
stats = {
'name': engine_name,
'total': None,
'total_p80': None,
'total_p95': None,
'http': None,
'http_p80': None,
'http_p95': None,
'processing': None,
'processing_p80': None,
'processing_p95': None,
'score': 0,
'score_per_result': 0,
'result_count': result_count,
}
if successful_count and result_count_sum:
score = counter('engine', engine_name, 'score')
stats['score'] = score
stats['score_per_result'] = score / float(result_count_sum)
time_http = histogram('engine', engine_name, 'time', 'http').percentage(50)
time_http_p80 = time_http_p95 = 0
if time_http is not None:
time_http_p80 = histogram('engine', engine_name, 'time', 'http').percentage(80)
time_http_p95 = histogram('engine', engine_name, 'time', 'http').percentage(95)
stats['http'] = round(time_http, 1)
stats['http_p80'] = round(time_http_p80, 1)
stats['http_p95'] = round(time_http_p95, 1)
if time_total is not None:
time_total_p80 = histogram('engine', engine_name, 'time', 'total').percentage(80)
time_total_p95 = histogram('engine', engine_name, 'time', 'total').percentage(95)
stats['total'] = round(time_total, 1)
stats['total_p80'] = round(time_total_p80, 1)
stats['total_p95'] = round(time_total_p95, 1)
stats['processing'] = round(time_total - (time_http or 0), 1)
stats['processing_p80'] = round(time_total_p80 - time_http_p80, 1)
stats['processing_p95'] = round(time_total_p95 - time_http_p95, 1)
list_time.append(stats)
2021-04-14 15:23:15 +00:00
return {
'time': list_time,
'max_time': math.ceil(max_time_total or 0),
2021-04-22 10:14:11 +00:00
'max_result_count': math.ceil(max_result_count or 0),
2021-04-14 15:23:15 +00:00
}
def openmetrics(engine_stats, engine_reliabilities):
metrics = [
OpenMetricsFamily(
key="searxng_engines_response_time_total_seconds",
type_hint="gauge",
help_hint="The average total response time of the engine",
data_info=[{'engine_name': engine['name']} for engine in engine_stats['time']],
data=[engine['total'] or 0 for engine in engine_stats['time']],
),
OpenMetricsFamily(
key="searxng_engines_response_time_processing_seconds",
type_hint="gauge",
help_hint="The average processing response time of the engine",
data_info=[{'engine_name': engine['name']} for engine in engine_stats['time']],
data=[engine['processing'] or 0 for engine in engine_stats['time']],
),
OpenMetricsFamily(
key="searxng_engines_response_time_http_seconds",
type_hint="gauge",
help_hint="The average HTTP response time of the engine",
data_info=[{'engine_name': engine['name']} for engine in engine_stats['time']],
data=[engine['http'] or 0 for engine in engine_stats['time']],
),
OpenMetricsFamily(
key="searxng_engines_result_count_total",
type_hint="counter",
help_hint="The total amount of results returned by the engine",
data_info=[{'engine_name': engine['name']} for engine in engine_stats['time']],
data=[engine['result_count'] or 0 for engine in engine_stats['time']],
),
OpenMetricsFamily(
key="searxng_engines_request_count_total",
type_hint="counter",
help_hint="The total amount of user requests made to this engine",
data_info=[{'engine_name': engine['name']} for engine in engine_stats['time']],
data=[
engine_reliabilities.get(engine['name'], {}).get('sent_count', 0) or 0
for engine in engine_stats['time']
],
),
OpenMetricsFamily(
key="searxng_engines_reliability_total",
type_hint="counter",
help_hint="The overall reliability of the engine",
data_info=[{'engine_name': engine['name']} for engine in engine_stats['time']],
data=[
engine_reliabilities.get(engine['name'], {}).get('reliability', 0) or 0
for engine in engine_stats['time']
],
),
]
return "".join([str(metric) for metric in metrics])