mch2022-template-app/main/main.c
2022-01-24 22:32:33 +01:00

733 lines
26 KiB
C

#include <stdio.h>
#include <string.h>
#include <sdkconfig.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <esp_system.h>
//#include <esp_spi_flash.h>
#include <esp_err.h>
#include <esp_log.h>
#include "hardware.h"
#include "managed_i2c.h"
#include "pax_gfx.h"
#include "sdcard.h"
#include "appfs.h"
#include "driver_framebuffer.h"
#include "esp_sleep.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "rp2040.h"
static const char *TAG = "main";
bool calibrate = true;
bool display_bno_value = false;
ILI9341* ili9341 = NULL;
ICE40* ice40 = NULL;
BNO055* bno055 = NULL;
RP2040* rp2040 = NULL;
bno055_vector_t rotation_offset = {.x = 0, .y = 0, .z = 0};
bno055_vector_t acceleration, magnetism, orientation, rotation, linear_acceleration, gravity;
uint8_t selected_item = 0;
void button_handler(uint8_t pin, bool value) {
switch(pin) {
case PCA9555_PIN_BTN_JOY_LEFT:
printf("Joystick horizontal %s\n", value ? "left" : "center");
//ili9341_set_partial_scanning(ili9341, 60, ILI9341_WIDTH - 61);
break;
case PCA9555_PIN_BTN_JOY_PRESS:
printf("Joystick %s\n", value ? "pressed" : "released");
break;
case PCA9555_PIN_BTN_JOY_DOWN:
printf("Joystick vertical %s\n", value ? "down" : "center");
//ili9341_set_partial_scanning(ili9341, 0, ILI9341_WIDTH / 2 - 1);
if (value) selected_item += 1;
break;
case PCA9555_PIN_BTN_JOY_UP:
printf("Joy vertical %s\n", value ? "up" : "center");
//ili9341_set_partial_scanning(ili9341, ILI9341_WIDTH / 2, ILI9341_WIDTH - 1);
if (value) selected_item -= 1;
break;
case PCA9555_PIN_BTN_JOY_RIGHT:
printf("Joy horizontal %s\n", value ? "right" : "center");
//ili9341_set_partial_scanning(ili9341, 0, ILI9341_WIDTH - 1);
break;
case PCA9555_PIN_BTN_HOME:
printf("Home button %s\n", value ? "pressed" : "released");
//ili9341_set_tearing_effect_line(ili9341, true);
break;
case PCA9555_PIN_BTN_MENU:
printf("Menu button %s\n", value ? "pressed" : "released");
//ili9341_set_tearing_effect_line(ili9341, false);
break;
case PCA9555_PIN_BTN_START: {
printf("Start button %s\n", value ? "pressed" : "released");
//ili9341_set_idle_mode(ili9341, true);
break;
}
case PCA9555_PIN_BTN_SELECT: {
printf("Select button %s\n", value ? "pressed" : "released");
//ili9341_set_idle_mode(ili9341, false);
break;
}
case PCA9555_PIN_BTN_BACK:
printf("Back button %s\n", value ? "pressed" : "released");
display_bno_value = value;
break;
case PCA9555_PIN_BTN_ACCEPT:
printf("Accept button %s\n", value ? "pressed" : "released");
if (value) calibrate = true;
break;
default:
printf("Unknown button %d %s\n", pin, value ? "pressed" : "released");
}
}
void button_init() {
PCA9555* pca9555 = get_pca9555();
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_START, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_SELECT, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_MENU, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_HOME, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_JOY_LEFT, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_JOY_PRESS, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_JOY_DOWN, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_JOY_UP, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_JOY_RIGHT, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_BACK, button_handler);
pca9555_set_interrupt_handler(pca9555, PCA9555_PIN_BTN_ACCEPT, button_handler);
}
void restart() {
for (int i = 3; i >= 0; i--) {
printf("Restarting in %d seconds...\n", i);
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
printf("Restarting now.\n");
fflush(stdout);
esp_restart();
}
void bno055_task(BNO055* bno055) {
esp_err_t res;
res = bno055_get_vector(bno055, BNO055_VECTOR_ACCELEROMETER, &acceleration);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Acceleration failed to read %d\n", res);
return;
}
res = bno055_get_vector(bno055, BNO055_VECTOR_MAGNETOMETER, &magnetism);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Magnetic field to read %d\n", res);
return;
}
res = bno055_get_vector(bno055, BNO055_VECTOR_GYROSCOPE, &orientation);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Orientation failed to read %d\n", res);
return;
}
res = bno055_get_vector(bno055, BNO055_VECTOR_EULER, &rotation);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Rotation failed to read %d\n", res);
return;
}
res = bno055_get_vector(bno055, BNO055_VECTOR_LINEARACCEL, &linear_acceleration);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Linear acceleration failed to read %d\n", res);
return;
}
res = bno055_get_vector(bno055, BNO055_VECTOR_GRAVITY, &gravity);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Gravity failed to read %d\n", res);
return;
}
/*if (calibrate) {
rotation_offset.x = rotation.x;
rotation_offset.y = rotation.y;
rotation_offset.z = rotation.z;
calibrate = false;
}
rotation.x -= rotation_offset.x;
rotation.y -= rotation_offset.y;
rotation.z -= rotation_offset.z;
if (rotation.x < 0) rotation.x = 360.0 - rotation.x;
if (rotation.y < 0) rotation.y = 360.0 - rotation.y;
if (rotation.z < 0) rotation.z = 360.0 - rotation.z;*/
/*printf("\n\n");
printf("Acceleration (m/s²) x = %5.8f y = %5.8f z = %5.8f\n", acceleration.x, acceleration.y, acceleration.z);
printf("Magnetic field (uT) x = %5.8f y = %5.8f z = %5.8f\n", magnetism.x, magnetism.y, magnetism.z);
printf("Orientation (dps) x = %5.8f y = %5.8f z = %5.8f\n", orientation.x, orientation.y, orientation.z);
printf("Rotation (degrees) x = %5.8f y = %5.8f z = %5.8f\n", rotation.x, rotation.y, rotation.z);
printf("Linear acceleration (m/s²) x = %5.8f y = %5.8f z = %5.8f\n", linear_acceleration.x, linear_acceleration.y, linear_acceleration.z);
printf("Gravity (m/s²) x = %5.8f y = %5.8f z = %5.8f\n", gravity.x, gravity.y, gravity.z);*/
if (display_bno_value) {
printf("Magnetic (uT) x: %5.4f y: %5.4f z: %5.4f Rotation (deg): x: %5.4f y: %5.4f z: %5.4f \n", magnetism.x, magnetism.y, magnetism.z, rotation.x, rotation.y, rotation.z);
}
}
void draw_cursor(pax_buf_t* buffer, float x, float y) {
uint64_t millis = esp_timer_get_time() / 1000;
pax_col_t color = pax_col_hsv(millis * 255 / 8000, 255, 255);
pax_push_2d(buffer);
pax_apply_2d(buffer, matrix_2d_translate(x, y));
pax_apply_2d(buffer, matrix_2d_scale(10, 10));
pax_draw_tri(buffer, color, -1, -1, -1, 1, 1, 0);
pax_pop_2d(buffer);
}
void draw_menu_item(pax_buf_t* buffer, uint8_t position, bool selected, char* text) {
float y = 24 + position * 20;
if (selected) draw_cursor(buffer, 15, y + 9);
pax_draw_text(buffer, pax_col_rgb(0,0,0), PAX_FONT_DEFAULT, 18, 24, y, text);
}
esp_err_t draw_menu(pax_buf_t* buffer) {
pax_push_2d(buffer);
//pax_apply_2d(buffer, matrix_2d_translate(0, 0));
//pax_apply_2d(buffer, matrix_2d_scale(1, 1));
pax_simple_line(buffer, pax_col_rgb(0,0,0), 0, 20, 320, 20);
pax_draw_text(buffer, pax_col_rgb(0,0,0), PAX_FONT_DEFAULT, 18, 0, 0, "Launcher");
draw_menu_item(buffer, 0, (selected_item == 0), "Item 1");
draw_menu_item(buffer, 1, (selected_item == 1), "Item 2");
draw_menu_item(buffer, 2, (selected_item == 2), "Item 3");
draw_menu_item(buffer, 3, (selected_item == 3), "Item 4");
draw_menu_item(buffer, 4, (selected_item == 4), "Item 5");
draw_menu_item(buffer, 5, (selected_item == 5), "Item 6");
draw_menu_item(buffer, 6, (selected_item == 6), "Item 7");
pax_pop_2d(buffer);
return ESP_OK;
}
pax_col_t regenboogkots(pax_col_t tint, int x, int y, float u, float v, void *args) {
return pax_col_hsv(x / 50.0 * 255.0 + y / 150.0 * 255.0, 255, 255);
}
pax_shader_t kots = {
.callback = regenboogkots
};
esp_err_t graphics_task(pax_buf_t* buffer, ILI9341* ili9341, uint8_t* framebuffer) {
pax_background(buffer, 0xFFFFFF);
//pax_shade_rect(buffer, 0, &kots, NULL, 0, 0, 320, 240);
pax_push_2d(buffer);
pax_apply_2d(buffer, matrix_2d_translate(buffer->width / 2.0, buffer->height / 2.0 + 10));
pax_apply_2d(buffer, matrix_2d_scale(50, 50));
uint64_t millis = esp_timer_get_time() / 1000;
pax_col_t color0 = pax_col_hsv(millis * 255 / 8000, 255, 255);
//pax_col_t color1 = pax_col_hsv(millis * 255 / 8000 + 127, 255, 255);
float a0 = rotation.y * (M_PI / 360.0);//millis / 3000.0 * M_PI;//0;//
//printf("%f from %f\n", a0, rotation.y);
//float a1 = fmodf(a0, M_PI * 4) - M_PI * 2;////
//pax_draw_arc(buffer, color0, 0, 0, 2, a0 + M_PI, a0);
/*pax_push_2d(buffer);
pax_apply_2d(buffer, matrix_2d_rotate(a0));
pax_push_2d(buffer);
pax_apply_2d(buffer, matrix_2d_translate(1, 0));
pax_draw_rect(buffer, color1, -0.25, -0.25, 0.5, 0.5);
pax_pop_2d(buffer);
pax_apply_2d(buffer, matrix_2d_rotate(a1));
pax_push_2d(buffer);
pax_apply_2d(buffer, matrix_2d_translate(1, 0));
pax_apply_2d(buffer, matrix_2d_rotate(-a0 - a1 + M_PI * 0.5));
pax_draw_tri(buffer, color1, 0.25, 0, -0.125, 0.2165, -0.125, -0.2165);
pax_pop_2d(buffer);
pax_pop_2d(buffer);*/
pax_pop_2d(buffer);
draw_menu(buffer);
//driver_framebuffer_print(NULL, "Hello world", 0, 0, 1, 1, 0xFF00FF, &ocra_22pt7b);
return ili9341_write(ili9341, framebuffer);
}
esp_err_t draw_message(pax_buf_t* buffer, ILI9341* ili9341, uint8_t* framebuffer, char* message) {
pax_background(buffer, 0xFFFFFF);
pax_draw_text(buffer, pax_col_rgb(0,0,0), PAX_FONT_DEFAULT, 18, 0, 0, message);
return ili9341_write(ili9341, framebuffer);
}
void print_chip_info(void) {
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
printf("This is %s chip with %d CPU core(s), WiFi%s%s, ",
CONFIG_IDF_TARGET,
chip_info.cores,
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");
printf("silicon revision %d, ", chip_info.revision);
printf("%dMB %s flash\n", spi_flash_get_chip_size() / (1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
printf("Minimum free heap size: %d bytes\n", esp_get_minimum_free_heap_size());
}
uint8_t* load_file_to_ram(FILE* fd, size_t* fsize) {
fseek(fd, 0, SEEK_END);
*fsize = ftell(fd);
fseek(fd, 0, SEEK_SET);
uint8_t* file = malloc(*fsize);
if (file == NULL) return NULL;
fread(file, *fsize, 1, fd);
return file;
}
esp_err_t load_file_into_psram(FILE* fd) {
fseek(fd, 0, SEEK_SET);
const uint8_t write_cmd = 0x02;
uint32_t amount_read;
uint32_t position = 0;
uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (tx_buffer == NULL) return ESP_FAIL;
while(1) {
tx_buffer[0] = write_cmd;
tx_buffer[1] = (position >> 16);
tx_buffer[2] = (position >> 8) & 0xFF;
tx_buffer[3] = position & 0xFF;
amount_read = fread(&tx_buffer[4], 1, SPI_MAX_TRANSFER_SIZE - 4, fd);
if (amount_read < 1) break;
ESP_LOGI(TAG, "Writing PSRAM @ %u (%u bytes)", position, amount_read);
esp_err_t res = ice40_transaction(ice40, tx_buffer, amount_read + 4, NULL, 0);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Write transaction failed @ %u", position);
free(tx_buffer);
return res;
}
position += amount_read;
};
free(tx_buffer);
return ESP_OK;
}
esp_err_t load_buffer_into_psram(uint8_t* buffer, uint32_t buffer_length) {
const uint8_t write_cmd = 0x02;
uint32_t position = 0;
uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (tx_buffer == NULL) return ESP_FAIL;
while(1) {
tx_buffer[0] = write_cmd;
tx_buffer[1] = (position >> 16);
tx_buffer[2] = (position >> 8) & 0xFF;
tx_buffer[3] = position & 0xFF;
uint32_t length = buffer_length - position;
if (length > SPI_MAX_TRANSFER_SIZE - 4) length = SPI_MAX_TRANSFER_SIZE - 4;
memcpy(&tx_buffer[4], &buffer[position], length);
if (length == 0) break;
ESP_LOGI(TAG, "Writing PSRAM @ %u (%u bytes)", position, length);
esp_err_t res = ice40_transaction(ice40, tx_buffer, length + 4, NULL, 0);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Write transaction failed @ %u", position);
free(tx_buffer);
return res;
}
position += length;
};
free(tx_buffer);
return ESP_OK;
}
esp_err_t verify_file_in_psram(FILE* fd) {
fseek(fd, 0, SEEK_SET);
const uint8_t read_cmd = 0x03;
uint32_t amount_read;
uint32_t position = 0;
uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (tx_buffer == NULL) return ESP_FAIL;
memset(tx_buffer, 0, SPI_MAX_TRANSFER_SIZE);
uint8_t* verify_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (verify_buffer == NULL) return ESP_FAIL;
uint8_t* rx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
if (rx_buffer == NULL) return ESP_FAIL;
while(1) {
tx_buffer[0] = read_cmd;
tx_buffer[1] = (position >> 16);
tx_buffer[2] = (position >> 8) & 0xFF;
tx_buffer[3] = position & 0xFF;
amount_read = fread(&verify_buffer[4], 1, SPI_MAX_TRANSFER_SIZE - 4, fd);
if (amount_read < 1) break;
ESP_LOGI(TAG, "Reading PSRAM @ %u (%u bytes)", position, amount_read);
esp_err_t res = ice40_transaction(ice40, tx_buffer, amount_read + 4, rx_buffer, amount_read + 4);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Read transaction failed @ %u", position);
free(tx_buffer);
return res;
}
position += amount_read;
ESP_LOGI(TAG, "Verifying PSRAM @ %u (%u bytes)", position, amount_read);
for (uint32_t i = 4; i < amount_read; i++) {
if (rx_buffer[i] != verify_buffer[i]) {
ESP_LOGE(TAG, "Verifying PSRAM @ %u failed: %02X != %02X", position + i, rx_buffer[i], verify_buffer[i]);
free(tx_buffer);
free(rx_buffer);
free(verify_buffer);
return ESP_FAIL;
}
}
};
free(tx_buffer);
free(rx_buffer);
free(verify_buffer);
ESP_LOGI(TAG, "PSRAM contents verified!");
return ESP_OK;
}
void fpga_test(void) {
esp_err_t res;
FILE* fpga_passthrough = fopen("/sd/pt.bin", "rb");
if (fpga_passthrough == NULL) {
ESP_LOGE(TAG, "Failed to open passthrough firmware (pt.bin) from the SD card");
return;
}
ESP_LOGI(TAG, "Loading passthrough bitstream into RAM buffer...");
size_t fpga_passthrough_bitstream_length;
uint8_t* fpga_passthrough_bitstream = load_file_to_ram(fpga_passthrough, &fpga_passthrough_bitstream_length);
fclose(fpga_passthrough);
ESP_LOGI(TAG, "Loading passthrough bitstream into FPGA...");
res = ice40_load_bitstream(ice40, fpga_passthrough_bitstream, fpga_passthrough_bitstream_length);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to load passthrough bitstream into FPGA (%d)", res);
return;
}
free(fpga_passthrough_bitstream);
FILE* ram_contents = fopen("/sd/ram.bin", "rb");
if (ram_contents == NULL) {
ESP_LOGE(TAG, "Failed to open ram.bin");
return;
}
res = load_file_into_psram(ram_contents);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to load RAM contents into PSRAM (%d)", res);
fclose(ram_contents);
return;
}
res = verify_file_in_psram(ram_contents);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify PSRAM contents (%d)", res);
fclose(ram_contents);
return;
}
FILE* fpga_app = fopen("/sd/app.bin", "rb");
if (fpga_app == NULL) {
ESP_LOGE(TAG, "Failed to open app.bin");
return;
}
ESP_LOGI(TAG, "Loading app bitstream into RAM buffer...");
size_t fpga_app_bitstream_length;
uint8_t* fpga_app_bitstream = load_file_to_ram(fpga_app, &fpga_app_bitstream_length);
fclose(fpga_app);
ili9341_deinit(ili9341);
vTaskDelay(10 / portTICK_PERIOD_MS);
ili9341_select(ili9341, true);
ESP_LOGI(TAG, "Loading app bitstream into FPGA...");
res = ice40_load_bitstream(ice40, fpga_app_bitstream, fpga_app_bitstream_length);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to load app bitstream into FPGA (%d)", res);
return;
}
free(fpga_app_bitstream);
}
esp_err_t appfs_init(void) {
return appfsInit(APPFS_PART_TYPE, APPFS_PART_SUBTYPE);
}
void appfs_store_app(void) {
esp_err_t res;
appfs_handle_t handle;
FILE* app_fd = fopen("/sd/gnuboy.bin", "rb");
if (app_fd == NULL) {
ESP_LOGE(TAG, "Failed to open gnuboy.bin");
return;
}
size_t app_size;
uint8_t* app = load_file_to_ram(app_fd, &app_size);
if (app == NULL) {
ESP_LOGE(TAG, "Failed to load application into RAM");
return;
}
ESP_LOGI(TAG, "Application size %d", app_size);
res = appfsCreateFile("gnuboy", app_size, &handle);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to create file on AppFS (%d)", res);
free(app);
return;
}
res = appfsWrite(handle, 0, app, app_size);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to write to file on AppFS (%d)", res);
free(app);
return;
}
free(app);
ESP_LOGI(TAG, "Application is now stored in AppFS");
return;
}
void appfs_boot_app(int fd) {
if (fd<0 || fd>255) {
REG_WRITE(RTC_CNTL_STORE0_REG, 0);
} else {
REG_WRITE(RTC_CNTL_STORE0_REG, 0xA5000000|fd);
}
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_SLOW_MEM, ESP_PD_OPTION_ON);
esp_sleep_enable_timer_wakeup(10);
esp_deep_sleep_start();
}
void appfs_test(bool sdcard_ready) {
appfsDump();
// Try booting the app from appfs
appfs_handle_t fd = appfsOpen("gnuboy");
if (fd < 0) {
ESP_LOGW(TAG, "gnuboy not found in appfs");
if (sdcard_ready) {
appfs_store_app();
appfs_test(false); // Recursive, but who cares :D
}
} else {
ESP_LOGE(TAG, "booting gnuboy from appfs (%d)", fd);
appfs_boot_app(fd);
}
}
void app_main(void) {
esp_err_t res;
uint8_t* framebuffer = heap_caps_malloc(ILI9341_BUFFER_SIZE, MALLOC_CAP_8BIT);
if (framebuffer == NULL) {
ESP_LOGE(TAG, "Failed to allocate framebuffer");
restart();
}
memset(framebuffer, 0, ILI9341_BUFFER_SIZE);
pax_buf_t buffer;
pax_buf_init(&buffer, framebuffer, ILI9341_WIDTH, ILI9341_HEIGHT, PAX_BUF_16_565RGB);
driver_framebuffer_init(framebuffer);
res = board_init();
if (res != ESP_OK) {
printf("Failed to initialize hardware!\n");
restart();
}
ili9341 = get_ili9341();
ice40 = get_ice40();
bno055 = get_bno055();
rp2040 = get_rp2040();
//print_chip_info();
draw_message(&buffer, ili9341, framebuffer, "Button init...");
button_init();
draw_message(&buffer, ili9341, framebuffer, "AppFS init...");
res = appfs_init();
if (res != ESP_OK) {
ESP_LOGE(TAG, "AppFS init failed: %d", res);
return;
}
ESP_LOGI(TAG, "AppFS initialized");
draw_message(&buffer, ili9341, framebuffer, "Mount SD card...");
res = mount_sd(SD_CMD, SD_CLK, SD_D0, SD_PWR, "/sd", false, 5);
bool sdcard_ready = (res == ESP_OK);
if (sdcard_ready) {
ESP_LOGI(TAG, "SD card mounted");
draw_message(&buffer, ili9341, framebuffer, "FPGA init...");
fpga_test();
} else {
draw_message(&buffer, ili9341, framebuffer, "No SD card?");
}
//appfs_test(sdcard_ready);
//
/*while (1) {
bno055_task(bno055);
graphics_task(&buffer, ili9341, framebuffer);
}*/
/*
uint8_t data_out, data_in;
enum {
I2C_REGISTER_FW_VER,
I2C_REGISTER_GPIO_DIR,
I2C_REGISTER_GPIO_IN,
I2C_REGISTER_GPIO_OUT,
I2C_REGISTER_LCD_MODE,
I2C_REGISTER_LCD_BACKLIGHT,
};
data_out = 1 << 2; // Proto 0 pin is output
res = i2c_write_reg_n(I2C_BUS_EXT, 0x17, I2C_REGISTER_GPIO_DIR, &data_out, 1);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to set GPIO direction on Pico: %d", res);
return;
}
bool blink_state = false;
while (1) {
data_out = blink_state << 2;
res = i2c_write_reg_n(I2C_BUS_EXT, 0x17, I2C_REGISTER_GPIO_OUT, &data_out, 1);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to set GPIO value on Pico: %d", res);
return;
}
blink_state = !blink_state;
res = i2c_read_reg(I2C_BUS_EXT, 0x17, I2C_REGISTER_GPIO_IN, &data_in, 1);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to read GPIO value from Pico %d", res);
return;
} else {
printf("GPIO status: %02x\n", data_in);
}
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
// FPGA RAM passthrough test
res = ice40_load_bitstream(ice40, proto2_bin, proto2_bin_len);
if (res != ESP_OK) {
ESP_LOGE(TAG, "Failed to program the FPGA (%d)", res);
return;
}
uint8_t* tx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
uint8_t* rx_buffer = malloc(SPI_MAX_TRANSFER_SIZE);
const uint8_t write_cmd = 0x02;
const uint8_t read_cmd = 0x03;
uint32_t size_of_ram = 8388608;
uint32_t position = 0;
ESP_LOGI(TAG, "Writing to PSRAM...");
int64_t tx_start_time = esp_timer_get_time();
while (position < size_of_ram) {
// First 4 bytes of the transmit buffer are used for CMD and 24-bit address
tx_buffer[0] = write_cmd;
tx_buffer[1] = (position >> 16);
tx_buffer[2] = (position >> 8) & 0xFF;
tx_buffer[3] = position & 0xFF;
uint32_t remaining = size_of_ram - position;
uint32_t data_length = SPI_MAX_TRANSFER_SIZE - 4;
if (data_length > remaining) data_length = remaining;
//
for (uint32_t index = 0; index < data_length; index++) {
tx_buffer[index + 4] = ((position + (index)) & 0xFF); // Generate a test pattern
}
if (ice40_transaction(ice40, tx_buffer, data_length + 4, rx_buffer, data_length + 4) != ESP_OK) {
ESP_LOGE(TAG, "Write transaction failed @ %u", remaining);
return;
}
position += data_length;
}
int64_t tx_done_time = esp_timer_get_time();
printf("Write took %lld microseconds\r\n", tx_done_time - tx_start_time);
uint64_t result = (((size_of_ram) / (tx_done_time - tx_start_time))*1000*1000)/1024;
printf("%u bytes in %lld microseconds = %llu kB/s\r\n", size_of_ram, tx_done_time - tx_start_time, result);
position = 0; // Reset position
memset(tx_buffer, 0, SPI_MAX_TRANSFER_SIZE); // Clear TX buffer
ESP_LOGI(TAG, "Verifying PSRAM contents...");
int64_t rx_start_time = esp_timer_get_time();
while (position < size_of_ram) {
tx_buffer[0] = read_cmd;
tx_buffer[1] = (position >> 16);
tx_buffer[2] = (position >> 8) & 0xFF;
tx_buffer[3] = position & 0xFF;
uint32_t remaining = size_of_ram - position;
uint32_t data_length = SPI_MAX_TRANSFER_SIZE - 4;
if (data_length > remaining) data_length = remaining;
if (ice40_transaction(ice40, tx_buffer, data_length + 4, rx_buffer, data_length + 4) != ESP_OK) {
ESP_LOGE(TAG, "Transaction failed");
return;
}
for (uint32_t index = 0; index < data_length; index++) {
if (rx_buffer[index + 4] != ((position + (index)) & 0xFF)) { // Verify the test pattern
ESP_LOGE(TAG, "Verification failed @ %u + %u: %u != %u", position, index, rx_buffer[index + 4], (position + (index)) & 0xFF);
}
}
position += data_length;
}
int64_t rx_done_time = esp_timer_get_time();
printf("Read took %lld microseconds\r\n", rx_done_time - rx_start_time);
result = (((size_of_ram) / (rx_done_time - rx_start_time))*1000*1000)/1024;
printf("%u bytes in %lld microseconds = %llu kB/s\r\n", size_of_ram, rx_done_time - rx_start_time, result);*/
free(framebuffer);
ESP_LOGW(TAG, "End of main function, goodbye!");
rp2040_set_led_mode(rp2040, true, true);
for (uint8_t led = 0; led < 5; led++) {
rp2040_set_led_value(rp2040, led, 0, 0, 0);
}
for (uint8_t value = 0; value < 255; value++) {
rp2040_set_lcd_backlight(rp2040, 254 - value);
}
for (uint8_t value = 0; value < 255; value++) {
rp2040_set_lcd_backlight(rp2040, value);
}
while (1) {
for (uint8_t led = 0; led < 5; led++) {
rp2040_set_led_value(rp2040, led, 255, 0, 0 );
vTaskDelay(50 / portTICK_PERIOD_MS);
rp2040_set_led_value(rp2040, led, 0, 255, 0 );
vTaskDelay(50 / portTICK_PERIOD_MS);
rp2040_set_led_value(rp2040, led, 0, 0, 255);
vTaskDelay(50 / portTICK_PERIOD_MS);
rp2040_set_led_value(rp2040, led, 0, 0, 0 );
}
}
}