Merge branch 'master' of github.com:badgeteam/mch2022-firmware-esp32 into renze/bootloader

This commit is contained in:
Renze Nicolai 2022-01-24 22:33:04 +01:00
commit 14d9695ff9
4 changed files with 104 additions and 44 deletions

View file

@ -24,6 +24,9 @@ in the loader segment instead of in random IRAM.
#include "soc/soc_memory_types.h" #include "soc/soc_memory_types.h"
#include "soc/soc_caps.h" #include "soc/soc_caps.h"
#include <string.h> #include <string.h>
#include "soc/dport_reg.h"
#include "esp32/rom/cache.h"
static const char *TAG="appfs_wrapper"; static const char *TAG="appfs_wrapper";
@ -51,7 +54,7 @@ static bool was_mmapped_to_appfs=false;
IRAM_ATTR const void *__wrap_bootloader_mmap(uint32_t src_addr, uint32_t size) { IRAM_ATTR const void *__wrap_bootloader_mmap(uint32_t src_addr, uint32_t size) {
if (file_handle!=APPFS_INVALID_FD && src_addr>=ovl_start && src_addr+size<ovl_start+ovl_size) { if (file_handle!=APPFS_INVALID_FD && src_addr>=ovl_start && src_addr+size<ovl_start+ovl_size) {
ESP_LOGI(TAG, "__wrap_bootloader_mmap: redirecting map to 0x%X", src_addr); ESP_LOGD(TAG, "__wrap_bootloader_mmap: redirecting map to 0x%X", src_addr);
uint8_t *f=appfsBlMmap(file_handle); uint8_t *f=appfsBlMmap(file_handle);
return &f[src_addr-ovl_start]; return &f[src_addr-ovl_start];
} else { } else {
@ -61,6 +64,7 @@ IRAM_ATTR const void *__wrap_bootloader_mmap(uint32_t src_addr, uint32_t size) {
IRAM_ATTR void __wrap_bootloader_munmap(const void *mapping) { IRAM_ATTR void __wrap_bootloader_munmap(const void *mapping) {
if (file_handle!=APPFS_INVALID_FD && was_mmapped_to_appfs) { if (file_handle!=APPFS_INVALID_FD && was_mmapped_to_appfs) {
ESP_LOGD(TAG, "__wrap_bootloader_munmap");
appfsBlMunmap(); appfsBlMunmap();
was_mmapped_to_appfs=false; was_mmapped_to_appfs=false;
} else { } else {
@ -71,11 +75,8 @@ IRAM_ATTR void __wrap_bootloader_munmap(const void *mapping) {
IRAM_ATTR esp_err_t __wrap_bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt) { IRAM_ATTR esp_err_t __wrap_bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt) {
if (file_handle!=APPFS_INVALID_FD && src_addr>=ovl_start && src_addr+size<ovl_start+ovl_size) { if (file_handle!=APPFS_INVALID_FD && src_addr>=ovl_start && src_addr+size<ovl_start+ovl_size) {
uint8_t *f=appfsBlMmap(file_handle); ESP_LOGD(TAG, "__wrap_bootloader_flash_read: 0x%X->0x%X, %d bytes", src_addr, (int)dest, size);
ESP_LOGI(TAG, "__wrap_bootloader_flash_read: 0x%X->0x%X, %d bytes", src_addr, (int)dest, size); return appfs_bootloader_read(file_handle, src_addr-ovl_start, dest, size);
memcpy(dest, &f[src_addr-ovl_start], size);
appfsBlMunmap();
return ESP_OK;
} else { } else {
return __real_bootloader_flash_read(src_addr, dest, size, allow_decrypt); return __real_bootloader_flash_read(src_addr, dest, size, allow_decrypt);
} }
@ -90,13 +91,25 @@ IRAM_ATTR static bool should_map(uint32_t load_addr) {
//mapping. That is done, but with wrong addresses. We need to re-do that here and then call into //mapping. That is done, but with wrong addresses. We need to re-do that here and then call into
//the app. //the app.
static IRAM_ATTR void mmap_and_start_app() { static IRAM_ATTR void mmap_and_start_app() {
ESP_LOGI(TAG, "mmap_and_start_app()"); ESP_LOGD(TAG, "mmap_and_start_app()");
//First, check if we actually need to do this. If loading the appfs app failed (e.g. because it
//got corrupted), the previous routine will fall back to e.g. the factory app. If we would
//adjust the MMU assuming the appfs app had loaded, we would crash.
//Note that this is ESP32-specific.
for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
if (DPORT_PRO_FLASH_MMU_TABLE[i] != DPORT_FLASH_MMU_TABLE_INVALID_VAL) {
int page=DPORT_PRO_FLASH_MMU_TABLE[i]&255;
int addr=page*0x10000;
if (addr<ovl_start || addr>ovl_start+ovl_size) {
ESP_LOGI(TAG, "Not booting appfs app; not adjusting mmu.");
return;
}
}
}
//Undo bootloader mapping. If we don't call this, the rest of the code thinks there's still //Undo bootloader mapping. If we don't call this, the rest of the code thinks there's still
//something mapped. Note that for now the address doesn't matter, we feed it 0. //something mapped. Note that for now the address doesn't matter, we feed it 0.
__real_bootloader_munmap(0); __real_bootloader_munmap(0);
//Appfs is not gonna like that its metadata is not mmapped. We call this routine as what it does
//'under the hood' is clear the mmu and reset it to mmap only the appfs meta info.
appfsBlMunmap();
//Map the executable file so we can read its header. //Map the executable file so we can read its header.
uint8_t *appBytes=appfsBlMmap(file_handle); uint8_t *appBytes=appfsBlMmap(file_handle);
@ -123,11 +136,11 @@ static IRAM_ATTR void mmap_and_start_app() {
p+=l; p+=l;
} }
ESP_LOGI(TAG, "Unmap"); ESP_LOGD(TAG, "Unmap");
appfsBlMunmap(); appfsBlMunmap();
appfsBlMapRegions(file_handle, mapRegions, noMaps); appfsBlMapRegions(file_handle, mapRegions, noMaps);
ESP_LOGD(TAG, "start: 0x%08x", entry_addr); ESP_LOGD(TAG, "Appfs MMU adjustments done. Starting app at 0x%08x", entry_addr);
typedef void (*entry_t)(void); typedef void (*entry_t)(void);
entry_t entry = ((entry_t) entry_addr); entry_t entry = ((entry_t) entry_addr);
(*entry)(); (*entry)();
@ -156,4 +169,9 @@ IRAM_ATTR void appfs_bootloader_munmap(const void *mapping) {
return __real_bootloader_munmap(mapping); return __real_bootloader_munmap(mapping);
} }
IRAM_ATTR esp_err_t appfs_bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt) {
return __real_bootloader_flash_read(src_addr, dest, size, allow_decrypt);
}
#endif #endif

View file

@ -109,6 +109,9 @@ void __attribute__((noreturn)) call_start_cpu0(void)
ESP_LOGI(TAG, "Wrapping flash functions and booting app..."); ESP_LOGI(TAG, "Wrapping flash functions and booting app...");
appfs_wrapper_init(handle, appfs_pos, appfs_len); appfs_wrapper_init(handle, appfs_pos, appfs_len);
//De-init the high-level parts of appfs. Reading/mmap'ping a file handle still is explicitly
//allowed after this, though.
appfsBlDeinit();
//Note that the rest of the bootloader code has no clue about appfs, and as such won't try //Note that the rest of the bootloader code has no clue about appfs, and as such won't try
//to boot it. We 'fix' that by chucking the appfs partition (which is now wrapped so the rest //to boot it. We 'fix' that by chucking the appfs partition (which is now wrapped so the rest
//of the bootloader reads from the selected file when it thinks it loads from the app) into //of the bootloader reads from the selected file when it thinks it loads from the app) into

View file

@ -255,6 +255,13 @@ IRAM_ATTR __attribute__ ((weak)) void appfs_bootloader_munmap(const void *mappin
bootloader_munmap(mapping); bootloader_munmap(mapping);
} }
IRAM_ATTR __attribute__ ((weak)) esp_err_t appfs_bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt) {
return bootloader_flash_read(src_addr, dest, size, allow_decrypt);
}
static uint8_t next_page_for[256];
static int keep_meta_mapped=0;
esp_err_t appfsBlInit(uint32_t offset, uint32_t len) { esp_err_t appfsBlInit(uint32_t offset, uint32_t len) {
//Compile-time sanity check on size of structs //Compile-time sanity check on size of structs
_Static_assert(sizeof(AppfsHeader)==APPFS_META_DESC_SZ, "sizeof AppfsHeader != 128bytes"); _Static_assert(sizeof(AppfsHeader)==APPFS_META_DESC_SZ, "sizeof AppfsHeader != 128bytes");
@ -268,30 +275,36 @@ esp_err_t appfsBlInit(uint32_t offset, uint32_t len) {
ESP_LOGE(TAG, "No valid meta info found. Bailing out."); ESP_LOGE(TAG, "No valid meta info found. Bailing out.");
return ESP_ERR_NOT_FOUND; return ESP_ERR_NOT_FOUND;
} }
for (int i=0; i<256; i++) {
next_page_for[i]=appfsMeta[appfsActiveMeta].page[i].next;
}
appfsPartOffset=offset; appfsPartOffset=offset;
keep_meta_mapped=1;
ESP_LOGD(TAG, "Initialized."); ESP_LOGD(TAG, "Initialized.");
return ESP_OK; return ESP_OK;
} }
void appfsBlDeinit() { void appfsBlDeinit() {
ESP_LOGI(TAG, "Appfs deinit"); ESP_LOGI(TAG, "Appfs deinit");
appfs_bootloader_munmap(appfsMeta); if (appfsMeta) appfs_bootloader_munmap(appfsMeta);
appfsMeta=NULL;
keep_meta_mapped=0;
} }
#define MMU_BLOCK0_VADDR 0x3f400000 #define MMU_BLOCK0_VADDR 0x3f400000
#define MMU_BLOCK50_VADDR 0x3f720000 #define MMU_BLOCK50_VADDR 0x3f720000
IRAM_ATTR esp_err_t appfsBlMapRegions(int fd, AppfsBlRegionToMap *regions, int noRegions) { IRAM_ATTR esp_err_t appfsBlMapRegions(int fd, AppfsBlRegionToMap *regions, int noRegions) {
if (appfsMeta==NULL) ESP_LOGE(TAG, "EEK! appfsBlMapRegions called without meta mapped");
uint8_t pages[255]; uint8_t pages[255];
int pageCt=0; int page_count=0;
int page=fd; int page=fd;
do { do {
pages[pageCt++]=page; pages[page_count++]=page;
page=appfsMeta[appfsActiveMeta].page[page].next; page=next_page_for[page];
} while (page!=0); } while (page!=0 && page_count<255);
//Okay, we have our info.
appfs_bootloader_munmap(appfsMeta); if (appfsMeta) appfs_bootloader_munmap(appfsMeta);
appfsMeta=NULL;
Cache_Read_Disable( 0 ); Cache_Read_Disable( 0 );
Cache_Flush( 0 ); Cache_Flush( 0 );
@ -314,6 +327,7 @@ IRAM_ATTR esp_err_t appfsBlMapRegions(int fd, AppfsBlRegionToMap *regions, int n
} }
d+=APPFS_SECTOR_SZ; d+=APPFS_SECTOR_SZ;
p++; p++;
if (p>page_count) return ESP_ERR_NO_MEM;
} }
} }
DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 ); DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
@ -323,39 +337,25 @@ IRAM_ATTR esp_err_t appfsBlMapRegions(int fd, AppfsBlRegionToMap *regions, int n
} }
IRAM_ATTR void* appfsBlMmap(int fd) { IRAM_ATTR void* appfsBlMmap(int fd) {
//We want to mmap() the pages of the file into memory. However, to do that we need to kill the mmap for the if (appfsMeta) appfs_bootloader_munmap(appfsMeta);
//meta info. To do this, we collect the pages before unmapping the meta info. appfsMeta=NULL;
if (appfsMeta==NULL) ESP_LOGE(TAG, "EEK! appfsBlMmap called without meta mapped");
uint8_t pages[255];
int pageCt=0;
int page=fd;
do {
pages[pageCt++]=page;
page=appfsMeta[appfsActiveMeta].page[page].next;
} while (page!=0);
// ESP_LOGI(TAG, "File %d has %d pages.", fd, pageCt);
if (pageCt>50) {
ESP_LOGE(TAG, "appfsBlMmap: file too big to mmap");
return NULL;
}
//Okay, we have our info.
appfs_bootloader_munmap(appfsMeta);
//Bootloader_mmap only allows mapping of one consecutive memory range. We need more than that, so we essentially //Bootloader_mmap only allows mapping of one consecutive memory range. We need more than that, so we essentially
//replicate the function here. //replicate the function here.
Cache_Read_Disable(0); Cache_Read_Disable(0);
Cache_Flush(0); Cache_Flush(0);
for (int i=0; i<pageCt; i++) { int page=fd;
for (int i=0; i<50; i++) {
// ESP_LOGI(TAG, "Mapping flash addr %X to mem addr %X for page %d", appfsPartOffset+((pages[i]+1)*APPFS_SECTOR_SZ), MMU_BLOCK0_VADDR+(i*APPFS_SECTOR_SZ), pages[i]); // ESP_LOGI(TAG, "Mapping flash addr %X to mem addr %X for page %d", appfsPartOffset+((pages[i]+1)*APPFS_SECTOR_SZ), MMU_BLOCK0_VADDR+(i*APPFS_SECTOR_SZ), pages[i]);
int e = cache_flash_mmu_set(0, 0, MMU_BLOCK0_VADDR+(i*APPFS_SECTOR_SZ), int e = cache_flash_mmu_set(0, 0, MMU_BLOCK0_VADDR+(i*APPFS_SECTOR_SZ),
appfsPartOffset+((pages[i]+1)*APPFS_SECTOR_SZ), 64, 1); appfsPartOffset+((page+1)*APPFS_SECTOR_SZ), 64, 1);
if (e != 0) { if (e != 0) {
ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d", e); ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d", e);
Cache_Read_Enable(0); Cache_Read_Enable(0);
return NULL; return NULL;
} }
page=next_page_for[page];
if (page==0) break;
} }
Cache_Read_Enable(0); Cache_Read_Enable(0);
return (void *)(MMU_BLOCK0_VADDR); return (void *)(MMU_BLOCK0_VADDR);
@ -366,8 +366,34 @@ IRAM_ATTR void appfsBlMunmap() {
Cache_Read_Disable(0); Cache_Read_Disable(0);
Cache_Flush(0); Cache_Flush(0);
mmu_init(0); mmu_init(0);
//Map meta page if (keep_meta_mapped) {
appfsMeta=appfs_bootloader_mmap(appfsPartOffset, APPFS_SECTOR_SZ); appfsMeta=appfs_bootloader_mmap(appfsPartOffset, APPFS_SECTOR_SZ);
}
}
IRAM_ATTR esp_err_t appfs_bootloader_read(int fd, size_t src_addr, void *dest, size_t size) {
int page=fd;
int pos=0;
int have_read=0;
uint8_t *destp=(uint8_t*)dest;
int offset_in_page=src_addr&(APPFS_SECTOR_SZ-1);
for (int i=0; i<255; i++) {
if (pos+APPFS_SECTOR_SZ-1>=src_addr) {
size_t rsize=APPFS_SECTOR_SZ-offset_in_page;
if (rsize>size) rsize=size;
esp_err_t r=appfs_bootloader_flash_read(appfsPartOffset+((page+1)*APPFS_SECTOR_SZ)+offset_in_page, destp+have_read, rsize, true);
if (r!=ESP_OK) return r;
offset_in_page=0;
have_read+=rsize;
if (have_read>=size) {
return ESP_OK;
}
}
page=next_page_for[page];
if (page==0) break;
pos+=APPFS_SECTOR_SZ;
}
return ESP_OK;
} }
#else //so if !BOOTLOADER_BUILD #else //so if !BOOTLOADER_BUILD

View file

@ -242,7 +242,8 @@ typedef struct {
esp_err_t appfsBlInit(uint32_t offset, uint32_t len); esp_err_t appfsBlInit(uint32_t offset, uint32_t len);
/** /**
* @brief Bootloader only: de-init appfs * @brief Bootloader only: de-init appfs. Note that if you have a file handle, you can still
* read/mmap it. This guarantees that the metadata for the appfs is not mapped anymore.
*/ */
void appfsBlDeinit(); void appfsBlDeinit();
/** /**
@ -262,6 +263,18 @@ void* appfsBlMmap(int fd);
*/ */
void appfsBlMunmap(); void appfsBlMunmap();
/**
* @brief Bootloader only: read data from a file
*
* @param fs File descriptor to read from
* @param src_addr Offset in file
* @param dest Dest buffer
* @param size Length to read
* @return ESP_OK if OK
*/
esp_err_t appfs_bootloader_read(int fd, size_t src_addr, void *dest, size_t size);
/* /*
* @brief Bootloader only: map multiple regions within a file to various memory addressed. * @brief Bootloader only: map multiple regions within a file to various memory addressed.
* *