gstreamer/tests/network-clock.scm
Andy Wingo 8ca9bda671 tests/network-clock-utils.scm (debug, print-event): New utils.
Original commit message from CVS:
2005-06-28  Andy Wingo  <wingo@pobox.com>

* tests/network-clock-utils.scm (debug, print-event): New utils.

* tests/network-clock.scm (*debug*, *with-graph*): New parameters.
(*packet-loss*): Unified loss probability.
(network-time): Report out-of-band events.

* tests/plot-data: Add support for out-of-band events. Hack it
into this script instead of passing it down the pipe; should fix
this later.
2005-06-28 16:57:27 +00:00

207 lines
7.4 KiB
Scheme
Executable file

#!/bin/bash
# -*- scheme -*-
exec guile --debug -l $0 -e main -- "$@"
!#
;; GStreamer
;; Copyright (C) 2005 Andy Wingo <wingo at pobox.com>
;; This program is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License as
;; published by the Free Software Foundation; either version 2 of
;; the License, or (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, contact:
;;
;; Free Software Foundation Voice: +1-617-542-5942
;; 59 Temple Place - Suite 330 Fax: +1-617-542-2652
;; Boston, MA 02111-1307, USA gnu@gnu.org
;;; Commentary:
;;
;; Network clock simulator.
;;
;; Simulates the attempts of one clock to synchronize with another over
;; the network. Packets are sent out with a local timestamp, and come
;; back with the remote time added on to the packet. The remote time is
;; assumed to have been observed at the local time in between sending
;; the query and receiving the reply.
;;
;; The local clock will attempt to adjust its rate and offset by fitting
;; a line to the last N datapoints on hand, by default 32. A better fit,
;; as measured by the correlation coefficient, will result in a longer
;; time before the next query. Bad fits or a not-yet-full set of data
;; will result in many queries in quick succession.
;;
;; The rate and offset are set directly to the slope and intercept from
;; the linear regression. This results in discontinuities in the local
;; time. As clock times must be monotonically increasing, a jump down in
;; time will result instead in time standing still for a while. Smoothly
;; varying the rate such that no discontinuities are present has not
;; been investigated.
;;
;; Implementation-wise, this simulator processes events and calculates
;; times discretely. Times are represented as streams, also known as
;; lazy lists. This is an almost-pure functional simulator. The thing to
;; remember while reading is that stream-cons does not evaluate its
;; second argument, rather deferring that calculation until stream-cdr
;; is called. In that way all times are actually infinite series.
;;
;; Knobs: sample rate, send delay, receive delay, send noise, receive
;; noise, queue length, rate of remote clock, rate of local clock. See
;; network-clock.scm --help.
;;
;;; Code:
(use-modules (ice-9 popen))
(load "network-clock-utils.scm")
(define (time->samples t)
(iround (* t *sample-frequency*)))
(define (schedule-event events e time)
(let lp ((response-time (time->samples time))
(stream events))
(if (zero? response-time)
(if (not (stream-car stream))
(stream-cons e (stream-cdr stream))
(stream-cons (stream-car stream) (lp 0 (stream-cdr stream))))
(stream-cons (stream-car stream) (lp (1- response-time) (stream-cdr stream))))))
(define (schedule-send-time-query events time)
(schedule-event events (list 'send-time-query) time))
(define (schedule-time-query events l)
(schedule-event events (list 'time-query l)
(+ *send-delay* (random *send-jitter*))))
(define (schedule-time-response events l r)
(schedule-event events (list 'time-response l r)
(+ *recv-delay* (random *recv-jitter*))))
(define (network-time remote-time local-time events m b x y t)
(let ((r (stream-car remote-time))
(l (stream-car local-time))
(event (stream-car events))
(events (stream-cdr events)))
(define (next events m b x y t)
(stream-cons
(+ (* m l) b)
(network-time
(stream-cdr remote-time) (stream-cdr local-time) events m b x y t)))
(case (and=> event car)
((send-time-query)
(cond
((< (random 1.0) *packet-loss*)
(debug "; dropped time query: ~a\n" l)
(print-event 'packet-lost l (+ (* m l) b))
(next events m b x y (time->samples *timeout*)))
(else
(debug "; sending time query: ~a\n" l)
(print-event 'packet-sent l (+ (* m l) b))
(next (schedule-time-query events l) m b x y (time->samples *timeout*)))))
((time-query)
(debug "; time query received, replying with ~a\n" r)
(next (schedule-time-response events (cadr event) r) m b x y (and t (1- t))))
((time-response)
(let ((x (q-push x (avg (cadr event) l)))
(y (q-push y (caddr event))))
(call-with-values
(lambda () (least-squares (q-head x) (q-head y)))
(lambda (m b r-squared)
(define (next-time)
(max
(if (< (length (q-head x)) *queue-length*)
0
(/ 1 (- 1 (min r-squared 0.99999)) 1000))
0.10))
(debug "; new slope and offset: ~a ~a (~a)\n" m b r-squared)
(print-event 'packet-observed (avg (cadr event) l) (caddr event))
(print-event 'packet-received l (+ (* m l) b))
(next (schedule-send-time-query events (next-time)) m b x y #f)))))
(else
(cond
((not t)
;; not waiting for a response
(next events m b x y t))
((<= t 0)
;; we timed out
(next (schedule-send-time-query events 0.0) m b x y 0))
(else
(next events m b x y (1- t))))))))
(define (run-simulation remote-speed local-speed)
(let ((absolute-time (arithmetic-series 0.0 (/ 1.0 *sample-frequency*)))
(event-stream (stream-of #f)))
(let ((remote-time (scale-stream absolute-time remote-speed))
(local-time (scale-stream absolute-time local-speed)))
(values
absolute-time
remote-time
local-time
(network-time
remote-time
local-time
(schedule-send-time-query event-stream 0.0)
1.0
(stream-car local-time)
(make-q (list (stream-car local-time)))
(make-q (list (stream-car remote-time)))
#f)))))
(define (print-simulation)
(display "Absolute time; Remote time; Local time; Network time\n")
(call-with-values
(lambda () (run-simulation *remote-rate* *local-rate*))
(lambda streams
(apply
stream-while
(lambda (a r l n) (<= a *total-time*))
(lambda (a r l n) (format #t "~a ~a ~a ~a\n" a r l n))
streams))))
(define (plot-simulation)
(let ((port (open-output-pipe "./plot-data Network Clock Simulation")))
(with-output-to-port port
print-simulation)
(close-pipe port)))
(define-parameter *sample-frequency* 40)
(define-parameter *send-delay* 0.1)
(define-parameter *recv-delay* 0.1)
(define-parameter *packet-loss* 0.01)
(define-parameter *send-jitter* 0.1)
(define-parameter *recv-jitter* 0.1)
(define-parameter *queue-length* 32)
(define-parameter *local-rate* 1.0)
(define-parameter *remote-rate* 1.1)
(define-parameter *total-time* 5.0)
(define-parameter *timeout* 1.0)
(define-parameter *debug* #f)
(define-parameter *with-graph* #t)
(define (main args)
(parse-parameter-arguments (cdr args))
(if *with-graph*
(plot-simulation)
(print-simulation))
(quit))