gstreamer/subprojects/gst-plugins-bad/sys/nvcodec/gstcudaconverter.c

2527 lines
82 KiB
C

/* GStreamer
* Copyright (C) 2022 Seungha Yang <seungha@centricular.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gstcudaconverter.h"
#include <string.h>
GST_DEBUG_CATEGORY_STATIC (gst_cuda_converter_debug);
#define GST_CAT_DEFAULT gst_cuda_converter_debug
#define CUDA_BLOCK_X 16
#define CUDA_BLOCK_Y 16
#define DIV_UP(size,block) (((size) + ((block) - 1)) / (block))
/* from GstD3D11 */
typedef struct _GstCudaColorMatrix
{
gdouble matrix[3][3];
gdouble offset[3];
gdouble min[3];
gdouble max[3];
} GstCudaColorMatrix;
static gchar *
gst_cuda_dump_color_matrix (GstCudaColorMatrix * matrix)
{
/* *INDENT-OFF* */
static const gchar format[] =
"[MATRIX]\n"
"|% .6f, % .6f, % .6f|\n"
"|% .6f, % .6f, % .6f|\n"
"|% .6f, % .6f, % .6f|\n"
"[OFFSET]\n"
"|% .6f, % .6f, % .6f|\n"
"[MIN]\n"
"|% .6f, % .6f, % .6f|\n"
"[MAX]\n"
"|% .6f, % .6f, % .6f|";
/* *INDENT-ON* */
return g_strdup_printf (format,
matrix->matrix[0][0], matrix->matrix[0][1], matrix->matrix[0][2],
matrix->matrix[1][0], matrix->matrix[1][1], matrix->matrix[1][2],
matrix->matrix[2][0], matrix->matrix[2][1], matrix->matrix[2][2],
matrix->offset[0], matrix->offset[1], matrix->offset[2],
matrix->min[0], matrix->min[1], matrix->min[2],
matrix->max[0], matrix->max[1], matrix->max[2]);
}
static void
color_matrix_copy (GstCudaColorMatrix * dst, const GstCudaColorMatrix * src)
{
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
dst->matrix[i][j] = src->matrix[i][j];
}
}
}
static void
color_matrix_multiply (GstCudaColorMatrix * dst, GstCudaColorMatrix * a,
GstCudaColorMatrix * b)
{
GstCudaColorMatrix tmp;
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
gdouble val = 0;
for (guint k = 0; k < 3; k++) {
val += a->matrix[i][k] * b->matrix[k][j];
}
tmp.matrix[i][j] = val;
}
}
color_matrix_copy (dst, &tmp);
}
static void
color_matrix_identity (GstCudaColorMatrix * m)
{
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
if (i == j)
m->matrix[i][j] = 1.0;
else
m->matrix[i][j] = 0;
}
}
}
/**
* gst_cuda_color_range_adjust_matrix_unorm:
* @in_info: a #GstVideoInfo
* @out_info: a #GstVideoInfo
* @matrix: a #GstCudaColorMatrix
*
* Calculates matrix for color range adjustment. Both input and output
* signals are in normalized [0.0..1.0] space.
*
* Resulting values can be calculated by
* | Yout | | Yin | | matrix.offset[0] |
* | Uout | = clamp ( matrix.matrix * | Uin | + | matrix.offset[1] |, matrix.min, matrix.max )
* | Vout | | Vin | | matrix.offset[2] |
*
* Returns: %TRUE if successful
*/
static gboolean
gst_cuda_color_range_adjust_matrix_unorm (const GstVideoInfo * in_info,
const GstVideoInfo * out_info, GstCudaColorMatrix * matrix)
{
gboolean in_rgb, out_rgb;
gint in_offset[GST_VIDEO_MAX_COMPONENTS];
gint in_scale[GST_VIDEO_MAX_COMPONENTS];
gint out_offset[GST_VIDEO_MAX_COMPONENTS];
gint out_scale[GST_VIDEO_MAX_COMPONENTS];
GstVideoColorRange in_range;
GstVideoColorRange out_range;
gdouble src_fullscale, dst_fullscale;
memset (matrix, 0, sizeof (GstCudaColorMatrix));
for (guint i = 0; i < 3; i++) {
matrix->matrix[i][i] = 1.0;
matrix->matrix[i][i] = 1.0;
matrix->matrix[i][i] = 1.0;
matrix->max[i] = 1.0;
}
in_rgb = GST_VIDEO_INFO_IS_RGB (in_info);
out_rgb = GST_VIDEO_INFO_IS_RGB (out_info);
if (in_rgb != out_rgb) {
GST_WARNING ("Invalid format conversion");
return FALSE;
}
in_range = in_info->colorimetry.range;
out_range = out_info->colorimetry.range;
if (in_range == GST_VIDEO_COLOR_RANGE_UNKNOWN) {
GST_WARNING ("Unknown input color range");
if (in_rgb || GST_VIDEO_INFO_IS_GRAY (in_info))
in_range = GST_VIDEO_COLOR_RANGE_0_255;
else
in_range = GST_VIDEO_COLOR_RANGE_16_235;
}
if (out_range == GST_VIDEO_COLOR_RANGE_UNKNOWN) {
GST_WARNING ("Unknown output color range");
if (out_rgb || GST_VIDEO_INFO_IS_GRAY (out_info))
out_range = GST_VIDEO_COLOR_RANGE_0_255;
else
out_range = GST_VIDEO_COLOR_RANGE_16_235;
}
src_fullscale = (gdouble) ((1 << in_info->finfo->depth[0]) - 1);
dst_fullscale = (gdouble) ((1 << out_info->finfo->depth[0]) - 1);
gst_video_color_range_offsets (in_range, in_info->finfo, in_offset, in_scale);
gst_video_color_range_offsets (out_range,
out_info->finfo, out_offset, out_scale);
matrix->min[0] = matrix->min[1] = matrix->min[2] =
(gdouble) out_offset[0] / dst_fullscale;
matrix->max[0] = (out_scale[0] + out_offset[0]) / dst_fullscale;
matrix->max[1] = matrix->max[2] =
(out_scale[1] + out_offset[0]) / dst_fullscale;
if (in_info->colorimetry.range == out_info->colorimetry.range) {
GST_DEBUG ("Same color range");
return TRUE;
}
/* Formula
*
* 1) Scales and offset compensates input to [0..1] range
* SRC_NORM[i] = (src[i] * src_fullscale - in_offset[i]) / in_scale[i]
* = (src[i] * src_fullscale / in_scale[i]) - in_offset[i] / in_scale[i]
*
* 2) Reverse to output UNIT scale
* DST_UINT[i] = SRC_NORM[i] * out_scale[i] + out_offset[i]
* = src[i] * src_fullscale * out_scale[i] / in_scale[i]
* - in_offset[i] * out_scale[i] / in_scale[i]
* + out_offset[i]
*
* 3) Back to [0..1] scale
* dst[i] = DST_UINT[i] / dst_fullscale
* = COEFF[i] * src[i] + OFF[i]
* where
* src_fullscale * out_scale[i]
* COEFF[i] = ------------------------------
* dst_fullscale * in_scale[i]
*
* out_offset[i] in_offset[i] * out_scale[i]
* OFF[i] = -------------- - ------------------------------
* dst_fullscale dst_fullscale * in_scale[i]
*/
for (guint i = 0; i < 3; i++) {
matrix->matrix[i][i] = (src_fullscale * out_scale[i]) /
(dst_fullscale * in_scale[i]);
matrix->offset[i] = (out_offset[i] / dst_fullscale) -
((gdouble) in_offset[i] * out_scale[i] / (dst_fullscale * in_scale[i]));
}
return TRUE;
}
/**
* gst_cuda_yuv_to_rgb_matrix_unorm:
* @in_yuv_info: a #GstVideoInfo of input YUV signal
* @out_rgb_info: a #GstVideoInfo of output RGB signal
* @matrix: a #GstCudaColorMatrix
*
* Calculates transform matrix from YUV to RGB conversion. Both input and output
* signals are in normalized [0.0..1.0] space and additional gamma decoding
* or primary/transfer function transform is not performed by this matrix.
*
* Resulting non-linear RGB values can be calculated by
* | R' | | Y' | | matrix.offset[0] |
* | G' | = clamp ( matrix.matrix * | Cb | + | matrix.offset[1] | matrix.min, matrix.max )
* | B' | | Cr | | matrix.offset[2] |
*
* Returns: %TRUE if successful
*/
static gboolean
gst_cuda_yuv_to_rgb_matrix_unorm (const GstVideoInfo * in_yuv_info,
const GstVideoInfo * out_rgb_info, GstCudaColorMatrix * matrix)
{
gint offset[4], scale[4];
gdouble Kr, Kb, Kg;
/*
* <Formula>
*
* Input: Unsigned normalized Y'CbCr(unorm), [0.0..1.0] range
* Output: Unsigned normalized non-linear R'G'B'(unorm), [0.0..1.0] range
*
* 1) Y'CbCr(unorm) to scaled Y'CbCr
* | Y' | | Y'(unorm) |
* | Cb | = S | Cb(unorm) |
* | Cb | | Cr(unorm) |
* where S = (2 ^ bitdepth) - 1
*
* 2) Y'CbCr to YPbPr
* Y = (Y' - offsetY ) / scaleY
* Pb = [(Cb - offsetCbCr) / scaleCbCr]
* Pr = [(Cr - offsetCrCr) / scaleCrCr]
* =>
* Y = Y'(unorm) * Sy + Oy
* Pb = Cb(unorm) * Suv + Ouv
* Pb = Cr(unorm) * Suv + Ouv
* where
* Sy = S / scaleY
* Suv = S / scaleCbCr
* Oy = -(offsetY / scaleY)
* Ouv = -(offsetCbCr / scaleCbCr)
*
* 3) YPbPr to R'G'B'
* | R' | | Y |
* | G' | = M *| Pb |
* | B' | | Pr |
* where
* | vecR |
* M = | vecG |
* | vecB |
* vecR = | 1, 0 , 2(1 - Kr) |
* vecG = | 1, -(Kb/Kg) * 2(1 - Kb), -(Kr/Kg) * 2(1 - Kr) |
* vecB = | 1, 2(1 - Kb) , 0 |
* =>
* R' = dot(vecR, (Syuv * Y'CbCr(unorm))) + dot(vecR, Offset)
* G' = dot(vecG, (Svuy * Y'CbCr(unorm))) + dot(vecG, Offset)
* B' = dot(vecB, (Syuv * Y'CbCr(unorm)) + dot(vecB, Offset)
* where
* | Sy, 0, 0 |
* Syuv = | 0, Suv, 0 |
* | 0 0, Suv |
*
* | Oy |
* Offset = | Ouv |
* | Ouv |
*
* 4) YUV -> RGB matrix
* | R' | | Y'(unorm) | | offsetA |
* | G' | = Matrix * | Cb(unorm) | + | offsetB |
* | B' | | Cr(unorm) | | offsetC |
*
* where
* | vecR |
* Matrix = | vecG | * Syuv
* | vecB |
*
* offsetA = dot(vecR, Offset)
* offsetB = dot(vecG, Offset)
* offsetC = dot(vecB, Offset)
*
* 4) Consider 16-235 scale RGB
* RGBfull(0..255) -> RGBfull(16..235) matrix is represented by
* | Rs | | Rf | | Or |
* | Gs | = Ms | Gf | + | Og |
* | Bs | | Bf | | Ob |
*
* Combining all matrix into
* | Rs | | Y'(unorm) | | offsetA | | Or |
* | Gs | = Ms * ( Matrix * | Cb(unorm) | + | offsetB | ) + | Og |
* | Bs | | Cr(unorm) | | offsetC | | Ob |
*
* | Y'(unorm) | | offsetA | | Or |
* = Ms * Matrix * | Cb(unorm) | + Ms | offsetB | + | Og |
* | Cr(unorm) | | offsetC | | Ob |
*/
memset (matrix, 0, sizeof (GstCudaColorMatrix));
for (guint i = 0; i < 3; i++)
matrix->max[i] = 1.0;
gst_video_color_range_offsets (in_yuv_info->colorimetry.range,
in_yuv_info->finfo, offset, scale);
if (gst_video_color_matrix_get_Kr_Kb (in_yuv_info->colorimetry.matrix,
&Kr, &Kb)) {
guint S;
gdouble Sy, Suv;
gdouble Oy, Ouv;
gdouble vecR[3], vecG[3], vecB[3];
Kg = 1.0 - Kr - Kb;
vecR[0] = 1.0;
vecR[1] = 0;
vecR[2] = 2 * (1 - Kr);
vecG[0] = 1.0;
vecG[1] = -(Kb / Kg) * 2 * (1 - Kb);
vecG[2] = -(Kr / Kg) * 2 * (1 - Kr);
vecB[0] = 1.0;
vecB[1] = 2 * (1 - Kb);
vecB[2] = 0;
/* Assume all components has the same bitdepth */
S = (1 << in_yuv_info->finfo->depth[0]) - 1;
Sy = (gdouble) S / scale[0];
Suv = (gdouble) S / scale[1];
Oy = -((gdouble) offset[0] / scale[0]);
Ouv = -((gdouble) offset[1] / scale[1]);
matrix->matrix[0][0] = Sy * vecR[0];
matrix->matrix[1][0] = Sy * vecG[0];
matrix->matrix[2][0] = Sy * vecB[0];
matrix->matrix[0][1] = Suv * vecR[1];
matrix->matrix[1][1] = Suv * vecG[1];
matrix->matrix[2][1] = Suv * vecB[1];
matrix->matrix[0][2] = Suv * vecR[2];
matrix->matrix[1][2] = Suv * vecG[2];
matrix->matrix[2][2] = Suv * vecB[2];
matrix->offset[0] = vecR[0] * Oy + vecR[1] * Ouv + vecR[2] * Ouv;
matrix->offset[1] = vecG[0] * Oy + vecG[1] * Ouv + vecG[2] * Ouv;
matrix->offset[2] = vecB[0] * Oy + vecB[1] * Ouv + vecB[2] * Ouv;
/* Apply RGB range scale matrix */
if (out_rgb_info->colorimetry.range == GST_VIDEO_COLOR_RANGE_16_235) {
GstCudaColorMatrix scale_matrix, rst;
GstVideoInfo full_rgb = *out_rgb_info;
full_rgb.colorimetry.range = GST_VIDEO_COLOR_RANGE_0_255;
if (gst_cuda_color_range_adjust_matrix_unorm (&full_rgb,
out_rgb_info, &scale_matrix)) {
/* Ms * Matrix */
color_matrix_multiply (&rst, &scale_matrix, matrix);
/* Ms * transform offsets */
for (guint i = 0; i < 3; i++) {
gdouble val = 0;
for (guint j = 0; j < 3; j++) {
val += scale_matrix.matrix[i][j] * matrix->offset[j];
}
rst.offset[i] = val + scale_matrix.offset[i];
}
/* copy back to output matrix */
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
matrix->matrix[i][j] = rst.matrix[i][j];
}
matrix->offset[i] = rst.offset[i];
matrix->min[i] = scale_matrix.min[i];
matrix->max[i] = scale_matrix.max[i];
}
}
}
} else {
/* Unknown matrix */
matrix->matrix[0][0] = 1.0;
matrix->matrix[1][1] = 1.0;
matrix->matrix[2][2] = 1.0;
}
return TRUE;
}
/**
* gst_cuda_rgb_to_yuv_matrix_unorm:
* @in_rgb_info: a #GstVideoInfo of input RGB signal
* @out_yuv_info: a #GstVideoInfo of output YUV signal
* @matrix: a #GstCudaColorMatrix
*
* Calculates transform matrix from RGB to YUV conversion. Both input and output
* signals are in normalized [0.0..1.0] space and additional gamma decoding
* or primary/transfer function transform is not performed by this matrix.
*
* Resulting RGB values can be calculated by
* | Y' | | R' | | matrix.offset[0] |
* | Cb | = clamp ( matrix.matrix * | G' | + | matrix.offset[1] |, matrix.min, matrix.max )
* | Cr | | B' | | matrix.offset[2] |
*
* Returns: %TRUE if successful
*/
static gboolean
gst_cuda_rgb_to_yuv_matrix_unorm (const GstVideoInfo * in_rgb_info,
const GstVideoInfo * out_yuv_info, GstCudaColorMatrix * matrix)
{
gint offset[4], scale[4];
gdouble Kr, Kb, Kg;
/*
* <Formula>
*
* Input: Unsigned normalized non-linear R'G'B'(unorm), [0.0..1.0] range
* Output: Unsigned normalized Y'CbCr(unorm), [0.0..1.0] range
*
* 1) R'G'B' to YPbPr
* | Y | | R' |
* | Pb | = M *| G' |
* | Pr | | B' |
* where
* | vecY |
* M = | vecU |
* | vecV |
* vecY = | Kr , Kg , Kb |
* vecU = | -0.5*Kr/(1-Kb), -0.5*Kg/(1-Kb), 0.5 |
* vecV = | 0.5 , -0.5*Kg/(1-Kr), -0.5*Kb(1-Kr) |
*
* 2) YPbPr to Y'CbCr(unorm)
* Y'(unorm) = (Y * scaleY + offsetY) / S
* Cb(unorm) = (Pb * scaleCbCr + offsetCbCr) / S
* Cr(unorm) = (Pr * scaleCbCr + offsetCbCr) / S
* =>
* Y'(unorm) = (Y * scaleY / S) + (offsetY / S)
* Cb(unorm) = (Pb * scaleCbCr / S) + (offsetCbCr / S)
* Cr(unorm) = (Pb * scaleCbCr / S) + (offsetCbCr / S)
* where S = (2 ^ bitdepth) - 1
*
* 3) RGB -> YUV matrix
* | Y'(unorm) | | R' | | offsetA |
* | Cb(unorm) | = Matrix * | G' | + | offsetB |
* | Cr(unorm) | | B' | | offsetC |
*
* where
* | (scaleY/S) * vecY |
* Matrix = | (scaleCbCr/S) * vecU |
* | (scaleCbCr/S) * vecV |
*
* offsetA = offsetY / S
* offsetB = offsetCbCr / S
* offsetC = offsetCbCr / S
*
* 4) Consider 16-235 scale RGB
* RGBstudio(16..235) -> RGBfull(0..255) matrix is represented by
* | Rf | | Rs | | Or |
* | Gf | = Ms | Gs | + | Og |
* | Bf | | Bs | | Ob |
*
* Combining all matrix into
* | Y'(unorm) | | Rs | | Or | | offsetA |
* | Cb(unorm) | = Matrix * ( Ms | Gs | + | Og | ) + | offsetB |
* | Cr(unorm) | | Bs | | Ob | | offsetC |
*
* | Rs | | Or | | offsetA |
* = Matrix * Ms | Gs | + Matrix | Og | + | offsetB |
* | Bs | | Ob | | offsetB |
*/
memset (matrix, 0, sizeof (GstCudaColorMatrix));
for (guint i = 0; i < 3; i++)
matrix->max[i] = 1.0;
gst_video_color_range_offsets (out_yuv_info->colorimetry.range,
out_yuv_info->finfo, offset, scale);
if (gst_video_color_matrix_get_Kr_Kb (out_yuv_info->colorimetry.matrix,
&Kr, &Kb)) {
guint S;
gdouble Sy, Suv;
gdouble Oy, Ouv;
gdouble vecY[3], vecU[3], vecV[3];
Kg = 1.0 - Kr - Kb;
vecY[0] = Kr;
vecY[1] = Kg;
vecY[2] = Kb;
vecU[0] = -0.5 * Kr / (1 - Kb);
vecU[1] = -0.5 * Kg / (1 - Kb);
vecU[2] = 0.5;
vecV[0] = 0.5;
vecV[1] = -0.5 * Kg / (1 - Kr);
vecV[2] = -0.5 * Kb / (1 - Kr);
/* Assume all components has the same bitdepth */
S = (1 << out_yuv_info->finfo->depth[0]) - 1;
Sy = (gdouble) scale[0] / S;
Suv = (gdouble) scale[1] / S;
Oy = (gdouble) offset[0] / S;
Ouv = (gdouble) offset[1] / S;
for (guint i = 0; i < 3; i++) {
matrix->matrix[0][i] = Sy * vecY[i];
matrix->matrix[1][i] = Suv * vecU[i];
matrix->matrix[2][i] = Suv * vecV[i];
}
matrix->offset[0] = Oy;
matrix->offset[1] = Ouv;
matrix->offset[2] = Ouv;
matrix->min[0] = Oy;
matrix->min[1] = Oy;
matrix->min[2] = Oy;
matrix->max[0] = ((gdouble) scale[0] + offset[0]) / S;
matrix->max[1] = ((gdouble) scale[1] + offset[0]) / S;
matrix->max[2] = ((gdouble) scale[1] + offset[0]) / S;
/* Apply RGB range scale matrix */
if (in_rgb_info->colorimetry.range == GST_VIDEO_COLOR_RANGE_16_235) {
GstCudaColorMatrix scale_matrix, rst;
GstVideoInfo full_rgb = *in_rgb_info;
full_rgb.colorimetry.range = GST_VIDEO_COLOR_RANGE_0_255;
if (gst_cuda_color_range_adjust_matrix_unorm (in_rgb_info,
&full_rgb, &scale_matrix)) {
/* Matrix * Ms */
color_matrix_multiply (&rst, matrix, &scale_matrix);
/* Matrix * scale offsets */
for (guint i = 0; i < 3; i++) {
gdouble val = 0;
for (guint j = 0; j < 3; j++) {
val += matrix->matrix[i][j] * scale_matrix.offset[j];
}
rst.offset[i] = val + matrix->offset[i];
}
/* copy back to output matrix */
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
matrix->matrix[i][j] = rst.matrix[i][j];
}
matrix->offset[i] = rst.offset[i];
}
}
}
} else {
/* Unknown matrix */
matrix->matrix[0][0] = 1.0;
matrix->matrix[1][1] = 1.0;
matrix->matrix[2][2] = 1.0;
}
return TRUE;
}
typedef struct
{
float coeffX[3];
float coeffY[3];
float coeffZ[3];
float offset[3];
float min[3];
float max[3];
} ColorMatrix;
typedef struct
{
ColorMatrix toRGBCoeff;
ColorMatrix toYuvCoeff;
ColorMatrix primariesCoeff;
} ConstBuffer;
#define COLOR_SPACE_IDENTITY "color_space_identity"
#define COLOR_SPACE_CONVERT "color_space_convert"
#define SAMPLE_YUV_PLANAR "sample_yuv_planar"
#define SAMPLE_YV12 "sample_yv12"
#define SAMPLE_YUV_PLANAR_10BIS "sample_yuv_planar_10bits"
#define SAMPLE_YUV_PLANAR_12BIS "sample_yuv_planar_12bits"
#define SAMPLE_SEMI_PLANAR "sample_semi_planar"
#define SAMPLE_SEMI_PLANAR_SWAP "sample_semi_planar_swap"
#define SAMPLE_RGBA "sample_rgba"
#define SAMPLE_BGRA "sample_bgra"
#define SAMPLE_RGBx "sample_rgbx"
#define SAMPLE_BGRx "sample_bgrx"
#define SAMPLE_ARGB "sample_argb"
/* same as ARGB */
#define SAMPLE_ARGB64 "sample_argb"
#define SAMPLE_AGBR "sample_abgr"
#define SAMPLE_RGBP "sample_rgbp"
#define SAMPLE_BGRP "sample_bgrp"
#define SAMPLE_GBR "sample_gbr"
#define SAMPLE_GBR_10 "sample_gbr_10"
#define SAMPLE_GBR_12 "sample_gbr_12"
#define SAMPLE_GBRA "sample_gbra"
#define SAMPLE_VUYA "sample_vuya"
#define WRITE_I420 "write_i420"
#define WRITE_YV12 "write_yv12"
#define WRITE_NV12 "write_nv12"
#define WRITE_NV21 "write_nv21"
#define WRITE_P010 "write_p010"
#define WRITE_I420_10 "write_i420_10"
#define WRITE_I420_12 "write_i420_12"
#define WRITE_Y444 "write_y444"
#define WRITE_Y444_10 "write_y444_10"
#define WRITE_Y444_12 "write_y444_12"
#define WRITE_Y444_16 "write_y444_16"
#define WRITE_RGBA "write_rgba"
#define WRITE_RGBx "write_rgbx"
#define WRITE_BGRA "write_bgra"
#define WRITE_BGRx "write_bgrx"
#define WRITE_ARGB "write_argb"
#define WRITE_ABGR "write_abgr"
#define WRITE_RGB "write_rgb"
#define WRITE_BGR "write_bgr"
#define WRITE_RGB10A2 "write_rgb10a2"
#define WRITE_BGR10A2 "write_bgr10a2"
#define WRITE_Y42B "write_y42b"
#define WRITE_I422_10 "write_i422_10"
#define WRITE_I422_12 "write_i422_12"
#define WRITE_RGBP "write_rgbp"
#define WRITE_BGRP "write_bgrp"
#define WRITE_GBR "write_gbr"
#define WRITE_GBR_10 "write_gbr_10"
#define WRITE_GBR_12 "write_gbr_12"
#define WRITE_GBR_16 "write_gbr_16"
#define WRITE_GBRA "write_gbra"
#define WRITE_VUYA "write_vuya"
#define ROTATE_IDENTITY "rotate_identity"
#define ROTATE_90R "rotate_90r"
#define ROTATE_180 "rotate_180"
#define ROTATE_90L "rotate_90l"
#define ROTATE_HORIZ "rotate_horiz"
#define ROTATE_VERT "rotate_vert"
#define ROTATE_UL_LR "rotate_ul_lr"
#define ROTATE_UR_LL "rotate_ur_ll"
/* *INDENT-OFF* */
const static gchar KERNEL_COMMON[] =
"struct ColorMatrix\n"
"{\n"
" float CoeffX[3];\n"
" float CoeffY[3];\n"
" float CoeffZ[3];\n"
" float Offset[3];\n"
" float Min[3];\n"
" float Max[3];\n"
"};\n"
"\n"
"__device__ inline float\n"
"dot (const float coeff[3], float3 val)\n"
"{\n"
" return coeff[0] * val.x + coeff[1] * val.y + coeff[2] * val.z;\n"
"}\n"
"\n"
"__device__ inline float\n"
"clamp (float val, float min_val, float max_val)\n"
"{\n"
" return max (min_val, min (val, max_val));\n"
"}\n"
"\n"
"__device__ inline float3\n"
"clamp3 (float3 val, const float min_val[3], const float max_val[3])\n"
"{\n"
" return make_float3 (clamp (val.x, min_val[0], max_val[0]),\n"
" clamp (val.y, min_val[1], max_val[2]),\n"
" clamp (val.z, min_val[1], max_val[2]));\n"
"}\n"
"\n"
"__device__ inline unsigned char\n"
"scale_to_2bits (float val)\n"
"{\n"
" return (unsigned short) __float2int_rz (val * 3.0);\n"
"}\n"
"\n"
"__device__ inline unsigned char\n"
"scale_to_uchar (float val)\n"
"{\n"
" return (unsigned char) __float2int_rz (val * 255.0);\n"
"}\n"
"\n"
"__device__ inline unsigned short\n"
"scale_to_ushort (float val)\n"
"{\n"
" return (unsigned short) __float2int_rz (val * 65535.0);\n"
"}\n"
"\n"
"__device__ inline unsigned short\n"
"scale_to_10bits (float val)\n"
"{\n"
" return (unsigned short) __float2int_rz (val * 1023.0);\n"
"}\n"
"\n"
"__device__ inline unsigned short\n"
"scale_to_12bits (float val)\n"
"{\n"
" return (unsigned short) __float2int_rz (val * 4095.0);\n"
"}\n"
"\n"
"__device__ inline float3\n"
COLOR_SPACE_IDENTITY "(float3 sample, const ColorMatrix * matrix)\n"
"{\n"
" return sample;\n"
"}\n"
"\n"
"__device__ inline float3\n"
COLOR_SPACE_CONVERT "(float3 sample, const ColorMatrix * matrix)\n"
"{\n"
" float3 out;\n"
" out.x = dot (matrix->CoeffX, sample);\n"
" out.y = dot (matrix->CoeffY, sample);\n"
" out.z = dot (matrix->CoeffZ, sample);\n"
" out.x += matrix->Offset[0];\n"
" out.y += matrix->Offset[1];\n"
" out.z += matrix->Offset[2];\n"
" return clamp3 (out, matrix->Min, matrix->Max);\n"
"}\n"
"/* All 8bits yuv planar except for yv12 */\n"
"__device__ inline float4\n"
SAMPLE_YUV_PLANAR "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float luma = tex2D<float>(tex0, x, y);\n"
" float u = tex2D<float>(tex1, x, y);\n"
" float v = tex2D<float>(tex2, x, y);\n"
" return make_float4 (luma, u, v, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_YV12 "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float luma = tex2D<float>(tex0, x, y);\n"
" float u = tex2D<float>(tex2, x, y);\n"
" float v = tex2D<float>(tex1, x, y);\n"
" return make_float4 (luma, u, v, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_YUV_PLANAR_10BIS "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float luma = tex2D<float>(tex0, x, y);\n"
" float u = tex2D<float>(tex1, x, y);\n"
" float v = tex2D<float>(tex2, x, y);\n"
" /* (1 << 6) to scale [0, 1.0) range */\n"
" return make_float4 (luma * 64, u * 64, v * 64, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_YUV_PLANAR_12BIS "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float luma = tex2D<float>(tex0, x, y);\n"
" float u = tex2D<float>(tex1, x, y);\n"
" float v = tex2D<float>(tex2, x, y);\n"
" /* (1 << 4) to scale [0, 1.0) range */\n"
" return make_float4 (luma * 16, u * 16, v * 16, 1);\n"
"}\n"
"\n"
"/* NV12, P010, and P016 */\n"
"__device__ inline float4\n"
SAMPLE_SEMI_PLANAR "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float luma = tex2D<float>(tex0, x, y);\n"
" float2 uv = tex2D<float2>(tex1, x, y);\n"
" return make_float4 (luma, uv.x, uv.y, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_SEMI_PLANAR_SWAP "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float luma = tex2D<float>(tex0, x, y);\n"
" float2 vu = tex2D<float2>(tex1, x, y);\n"
" return make_float4 (luma, vu.y, vu.x, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_RGBA "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" return tex2D<float4>(tex0, x, y);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_BGRA "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float4 bgra = tex2D<float4>(tex0, x, y);\n"
" return make_float4 (bgra.z, bgra.y, bgra.x, bgra.w);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_RGBx "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float4 rgbx = tex2D<float4>(tex0, x, y);\n"
" rgbx.w = 1;\n"
" return rgbx;\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_BGRx "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float4 bgrx = tex2D<float4>(tex0, x, y);\n"
" return make_float4 (bgrx.z, bgrx.y, bgrx.x, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_ARGB "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float4 argb = tex2D<float4>(tex0, x, y);\n"
" return make_float4 (argb.y, argb.z, argb.w, argb.x);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_AGBR "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float4 abgr = tex2D<float4>(tex0, x, y);\n"
" return make_float4 (abgr.w, abgr.z, abgr.y, abgr.x);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_RGBP "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float r = tex2D<float>(tex0, x, y);\n"
" float g = tex2D<float>(tex1, x, y);\n"
" float b = tex2D<float>(tex2, x, y);\n"
" return make_float4 (r, g, b, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_BGRP "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float b = tex2D<float>(tex0, x, y);\n"
" float g = tex2D<float>(tex1, x, y);\n"
" float r = tex2D<float>(tex2, x, y);\n"
" return make_float4 (r, g, b, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_GBR "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float g = tex2D<float>(tex0, x, y);\n"
" float b = tex2D<float>(tex1, x, y);\n"
" float r = tex2D<float>(tex2, x, y);\n"
" return make_float4 (r, g, b, 1);\n"
"}\n"
"__device__ inline float4\n"
SAMPLE_GBR_10 "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float g = tex2D<float>(tex0, x, y);\n"
" float b = tex2D<float>(tex1, x, y);\n"
" float r = tex2D<float>(tex2, x, y);\n"
" /* (1 << 6) to scale [0, 1.0) range */\n"
" return make_float4 (r * 64, g * 64, b * 64, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_GBR_12 "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float g = tex2D<float>(tex0, x, y);\n"
" float b = tex2D<float>(tex1, x, y);\n"
" float r = tex2D<float>(tex2, x, y);\n"
" /* (1 << 4) to scale [0, 1.0) range */\n"
" return make_float4 (r * 16, g * 16, b * 16, 1);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_GBRA "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float g = tex2D<float>(tex0, x, y);\n"
" float b = tex2D<float>(tex1, x, y);\n"
" float r = tex2D<float>(tex2, x, y);\n"
" float a = tex2D<float>(tex3, x, y);\n"
" return make_float4 (r, g, b, a);\n"
"}\n"
"\n"
"__device__ inline float4\n"
SAMPLE_VUYA "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, float x, float y)\n"
"{\n"
" float4 vuya = tex2D<float4>(tex0, x, y);\n"
" return make_float4 (vuya.z, vuya.y, vuya.x, vuya.w);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_I420 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" dst0[x + y * stride0] = scale_to_uchar (sample.x);\n"
" if (x % 2 == 0 && y % 2 == 0) {\n"
" unsigned int pos = x / 2 + (y / 2) * stride1;\n"
" dst1[pos] = scale_to_uchar (sample.y);\n"
" dst2[pos] = scale_to_uchar (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_YV12 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" dst0[x + y * stride0] = scale_to_uchar (sample.x);\n"
" if (x % 2 == 0 && y % 2 == 0) {\n"
" unsigned int pos = x / 2 + (y / 2) * stride1;\n"
" dst1[pos] = scale_to_uchar (sample.z);\n"
" dst2[pos] = scale_to_uchar (sample.y);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_NV12 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" dst0[x + y * stride0] = scale_to_uchar (sample.x);\n"
" if (x % 2 == 0 && y % 2 == 0) {\n"
" unsigned int pos = x + (y / 2) * stride1;\n"
" dst1[pos] = scale_to_uchar (sample.y);\n"
" dst1[pos + 1] = scale_to_uchar (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_NV21 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" dst0[x + y * stride0] = scale_to_uchar (sample.x);\n"
" if (x % 2 == 0 && y % 2 == 0) {\n"
" unsigned int pos = x + (y / 2) * stride1;\n"
" dst1[pos] = scale_to_uchar (sample.z);\n"
" dst1[pos + 1] = scale_to_uchar (sample.y);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_P010 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" *(unsigned short *) &dst0[x * 2 + y * stride0] = scale_to_ushort (sample.x);\n"
" if (x % 2 == 0 && y % 2 == 0) {\n"
" unsigned int pos = x * 2 + (y / 2) * stride1;\n"
" *(unsigned short *) &dst1[pos] = scale_to_ushort (sample.y);\n"
" *(unsigned short *) &dst1[pos + 2] = scale_to_ushort (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_I420_10 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" *(unsigned short *) &dst0[x * 2 + y * stride0] = scale_to_10bits (sample.x);\n"
" if (x % 2 == 0 && y % 2 == 0) {\n"
" unsigned int pos = x + (y / 2) * stride1;\n"
" *(unsigned short *) &dst1[pos] = scale_to_10bits (sample.y);\n"
" *(unsigned short *) &dst2[pos] = scale_to_10bits (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_I420_12 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" *(unsigned short *) &dst0[x * 2 + y * stride0] = scale_to_12bits (sample.x);\n"
" if (x % 2 == 0 && y % 2 == 0) {\n"
" unsigned int pos = x + (y / 2) * stride1;\n"
" *(unsigned short *) &dst1[pos] = scale_to_12bits (sample.y);\n"
" *(unsigned short *) &dst2[pos] = scale_to_12bits (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_Y444 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.x);\n"
" dst1[pos] = scale_to_uchar (sample.y);\n"
" dst2[pos] = scale_to_uchar (sample.z);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_Y444_10 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 2 + y * stride0;\n"
" *(unsigned short *) &dst0[pos] = scale_to_10bits (sample.x);\n"
" *(unsigned short *) &dst1[pos] = scale_to_10bits (sample.y);\n"
" *(unsigned short *) &dst2[pos] = scale_to_10bits (sample.z);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_Y444_12 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 2 + y * stride0;\n"
" *(unsigned short *) &dst0[pos] = scale_to_12bits (sample.x);\n"
" *(unsigned short *) &dst1[pos] = scale_to_12bits (sample.y);\n"
" *(unsigned short *) &dst2[pos] = scale_to_12bits (sample.z);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_Y444_16 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 2 + y * stride0;\n"
" *(unsigned short *) &dst0[pos] = scale_to_ushort (sample.x);\n"
" *(unsigned short *) &dst1[pos] = scale_to_ushort (sample.y);\n"
" *(unsigned short *) &dst2[pos] = scale_to_ushort (sample.z);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_RGBA "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 4 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.x);\n"
" dst0[pos + 1] = scale_to_uchar (sample.y);\n"
" dst0[pos + 2] = scale_to_uchar (sample.z);\n"
" dst0[pos + 3] = scale_to_uchar (sample.w);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_RGBx "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 4 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.x);\n"
" dst0[pos + 1] = scale_to_uchar (sample.y);\n"
" dst0[pos + 2] = scale_to_uchar (sample.z);\n"
" dst0[pos + 3] = 255;\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_BGRA "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 4 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.z);\n"
" dst0[pos + 1] = scale_to_uchar (sample.y);\n"
" dst0[pos + 2] = scale_to_uchar (sample.x);\n"
" dst0[pos + 3] = scale_to_uchar (sample.w);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_BGRx "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 4 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.z);\n"
" dst0[pos + 1] = scale_to_uchar (sample.y);\n"
" dst0[pos + 2] = scale_to_uchar (sample.x);\n"
" dst0[pos + 3] = 255;\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_ARGB "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 4 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.w);\n"
" dst0[pos + 1] = scale_to_uchar (sample.x);\n"
" dst0[pos + 2] = scale_to_uchar (sample.y);\n"
" dst0[pos + 3] = scale_to_uchar (sample.z);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_ABGR "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 4 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.w);\n"
" dst0[pos + 1] = scale_to_uchar (sample.z);\n"
" dst0[pos + 2] = scale_to_uchar (sample.y);\n"
" dst0[pos + 3] = scale_to_uchar (sample.x);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_RGB "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 3 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.x);\n"
" dst0[pos + 1] = scale_to_uchar (sample.y);\n"
" dst0[pos + 2] = scale_to_uchar (sample.z);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_BGR "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 3 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.z);\n"
" dst0[pos + 1] = scale_to_uchar (sample.y);\n"
" dst0[pos + 2] = scale_to_uchar (sample.x);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_RGB10A2 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" unsigned int alpha = (unsigned int) scale_to_2bits (sample.x);\n"
" unsigned int packed_rgb = alpha << 30;\n"
" packed_rgb |= ((unsigned int) scale_to_10bits (sample.x));\n"
" packed_rgb |= ((unsigned int) scale_to_10bits (sample.y)) << 10;\n"
" packed_rgb |= ((unsigned int) scale_to_10bits (sample.z)) << 20;\n"
" *(unsigned int *) &dst0[x * 4 + y * stride0] = packed_rgb;\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_BGR10A2 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" unsigned int alpha = (unsigned int) scale_to_2bits (sample.x);\n"
" unsigned int packed_rgb = alpha << 30;\n"
" packed_rgb |= ((unsigned int) scale_to_10bits (sample.x)) << 20;\n"
" packed_rgb |= ((unsigned int) scale_to_10bits (sample.y)) << 10;\n"
" packed_rgb |= ((unsigned int) scale_to_10bits (sample.z));\n"
" *(unsigned int *) &dst0[x * 4 + y * stride0] = packed_rgb;\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_Y42B "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" dst0[x + y * stride0] = scale_to_uchar (sample.x);\n"
" if (x % 2 == 0) {\n"
" unsigned int pos = x / 2 + y * stride1;\n"
" dst1[pos] = scale_to_uchar (sample.y);\n"
" dst2[pos] = scale_to_uchar (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_I422_10 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" *(unsigned short *) &dst0[x * 2 + y * stride0] = scale_to_10bits (sample.x);\n"
" if (x % 2 == 0) {\n"
" unsigned int pos = x + y * stride1;\n"
" *(unsigned short *) &dst1[pos] = scale_to_10bits (sample.y);\n"
" *(unsigned short *) &dst2[pos] = scale_to_10bits (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_I422_12 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" *(unsigned short *) &dst0[x * 2 + y * stride0] = scale_to_12bits (sample.x);\n"
" if (x % 2 == 0) {\n"
" unsigned int pos = x + y * stride1;\n"
" *(unsigned short *) &dst1[pos] = scale_to_12bits (sample.y);\n"
" *(unsigned short *) &dst2[pos] = scale_to_12bits (sample.z);\n"
" }\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_RGBP "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.x);\n"
" dst1[pos] = scale_to_uchar (sample.y);\n"
" dst2[pos] = scale_to_uchar (sample.z);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_BGRP "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.z);\n"
" dst1[pos] = scale_to_uchar (sample.y);\n"
" dst2[pos] = scale_to_uchar (sample.x);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_GBR "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.y);\n"
" dst1[pos] = scale_to_uchar (sample.z);\n"
" dst2[pos] = scale_to_uchar (sample.x);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_GBR_10 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 2 + y * stride0;\n"
" *(unsigned short *) &dst0[pos] = scale_to_10bits (sample.y);\n"
" *(unsigned short *) &dst1[pos] = scale_to_10bits (sample.z);\n"
" *(unsigned short *) &dst2[pos] = scale_to_10bits (sample.x);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_GBR_12 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 2 + y * stride0;\n"
" *(unsigned short *) &dst0[pos] = scale_to_12bits (sample.y);\n"
" *(unsigned short *) &dst1[pos] = scale_to_12bits (sample.z);\n"
" *(unsigned short *) &dst2[pos] = scale_to_12bits (sample.x);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_GBR_16 "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 2 + y * stride0;\n"
" *(unsigned short *) &dst0[pos] = scale_to_ushort (sample.y);\n"
" *(unsigned short *) &dst1[pos] = scale_to_ushort (sample.z);\n"
" *(unsigned short *) &dst2[pos] = scale_to_ushort (sample.x);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_GBRA "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.y);\n"
" dst1[pos] = scale_to_uchar (sample.z);\n"
" dst2[pos] = scale_to_uchar (sample.x);\n"
" dst3[pos] = scale_to_uchar (sample.w);\n"
"}\n"
"\n"
"__device__ inline void\n"
WRITE_VUYA "(unsigned char * dst0, unsigned char * dst1, unsigned char * dst2,\n"
" unsigned char * dst3, float4 sample, int x, int y, int stride0, int stride1)\n"
"{\n"
" int pos = x * 4 + y * stride0;\n"
" dst0[pos] = scale_to_uchar (sample.z);\n"
" dst0[pos + 1] = scale_to_uchar (sample.y);\n"
" dst0[pos + 2] = scale_to_uchar (sample.x);\n"
" dst0[pos + 3] = scale_to_uchar (sample.w);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_IDENTITY "(float x, float y)\n"
"{\n"
" return make_float2(x, y);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_90R "(float x, float y)\n"
"{\n"
" return make_float2(y, 1.0 - x);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_180 "(float x, float y)\n"
"{\n"
" return make_float2(1.0 - x, 1.0 - y);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_90L "(float x, float y)\n"
"{\n"
" return make_float2(1.0 - y, x);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_HORIZ "(float x, float y)\n"
"{\n"
" return make_float2(1.0 - x, y);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_VERT "(float x, float y)\n"
"{\n"
" return make_float2(x, 1.0 - y);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_UL_LR "(float x, float y)\n"
"{\n"
" return make_float2(y, x);\n"
"}\n"
"\n"
"__device__ inline float2\n"
ROTATE_UR_LL "(float x, float y)\n"
"{\n"
" return make_float2(1.0 - y, 1.0 - x);\n"
"}\n"
"\n";
#define GST_CUDA_KERNEL_UNPACK_FUNC "gst_cuda_kernel_unpack_func"
static const gchar RGB_TO_RGBx[] =
"extern \"C\" {\n"
"__global__ void\n"
GST_CUDA_KERNEL_UNPACK_FUNC
"(unsigned char *src, unsigned char *dst, int width, int height,\n"
" int src_stride, int dst_stride)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < width && y_pos < height) {\n"
" int dst_pos = x_pos * 4 + y_pos * dst_stride;\n"
" int src_pos = x_pos * 3 + y_pos * src_stride;\n"
" dst[dst_pos] = src[src_pos];\n"
" dst[dst_pos + 1] = src[src_pos + 1];\n"
" dst[dst_pos + 2] = src[src_pos + 2];\n"
" dst[dst_pos + 3] = 0xff;\n"
" }\n"
"}\n"
"}\n";
static const gchar RGB10A2_TO_ARGB64[] =
"extern \"C\" {\n"
"__global__ void\n"
GST_CUDA_KERNEL_UNPACK_FUNC
"(unsigned char *src, unsigned char *dst, int width, int height,\n"
" int src_stride, int dst_stride)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < width && y_pos < height) {\n"
" unsigned short a, r, g, b;\n"
" unsigned int val;\n"
" int dst_pos = x_pos * 8 + y_pos * dst_stride;\n"
" val = *(unsigned int *)&src[x_pos * 4 + y_pos * src_stride];\n"
" a = (val >> 30) & 0x03;\n"
" a = (a << 14) | (a << 12) | (a << 10) | (a << 8) | (a << 6) | (a << 4) | (a << 2) | (a << 0);\n"
" r = (val & 0x3ff);\n"
" r = (r << 6) | (r >> 4);\n"
" g = ((val >> 10) & 0x3ff);\n"
" g = (g << 6) | (g >> 4);\n"
" b = ((val >> 20) & 0x3ff);\n"
" b = (b << 6) | (b >> 4);\n"
" *(unsigned short *) &dst[dst_pos] = a;\n"
" *(unsigned short *) &dst[dst_pos + 2] = r;\n"
" *(unsigned short *) &dst[dst_pos + 4] = g;\n"
" *(unsigned short *) &dst[dst_pos + 6] = b;\n"
" }\n"
"}\n"
"}\n";
static const gchar BGR10A2_TO_ARGB64[] =
"extern \"C\" {\n"
"__global__ void\n"
GST_CUDA_KERNEL_UNPACK_FUNC
"(unsigned char *src, unsigned char *dst, int width, int height,\n"
" int src_stride, int dst_stride)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" if (x_pos < width && y_pos < height) {\n"
" unsigned short a, r, g, b;\n"
" unsigned int val;\n"
" int dst_pos = x_pos * 8 + y_pos * dst_stride;\n"
" val = *(unsigned int *)&src[x_pos * 4 + y_pos * src_stride];\n"
" a = (val >> 30) & 0x03;\n"
" a = (a << 14) | (a << 12) | (a << 10) | (a << 8) | (a << 6) | (a << 4) | (a << 2) | (a << 0);\n"
" b = (val & 0x3ff);\n"
" b = (b << 6) | (b >> 4);\n"
" g = ((val >> 10) & 0x3ff);\n"
" g = (g << 6) | (g >> 4);\n"
" r = ((val >> 20) & 0x3ff);\n"
" r = (r << 6) | (r >> 4);\n"
" *(unsigned short *) &dst[dst_pos] = a;\n"
" *(unsigned short *) &dst[dst_pos + 2] = r;\n"
" *(unsigned short *) &dst[dst_pos + 4] = g;\n"
" *(unsigned short *) &dst[dst_pos + 6] = b;\n"
" }\n"
"}\n"
"}\n";
#define GST_CUDA_KERNEL_MAIN_FUNC "gst_cuda_converter_main"
static const gchar TEMPLETA_KERNEL[] =
/* KERNEL_COMMON */
"%s\n"
/* UNPACK FUNCTION */
"%s\n"
"__constant__ ColorMatrix TO_RGB_MATRIX = { { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s } };\n"
"__constant__ ColorMatrix TO_YUV_MATRIX = { { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s },\n"
" { %s, %s, %s } };\n"
"__constant__ int WIDTH = %d;\n"
"__constant__ int HEIGHT = %d;\n"
"__constant__ int LEFT = %d;\n"
"__constant__ int TOP = %d;\n"
"__constant__ int RIGHT = %d;\n"
"__constant__ int BOTTOM = %d;\n"
"__constant__ int VIEW_WIDTH = %d;\n"
"__constant__ int VIEW_HEIGHT = %d;\n"
"__constant__ float OFFSET_X = %s;\n"
"__constant__ float OFFSET_Y = %s;\n"
"__constant__ float BORDER_X = %s;\n"
"__constant__ float BORDER_Y = %s;\n"
"__constant__ float BORDER_Z = %s;\n"
"__constant__ float BORDER_W = %s;\n"
"\n"
"extern \"C\" {\n"
"__global__ void\n"
GST_CUDA_KERNEL_MAIN_FUNC "(cudaTextureObject_t tex0, cudaTextureObject_t tex1,\n"
" cudaTextureObject_t tex2, cudaTextureObject_t tex3, unsigned char * dst0,\n"
" unsigned char * dst1, unsigned char * dst2, unsigned char * dst3,\n"
" int stride0, int stride1)\n"
"{\n"
" int x_pos = blockIdx.x * blockDim.x + threadIdx.x;\n"
" int y_pos = blockIdx.y * blockDim.y + threadIdx.y;\n"
" float4 sample;\n"
" if (x_pos >= WIDTH || y_pos >= HEIGHT)\n"
" return;\n"
" if (x_pos < LEFT || x_pos >= RIGHT || y_pos < TOP || y_pos >= BOTTOM) {\n"
" sample = make_float4 (BORDER_X, BORDER_Y, BORDER_Z, BORDER_W);\n"
" } else {\n"
" float x = OFFSET_X + (float) (x_pos - LEFT) / VIEW_WIDTH;\n"
" float y = OFFSET_Y + (float) (y_pos - TOP) / VIEW_HEIGHT;\n"
" float2 rotated = %s (x, y);\n"
" float4 s = %s (tex0, tex1, tex2, tex3, rotated.x, rotated.y);\n"
" float3 xyz = make_float3 (s.x, s.y, s.z);\n"
" float3 rgb = %s (xyz, &TO_RGB_MATRIX);\n"
" float3 yuv = %s (rgb, &TO_YUV_MATRIX);\n"
" sample = make_float4 (yuv.x, yuv.y, yuv.z, s.w);\n"
" }\n"
" %s (dst0, dst1, dst2, dst3, sample, x_pos, y_pos, stride0, stride1);\n"
"}\n"
"}\n";
/* *INDENT-ON* */
typedef struct _TextureFormat
{
GstVideoFormat format;
CUarray_format array_format[GST_VIDEO_MAX_COMPONENTS];
guint channels[GST_VIDEO_MAX_COMPONENTS];
const gchar *sample_func;
} TextureFormat;
#define CU_AD_FORMAT_NONE 0
#define MAKE_FORMAT_YUV_PLANAR(f,cf,sample_func) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_NONE }, {1, 1, 1, 0}, sample_func }
#define MAKE_FORMAT_YUV_SEMI_PLANAR(f,cf,sample_func) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_NONE, CU_AD_FORMAT_NONE }, {1, 2, 0, 0}, sample_func }
#define MAKE_FORMAT_RGB(f,cf,sample_func) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_NONE, \
CU_AD_FORMAT_NONE, CU_AD_FORMAT_NONE }, {4, 0, 0, 0}, sample_func }
#define MAKE_FORMAT_RGBP(f,cf,sample_func) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_NONE }, {1, 1, 1, 0}, sample_func }
#define MAKE_FORMAT_RGBAP(f,cf,sample_func) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf }, {1, 1, 1, 1}, sample_func }
static const TextureFormat format_map[] = {
MAKE_FORMAT_YUV_PLANAR (I420, UNSIGNED_INT8, SAMPLE_YUV_PLANAR),
MAKE_FORMAT_YUV_PLANAR (YV12, UNSIGNED_INT8, SAMPLE_YV12),
MAKE_FORMAT_YUV_SEMI_PLANAR (NV12, UNSIGNED_INT8, SAMPLE_SEMI_PLANAR),
MAKE_FORMAT_YUV_SEMI_PLANAR (NV21, UNSIGNED_INT8, SAMPLE_SEMI_PLANAR_SWAP),
MAKE_FORMAT_YUV_SEMI_PLANAR (P010_10LE, UNSIGNED_INT16, SAMPLE_SEMI_PLANAR),
MAKE_FORMAT_YUV_SEMI_PLANAR (P012_LE, UNSIGNED_INT16, SAMPLE_SEMI_PLANAR),
MAKE_FORMAT_YUV_SEMI_PLANAR (P016_LE, UNSIGNED_INT16, SAMPLE_SEMI_PLANAR),
MAKE_FORMAT_YUV_PLANAR (I420_10LE, UNSIGNED_INT16, SAMPLE_YUV_PLANAR_10BIS),
MAKE_FORMAT_YUV_PLANAR (I420_12LE, UNSIGNED_INT16, SAMPLE_YUV_PLANAR_12BIS),
MAKE_FORMAT_YUV_PLANAR (Y444, UNSIGNED_INT8, SAMPLE_YUV_PLANAR),
MAKE_FORMAT_YUV_PLANAR (Y444_10LE, UNSIGNED_INT16, SAMPLE_YUV_PLANAR_10BIS),
MAKE_FORMAT_YUV_PLANAR (Y444_12LE, UNSIGNED_INT16, SAMPLE_YUV_PLANAR_12BIS),
MAKE_FORMAT_YUV_PLANAR (Y444_16LE, UNSIGNED_INT16, SAMPLE_YUV_PLANAR),
MAKE_FORMAT_RGB (RGBA, UNSIGNED_INT8, SAMPLE_RGBA),
MAKE_FORMAT_RGB (BGRA, UNSIGNED_INT8, SAMPLE_BGRA),
MAKE_FORMAT_RGB (RGBx, UNSIGNED_INT8, SAMPLE_RGBx),
MAKE_FORMAT_RGB (BGRx, UNSIGNED_INT8, SAMPLE_BGRx),
MAKE_FORMAT_RGB (ARGB, UNSIGNED_INT8, SAMPLE_ARGB),
MAKE_FORMAT_RGB (ARGB64, UNSIGNED_INT16, SAMPLE_ARGB64),
MAKE_FORMAT_RGB (ABGR, UNSIGNED_INT8, SAMPLE_AGBR),
MAKE_FORMAT_YUV_PLANAR (Y42B, UNSIGNED_INT8, SAMPLE_YUV_PLANAR),
MAKE_FORMAT_YUV_PLANAR (I422_10LE, UNSIGNED_INT16, SAMPLE_YUV_PLANAR_10BIS),
MAKE_FORMAT_YUV_PLANAR (I422_12LE, UNSIGNED_INT16, SAMPLE_YUV_PLANAR_12BIS),
MAKE_FORMAT_RGBP (RGBP, UNSIGNED_INT8, SAMPLE_RGBP),
MAKE_FORMAT_RGBP (BGRP, UNSIGNED_INT8, SAMPLE_BGRP),
MAKE_FORMAT_RGBP (GBR, UNSIGNED_INT8, SAMPLE_GBR),
MAKE_FORMAT_RGBP (GBR_10LE, UNSIGNED_INT16, SAMPLE_GBR_10),
MAKE_FORMAT_RGBP (GBR_12LE, UNSIGNED_INT16, SAMPLE_GBR_12),
MAKE_FORMAT_RGBP (GBR_16LE, UNSIGNED_INT16, SAMPLE_GBR),
MAKE_FORMAT_RGBAP (GBRA, UNSIGNED_INT8, SAMPLE_GBRA),
MAKE_FORMAT_RGB (VUYA, UNSIGNED_INT8, SAMPLE_VUYA),
};
typedef struct _TextureBuffer
{
CUdeviceptr ptr;
gsize stride;
CUtexObject texture;
} TextureBuffer;
typedef struct
{
gint x;
gint y;
gint width;
gint height;
} ConverterRect;
struct _GstCudaConverterPrivate
{
GstVideoInfo in_info;
GstVideoInfo out_info;
GstVideoOrientationMethod method;
GstStructure *config;
GstVideoInfo texture_info;
const TextureFormat *texture_fmt;
gint texture_align;
ConverterRect dest_rect;
TextureBuffer fallback_buffer[GST_VIDEO_MAX_COMPONENTS];
CUfilter_mode filter_mode[GST_VIDEO_MAX_COMPONENTS];
TextureBuffer unpack_buffer;
CUmodule module;
CUfunction main_func;
CUfunction unpack_func;
};
static void gst_cuda_converter_dispose (GObject * object);
static void gst_cuda_converter_finalize (GObject * object);
#define gst_cuda_converter_parent_class parent_class
G_DEFINE_TYPE_WITH_PRIVATE (GstCudaConverter, gst_cuda_converter,
GST_TYPE_OBJECT);
static void
gst_cuda_converter_class_init (GstCudaConverterClass * klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->dispose = gst_cuda_converter_dispose;
object_class->finalize = gst_cuda_converter_finalize;
GST_DEBUG_CATEGORY_INIT (gst_cuda_converter_debug,
"cudaconverter", 0, "cudaconverter");
}
static void
gst_cuda_converter_init (GstCudaConverter * self)
{
GstCudaConverterPrivate *priv;
self->priv = priv = gst_cuda_converter_get_instance_private (self);
priv->config = gst_structure_new_empty ("GstCudaConverter");
}
static void
gst_cuda_converter_dispose (GObject * object)
{
GstCudaConverter *self = GST_CUDA_CONVERTER (object);
GstCudaConverterPrivate *priv = self->priv;
guint i;
if (self->context && gst_cuda_context_push (self->context)) {
if (priv->module) {
CuModuleUnload (priv->module);
priv->module = NULL;
}
for (i = 0; i < G_N_ELEMENTS (priv->fallback_buffer); i++) {
if (priv->fallback_buffer[i].ptr) {
if (priv->fallback_buffer[i].texture) {
CuTexObjectDestroy (priv->fallback_buffer[i].texture);
priv->fallback_buffer[i].texture = 0;
}
CuMemFree (priv->fallback_buffer[i].ptr);
priv->fallback_buffer[i].ptr = 0;
}
}
if (priv->unpack_buffer.ptr) {
if (priv->unpack_buffer.texture) {
CuTexObjectDestroy (priv->unpack_buffer.texture);
priv->unpack_buffer.texture = 0;
}
CuMemFree (priv->unpack_buffer.ptr);
priv->unpack_buffer.ptr = 0;
}
gst_cuda_context_pop (NULL);
}
gst_clear_object (&self->context);
G_OBJECT_CLASS (parent_class)->dispose (object);
}
static void
gst_cuda_converter_finalize (GObject * object)
{
GstCudaConverter *self = GST_CUDA_CONVERTER (object);
GstCudaConverterPrivate *priv = self->priv;
gst_structure_free (priv->config);
G_OBJECT_CLASS (parent_class)->finalize (object);
}
static const gchar *
get_color_range_name (GstVideoColorRange range)
{
switch (range) {
case GST_VIDEO_COLOR_RANGE_0_255:
return "FULL";
case GST_VIDEO_COLOR_RANGE_16_235:
return "STUDIO";
default:
break;
}
return "UNKNOWN";
}
typedef struct _GstCudaColorMatrixString
{
gchar matrix[3][3][G_ASCII_DTOSTR_BUF_SIZE];
gchar offset[3][G_ASCII_DTOSTR_BUF_SIZE];
gchar min[3][G_ASCII_DTOSTR_BUF_SIZE];
gchar max[3][G_ASCII_DTOSTR_BUF_SIZE];
} GstCudaColorMatrixString;
static void
color_matrix_to_string (const GstCudaColorMatrix * m,
GstCudaColorMatrixString * str)
{
guint i, j;
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
g_ascii_formatd (str->matrix[i][j], G_ASCII_DTOSTR_BUF_SIZE, "%f",
m->matrix[i][j]);
}
g_ascii_formatd (str->offset[i],
G_ASCII_DTOSTR_BUF_SIZE, "%f", m->offset[i]);
g_ascii_formatd (str->min[i], G_ASCII_DTOSTR_BUF_SIZE, "%f", m->min[i]);
g_ascii_formatd (str->max[i], G_ASCII_DTOSTR_BUF_SIZE, "%f", m->max[i]);
}
}
static gboolean
gst_cuda_converter_setup (GstCudaConverter * self)
{
GstCudaConverterPrivate *priv = self->priv;
const GstVideoInfo *in_info;
const GstVideoInfo *out_info;
const GstVideoInfo *texture_info;
GstCudaColorMatrix to_rgb_matrix;
GstCudaColorMatrix to_yuv_matrix;
GstCudaColorMatrix border_color_matrix;
GstCudaColorMatrixString to_rgb_matrix_str;
GstCudaColorMatrixString to_yuv_matrix_str;
gchar border_color_str[4][G_ASCII_DTOSTR_BUF_SIZE];
gdouble border_color[4];
gchar offset_x[G_ASCII_DTOSTR_BUF_SIZE];
gchar offset_y[G_ASCII_DTOSTR_BUF_SIZE];
gint i, j;
const gchar *unpack_function = NULL;
const gchar *write_func = NULL;
const gchar *to_rgb_func = COLOR_SPACE_IDENTITY;
const gchar *to_yuv_func = COLOR_SPACE_IDENTITY;
const gchar *rotate_func = ROTATE_IDENTITY;
const GstVideoColorimetry *in_color;
const GstVideoColorimetry *out_color;
gchar *str;
gchar *program = NULL;
CUresult ret;
in_info = &priv->in_info;
out_info = &priv->out_info;
texture_info = &priv->texture_info;
in_color = &in_info->colorimetry;
out_color = &out_info->colorimetry;
memset (&to_rgb_matrix, 0, sizeof (GstCudaColorMatrix));
color_matrix_identity (&to_rgb_matrix);
memset (&to_yuv_matrix, 0, sizeof (GstCudaColorMatrix));
color_matrix_identity (&to_yuv_matrix);
switch (GST_VIDEO_INFO_FORMAT (out_info)) {
case GST_VIDEO_FORMAT_I420:
write_func = WRITE_I420;
break;
case GST_VIDEO_FORMAT_YV12:
write_func = WRITE_YV12;
break;
case GST_VIDEO_FORMAT_NV12:
write_func = WRITE_NV12;
break;
case GST_VIDEO_FORMAT_NV21:
write_func = WRITE_NV21;
break;
case GST_VIDEO_FORMAT_P010_10LE:
case GST_VIDEO_FORMAT_P012_LE:
case GST_VIDEO_FORMAT_P016_LE:
write_func = WRITE_P010;
break;
case GST_VIDEO_FORMAT_I420_10LE:
write_func = WRITE_I420_10;
break;
case GST_VIDEO_FORMAT_I420_12LE:
write_func = WRITE_I420_12;
break;
case GST_VIDEO_FORMAT_Y444:
write_func = WRITE_Y444;
break;
case GST_VIDEO_FORMAT_Y444_10LE:
write_func = WRITE_Y444_10;
break;
case GST_VIDEO_FORMAT_Y444_12LE:
write_func = WRITE_Y444_12;
break;
case GST_VIDEO_FORMAT_Y444_16LE:
write_func = WRITE_Y444_16;
break;
case GST_VIDEO_FORMAT_RGBA:
write_func = WRITE_RGBA;
break;
case GST_VIDEO_FORMAT_RGBx:
write_func = WRITE_RGBx;
break;
case GST_VIDEO_FORMAT_BGRA:
write_func = WRITE_BGRA;
break;
case GST_VIDEO_FORMAT_BGRx:
write_func = WRITE_BGRx;
break;
case GST_VIDEO_FORMAT_ARGB:
write_func = WRITE_ARGB;
break;
case GST_VIDEO_FORMAT_ABGR:
write_func = WRITE_ABGR;
break;
case GST_VIDEO_FORMAT_RGB:
write_func = WRITE_RGB;
break;
case GST_VIDEO_FORMAT_BGR:
write_func = WRITE_BGR;
break;
case GST_VIDEO_FORMAT_RGB10A2_LE:
write_func = WRITE_RGB10A2;
break;
case GST_VIDEO_FORMAT_BGR10A2_LE:
write_func = WRITE_BGR10A2;
break;
case GST_VIDEO_FORMAT_Y42B:
write_func = WRITE_Y42B;
break;
case GST_VIDEO_FORMAT_I422_10LE:
write_func = WRITE_I422_10;
break;
case GST_VIDEO_FORMAT_I422_12LE:
write_func = WRITE_I422_12;
break;
case GST_VIDEO_FORMAT_RGBP:
write_func = WRITE_RGBP;
break;
case GST_VIDEO_FORMAT_BGRP:
write_func = WRITE_BGRP;
break;
case GST_VIDEO_FORMAT_GBR:
write_func = WRITE_GBR;
break;
case GST_VIDEO_FORMAT_GBR_10LE:
write_func = WRITE_GBR_10;
break;
case GST_VIDEO_FORMAT_GBR_12LE:
write_func = WRITE_GBR_12;
break;
case GST_VIDEO_FORMAT_GBR_16LE:
write_func = WRITE_GBR_16;
break;
case GST_VIDEO_FORMAT_GBRA:
write_func = WRITE_GBRA;
break;
case GST_VIDEO_FORMAT_VUYA:
write_func = WRITE_VUYA;
break;
default:
break;
}
if (!write_func) {
GST_ERROR_OBJECT (self, "Unknown write function for format %s",
gst_video_format_to_string (GST_VIDEO_INFO_FORMAT (out_info)));
return FALSE;
}
/* Decide texture info to use, 3 channel RGB or 10bits packed RGB
* need be converted to other format */
priv->texture_info = priv->in_info;
switch (GST_VIDEO_INFO_FORMAT (in_info)) {
case GST_VIDEO_FORMAT_RGB:
gst_video_info_set_format (&priv->texture_info,
GST_VIDEO_FORMAT_RGBx, GST_VIDEO_INFO_WIDTH (in_info),
GST_VIDEO_INFO_HEIGHT (in_info));
unpack_function = RGB_TO_RGBx;
break;
case GST_VIDEO_FORMAT_BGR:
gst_video_info_set_format (&priv->texture_info,
GST_VIDEO_FORMAT_BGRx, GST_VIDEO_INFO_WIDTH (in_info),
GST_VIDEO_INFO_HEIGHT (in_info));
unpack_function = RGB_TO_RGBx;
break;
case GST_VIDEO_FORMAT_RGB10A2_LE:
gst_video_info_set_format (&priv->texture_info,
GST_VIDEO_FORMAT_ARGB64, GST_VIDEO_INFO_WIDTH (in_info),
GST_VIDEO_INFO_HEIGHT (in_info));
unpack_function = RGB10A2_TO_ARGB64;
break;
case GST_VIDEO_FORMAT_BGR10A2_LE:
gst_video_info_set_format (&priv->texture_info,
GST_VIDEO_FORMAT_ARGB64, GST_VIDEO_INFO_WIDTH (in_info),
GST_VIDEO_INFO_HEIGHT (in_info));
unpack_function = BGR10A2_TO_ARGB64;
break;
default:
break;
}
for (i = 0; i < G_N_ELEMENTS (format_map); i++) {
if (format_map[i].format == GST_VIDEO_INFO_FORMAT (texture_info)) {
priv->texture_fmt = &format_map[i];
break;
}
}
if (!priv->texture_fmt) {
GST_ERROR_OBJECT (self, "Couldn't find texture format for %s (%s)",
gst_video_format_to_string (GST_VIDEO_INFO_FORMAT (in_info)),
gst_video_format_to_string (GST_VIDEO_INFO_FORMAT (texture_info)));
return FALSE;
}
/* calculate black color
* TODO: add support border color */
if (GST_VIDEO_INFO_IS_RGB (out_info)) {
GstVideoInfo rgb_info = *out_info;
rgb_info.colorimetry.range = GST_VIDEO_COLOR_RANGE_0_255;
gst_cuda_color_range_adjust_matrix_unorm (&rgb_info, out_info,
&border_color_matrix);
} else {
GstVideoInfo rgb_info;
gst_video_info_set_format (&rgb_info, GST_VIDEO_FORMAT_RGBA64_LE,
out_info->width, out_info->height);
gst_cuda_rgb_to_yuv_matrix_unorm (&rgb_info,
out_info, &border_color_matrix);
}
for (i = 0; i < 3; i++) {
/* TODO: property */
gdouble border_rgba[4] = { 0, 0, 0 };
border_color[i] = 0;
for (j = 0; j < 3; j++)
border_color[i] += border_color_matrix.matrix[i][j] * border_rgba[i];
border_color[i] = border_color_matrix.offset[i];
border_color[i] = CLAMP (border_color[i],
border_color_matrix.min[i], border_color_matrix.max[i]);
g_ascii_formatd (border_color_str[i],
G_ASCII_DTOSTR_BUF_SIZE, "%f", border_color[i]);
}
g_ascii_formatd (border_color_str[3], G_ASCII_DTOSTR_BUF_SIZE, "%f", 1);
/* FIXME: handle primaries and transfer functions */
if (GST_VIDEO_INFO_IS_RGB (texture_info)) {
if (GST_VIDEO_INFO_IS_RGB (out_info)) {
/* RGB -> RGB */
if (in_color->range == out_color->range) {
GST_DEBUG_OBJECT (self, "RGB -> RGB conversion without matrix");
} else {
if (!gst_cuda_color_range_adjust_matrix_unorm (in_info, out_info,
&to_rgb_matrix)) {
GST_ERROR_OBJECT (self, "Failed to get RGB range adjust matrix");
return FALSE;
}
str = gst_cuda_dump_color_matrix (&to_rgb_matrix);
GST_DEBUG_OBJECT (self, "RGB range adjust %s -> %s\n%s",
get_color_range_name (in_color->range),
get_color_range_name (out_color->range), str);
g_free (str);
to_rgb_func = COLOR_SPACE_CONVERT;
}
} else {
/* RGB -> YUV */
if (!gst_cuda_rgb_to_yuv_matrix_unorm (in_info, out_info, &to_yuv_matrix)) {
GST_ERROR_OBJECT (self, "Failed to get RGB -> YUV transform matrix");
return FALSE;
}
str = gst_cuda_dump_color_matrix (&to_yuv_matrix);
GST_DEBUG_OBJECT (self, "RGB -> YUV matrix:\n%s", str);
g_free (str);
to_yuv_func = COLOR_SPACE_CONVERT;
}
} else {
if (GST_VIDEO_INFO_IS_RGB (out_info)) {
/* YUV -> RGB */
if (!gst_cuda_yuv_to_rgb_matrix_unorm (in_info, out_info, &to_rgb_matrix)) {
GST_ERROR_OBJECT (self, "Failed to get YUV -> RGB transform matrix");
return FALSE;
}
str = gst_cuda_dump_color_matrix (&to_rgb_matrix);
GST_DEBUG_OBJECT (self, "YUV -> RGB matrix:\n%s", str);
g_free (str);
to_rgb_func = COLOR_SPACE_CONVERT;
} else {
/* YUV -> YUV */
if (in_color->range == out_color->range) {
GST_DEBUG_OBJECT (self, "YUV -> YU conversion without matrix");
} else {
if (!gst_cuda_color_range_adjust_matrix_unorm (in_info, out_info,
&to_yuv_matrix)) {
GST_ERROR_OBJECT (self, "Failed to get GRAY range adjust matrix");
return FALSE;
}
str = gst_cuda_dump_color_matrix (&to_yuv_matrix);
GST_DEBUG_OBJECT (self, "YUV range adjust matrix:\n%s", str);
g_free (str);
to_yuv_func = COLOR_SPACE_CONVERT;
}
}
}
color_matrix_to_string (&to_rgb_matrix, &to_rgb_matrix_str);
color_matrix_to_string (&to_yuv_matrix, &to_yuv_matrix_str);
/* half pixel offset, to sample texture at center of the pixel position */
g_ascii_formatd (offset_x, G_ASCII_DTOSTR_BUF_SIZE, "%f",
(gdouble) 0.5 / priv->dest_rect.width);
g_ascii_formatd (offset_y, G_ASCII_DTOSTR_BUF_SIZE, "%f",
(gdouble) 0.5 / priv->dest_rect.height);
switch (priv->method) {
case GST_VIDEO_ORIENTATION_90R:
rotate_func = ROTATE_90R;
break;
case GST_VIDEO_ORIENTATION_180:
rotate_func = ROTATE_180;
break;
case GST_VIDEO_ORIENTATION_90L:
rotate_func = ROTATE_90L;
break;
case GST_VIDEO_ORIENTATION_HORIZ:
rotate_func = ROTATE_HORIZ;
break;
case GST_VIDEO_ORIENTATION_VERT:
rotate_func = ROTATE_VERT;
break;
case GST_VIDEO_ORIENTATION_UL_LR:
rotate_func = ROTATE_UL_LR;
break;
case GST_VIDEO_ORIENTATION_UR_LL:
rotate_func = ROTATE_UR_LL;
break;
default:
break;
}
str = g_strdup_printf (TEMPLETA_KERNEL, KERNEL_COMMON,
unpack_function ? unpack_function : "",
/* TO RGB matrix */
to_rgb_matrix_str.matrix[0][0],
to_rgb_matrix_str.matrix[0][1],
to_rgb_matrix_str.matrix[0][2],
to_rgb_matrix_str.matrix[1][0],
to_rgb_matrix_str.matrix[1][1],
to_rgb_matrix_str.matrix[1][2],
to_rgb_matrix_str.matrix[2][0],
to_rgb_matrix_str.matrix[2][1],
to_rgb_matrix_str.matrix[2][2],
to_rgb_matrix_str.offset[0],
to_rgb_matrix_str.offset[1],
to_rgb_matrix_str.offset[2],
to_rgb_matrix_str.min[0],
to_rgb_matrix_str.min[1],
to_rgb_matrix_str.min[2],
to_rgb_matrix_str.max[0],
to_rgb_matrix_str.max[1], to_rgb_matrix_str.max[2],
/* TO YUV matrix */
to_yuv_matrix_str.matrix[0][0],
to_yuv_matrix_str.matrix[0][1],
to_yuv_matrix_str.matrix[0][2],
to_yuv_matrix_str.matrix[1][0],
to_yuv_matrix_str.matrix[1][1],
to_yuv_matrix_str.matrix[1][2],
to_yuv_matrix_str.matrix[2][0],
to_yuv_matrix_str.matrix[2][1],
to_yuv_matrix_str.matrix[2][2],
to_yuv_matrix_str.offset[0],
to_yuv_matrix_str.offset[1],
to_yuv_matrix_str.offset[2],
to_yuv_matrix_str.min[0],
to_yuv_matrix_str.min[1],
to_yuv_matrix_str.min[2],
to_yuv_matrix_str.max[0],
to_yuv_matrix_str.max[1], to_yuv_matrix_str.max[2],
/* width/height */
GST_VIDEO_INFO_WIDTH (out_info), GST_VIDEO_INFO_HEIGHT (out_info),
/* viewport */
priv->dest_rect.x, priv->dest_rect.y,
priv->dest_rect.x + priv->dest_rect.width,
priv->dest_rect.y + priv->dest_rect.height,
priv->dest_rect.width, priv->dest_rect.height,
/* half pixel offsets */
offset_x, offset_y,
/* border colors */
border_color_str[0], border_color_str[1],
border_color_str[2], border_color_str[3],
/* adjust coord before sampling */
rotate_func,
/* sampler function name */
priv->texture_fmt->sample_func,
/* TO RGB conversion function name */
to_rgb_func,
/* TO YUV conversion function name */
to_yuv_func,
/* write function name */
write_func);
GST_LOG_OBJECT (self, "kernel code:\n%s\n", str);
gint cuda_device;
g_object_get (self->context, "cuda-device-id", &cuda_device, NULL);
program = gst_cuda_nvrtc_compile_cubin (str, cuda_device);
if (!program) {
GST_WARNING_OBJECT (self, "Couldn't compile to cubin, trying ptx");
program = gst_cuda_nvrtc_compile (str);
}
g_free (str);
if (!program) {
GST_ERROR_OBJECT (self, "Could not compile code");
return FALSE;
}
if (priv->dest_rect.x != 0 || priv->dest_rect.y != 0 ||
priv->dest_rect.width != out_info->width ||
priv->dest_rect.height != out_info->height ||
in_info->width != out_info->width
|| in_info->height != out_info->height) {
for (i = 0; i < G_N_ELEMENTS (priv->filter_mode); i++)
priv->filter_mode[i] = CU_TR_FILTER_MODE_LINEAR;
} else {
for (i = 0; i < G_N_ELEMENTS (priv->filter_mode); i++)
priv->filter_mode[i] = CU_TR_FILTER_MODE_POINT;
}
if (!gst_cuda_context_push (self->context)) {
GST_ERROR_OBJECT (self, "Couldn't push context");
g_free (program);
return FALSE;
}
/* Allocates intermediate memory for texture */
if (unpack_function) {
CUDA_TEXTURE_DESC texture_desc;
CUDA_RESOURCE_DESC resource_desc;
CUtexObject texture = 0;
memset (&texture_desc, 0, sizeof (CUDA_TEXTURE_DESC));
memset (&resource_desc, 0, sizeof (CUDA_RESOURCE_DESC));
ret = CuMemAllocPitch (&priv->unpack_buffer.ptr,
&priv->unpack_buffer.stride,
GST_VIDEO_INFO_COMP_WIDTH (texture_info, 0) *
GST_VIDEO_INFO_COMP_PSTRIDE (texture_info, 0),
GST_VIDEO_INFO_HEIGHT (texture_info), 16);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Couldn't allocate unpack buffer");
goto error;
}
resource_desc.resType = CU_RESOURCE_TYPE_PITCH2D;
resource_desc.res.pitch2D.format = priv->texture_fmt->array_format[0];
resource_desc.res.pitch2D.numChannels = 4;
resource_desc.res.pitch2D.width = in_info->width;
resource_desc.res.pitch2D.height = in_info->height;
resource_desc.res.pitch2D.pitchInBytes = priv->unpack_buffer.stride;
resource_desc.res.pitch2D.devPtr = priv->unpack_buffer.ptr;
texture_desc.filterMode = priv->filter_mode[0];
texture_desc.flags = 0x2;
texture_desc.addressMode[0] = 1;
texture_desc.addressMode[1] = 1;
texture_desc.addressMode[2] = 1;
ret = CuTexObjectCreate (&texture, &resource_desc, &texture_desc, NULL);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Couldn't create unpack texture");
goto error;
}
priv->unpack_buffer.texture = texture;
}
ret = CuModuleLoadData (&priv->module, program);
g_clear_pointer (&program, g_free);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Could not load module");
priv->module = NULL;
goto error;
}
ret = CuModuleGetFunction (&priv->main_func,
priv->module, GST_CUDA_KERNEL_MAIN_FUNC);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Could not get main function");
goto error;
}
if (unpack_function) {
ret = CuModuleGetFunction (&priv->unpack_func,
priv->module, GST_CUDA_KERNEL_UNPACK_FUNC);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Could not get unpack function");
goto error;
}
}
gst_cuda_context_pop (NULL);
return TRUE;
error:
gst_cuda_context_pop (NULL);
g_free (program);
return FALSE;
}
static gboolean
copy_config (GQuark field_id, const GValue * value, gpointer user_data)
{
GstCudaConverter *self = (GstCudaConverter *) user_data;
gst_structure_id_set_value (self->priv->config, field_id, value);
return TRUE;
}
static void
gst_cuda_converter_set_config (GstCudaConverter * self, GstStructure * config)
{
gst_structure_foreach (config, copy_config, self);
gst_structure_free (config);
}
static gint
get_opt_int (GstCudaConverter * self, const gchar * opt, gint def)
{
gint res;
if (!gst_structure_get_int (self->priv->config, opt, &res))
res = def;
return res;
}
GstCudaConverter *
gst_cuda_converter_new (const GstVideoInfo * in_info,
const GstVideoInfo * out_info, GstCudaContext * context,
GstStructure * config)
{
GstCudaConverter *self;
GstCudaConverterPrivate *priv;
gint method;
g_return_val_if_fail (in_info != NULL, NULL);
g_return_val_if_fail (out_info != NULL, NULL);
g_return_val_if_fail (GST_IS_CUDA_CONTEXT (context), NULL);
self = g_object_new (GST_TYPE_CUDA_CONVERTER, NULL);
if (!GST_IS_CUDA_CONTEXT (context)) {
GST_WARNING_OBJECT (self, "Not a valid cuda context object");
goto error;
}
self->context = gst_object_ref (context);
priv = self->priv;
priv->in_info = *in_info;
priv->out_info = *out_info;
if (config)
gst_cuda_converter_set_config (self, config);
priv->dest_rect.x = get_opt_int (self, GST_CUDA_CONVERTER_OPT_DEST_X, 0);
priv->dest_rect.y = get_opt_int (self, GST_CUDA_CONVERTER_OPT_DEST_Y, 0);
priv->dest_rect.width = get_opt_int (self,
GST_CUDA_CONVERTER_OPT_DEST_WIDTH, out_info->width);
priv->dest_rect.height = get_opt_int (self,
GST_CUDA_CONVERTER_OPT_DEST_HEIGHT, out_info->height);
if (gst_structure_get_enum (priv->config,
GST_CUDA_CONVERTER_OPT_ORIENTATION_METHOD,
GST_TYPE_VIDEO_ORIENTATION_METHOD, &method)) {
priv->method = method;
GST_DEBUG_OBJECT (self, "Selected orientation method %d", method);
}
if (!gst_cuda_converter_setup (self))
goto error;
priv->texture_align = gst_cuda_context_get_texture_alignment (context);
gst_object_ref_sink (self);
return self;
error:
gst_object_unref (self);
return NULL;
}
static CUtexObject
gst_cuda_converter_create_texture_unchecked (GstCudaConverter * self,
CUdeviceptr src, gint width, gint height, CUarray_format format,
guint channels, gint stride, gint plane, CUfilter_mode mode)
{
CUDA_TEXTURE_DESC texture_desc;
CUDA_RESOURCE_DESC resource_desc;
CUtexObject texture = 0;
CUresult cuda_ret;
memset (&texture_desc, 0, sizeof (CUDA_TEXTURE_DESC));
memset (&resource_desc, 0, sizeof (CUDA_RESOURCE_DESC));
resource_desc.resType = CU_RESOURCE_TYPE_PITCH2D;
resource_desc.res.pitch2D.format = format;
resource_desc.res.pitch2D.numChannels = channels;
resource_desc.res.pitch2D.width = width;
resource_desc.res.pitch2D.height = height;
resource_desc.res.pitch2D.pitchInBytes = stride;
resource_desc.res.pitch2D.devPtr = src;
texture_desc.filterMode = mode;
/* Will read texture value as a normalized [0, 1] float value
* with [0, 1) coordinates */
/* CU_TRSF_NORMALIZED_COORDINATES */
texture_desc.flags = 0x2;
/* CU_TR_ADDRESS_MODE_CLAMP */
texture_desc.addressMode[0] = 1;
texture_desc.addressMode[1] = 1;
texture_desc.addressMode[2] = 1;
cuda_ret = CuTexObjectCreate (&texture, &resource_desc, &texture_desc, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR_OBJECT (self, "Could not create texture");
return 0;
}
return texture;
}
static gboolean
ensure_fallback_buffer (GstCudaConverter * self, gint width_in_bytes,
gint height, guint plane)
{
GstCudaConverterPrivate *priv = self->priv;
CUresult ret;
if (priv->fallback_buffer[plane].ptr)
return TRUE;
ret = CuMemAllocPitch (&priv->fallback_buffer[plane].ptr,
&priv->fallback_buffer[plane].stride, width_in_bytes, height, 16);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Couldn't allocate fallback buffer");
return FALSE;
}
return TRUE;
}
static CUtexObject
gst_cuda_converter_create_texture (GstCudaConverter * self,
CUdeviceptr src, gint width, gint height, gint stride, CUfilter_mode mode,
CUarray_format format, guint channles, gint plane, CUstream stream)
{
GstCudaConverterPrivate *priv = self->priv;
CUresult ret;
CUdeviceptr src_ptr;
CUDA_MEMCPY2D params = { 0, };
if (!ensure_fallback_buffer (self, stride, height, plane))
return 0;
params.srcMemoryType = CU_MEMORYTYPE_DEVICE;
params.srcPitch = stride;
params.srcDevice = (CUdeviceptr) src;
params.dstMemoryType = CU_MEMORYTYPE_DEVICE;
params.dstPitch = priv->fallback_buffer[plane].stride;
params.dstDevice = priv->fallback_buffer[plane].ptr;
params.WidthInBytes = GST_VIDEO_INFO_COMP_WIDTH (&priv->in_info, plane)
* GST_VIDEO_INFO_COMP_PSTRIDE (&priv->in_info, plane),
params.Height = GST_VIDEO_INFO_COMP_HEIGHT (&priv->in_info, plane);
ret = CuMemcpy2DAsync (&params, stream);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Couldn't copy to fallback buffer");
return 0;
}
if (!priv->fallback_buffer[plane].texture) {
src_ptr = priv->fallback_buffer[plane].ptr;
stride = priv->fallback_buffer[plane].stride;
priv->fallback_buffer[plane].texture =
gst_cuda_converter_create_texture_unchecked (self, src_ptr, width,
height, format, channles, stride, plane, mode);
}
return priv->fallback_buffer[plane].texture;
}
static gboolean
gst_cuda_converter_unpack_rgb (GstCudaConverter * self,
GstVideoFrame * src_frame, CUstream stream)
{
GstCudaConverterPrivate *priv = self->priv;
CUdeviceptr src;
gint width, height, src_stride, dst_stride;
CUresult ret;
gpointer args[] = { &src, &priv->unpack_buffer.ptr,
&width, &height, &src_stride, &dst_stride
};
g_assert (priv->unpack_buffer.ptr);
g_assert (priv->unpack_buffer.stride > 0);
src = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (src_frame, 0);
width = GST_VIDEO_FRAME_WIDTH (src_frame);
height = GST_VIDEO_FRAME_HEIGHT (src_frame);
src_stride = GST_VIDEO_FRAME_PLANE_STRIDE (src_frame, 0);
dst_stride = (gint) priv->unpack_buffer.stride;
ret = CuLaunchKernel (priv->unpack_func, DIV_UP (width, CUDA_BLOCK_X),
DIV_UP (height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
stream, args, NULL);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (self, "Couldn't unpack source RGB");
return FALSE;
}
return TRUE;
}
gboolean
gst_cuda_converter_convert_frame (GstCudaConverter * converter,
GstVideoFrame * src_frame, GstVideoFrame * dst_frame, CUstream stream,
gboolean * synchronized)
{
GstCudaConverterPrivate *priv;
const TextureFormat *format;
CUtexObject texture[GST_VIDEO_MAX_COMPONENTS] = { 0, };
guint8 *dst[GST_VIDEO_MAX_COMPONENTS] = { NULL, };
gint stride[2] = { 0, };
gint i;
gboolean ret = FALSE;
CUresult cuda_ret;
gint width, height;
gpointer args[] = { &texture[0], &texture[1], &texture[2], &texture[3],
&dst[0], &dst[1], &dst[2], &dst[3], &stride[0], &stride[1]
};
gboolean need_sync = FALSE;
GstCudaMemory *cmem;
g_return_val_if_fail (GST_IS_CUDA_CONVERTER (converter), FALSE);
g_return_val_if_fail (src_frame != NULL, FALSE);
g_return_val_if_fail (dst_frame != NULL, FALSE);
priv = converter->priv;
format = priv->texture_fmt;
g_assert (format);
cmem = (GstCudaMemory *) gst_buffer_peek_memory (src_frame->buffer, 0);
g_return_val_if_fail (gst_is_cuda_memory (GST_MEMORY_CAST (cmem)), FALSE);
if (!gst_cuda_context_push (converter->context)) {
GST_ERROR_OBJECT (converter, "Couldn't push context");
return FALSE;
}
if (priv->unpack_func) {
if (!gst_cuda_converter_unpack_rgb (converter, src_frame, stream))
goto out;
texture[0] = priv->unpack_buffer.texture;
if (!texture[0]) {
GST_ERROR_OBJECT (converter, "Unpack texture is unavailable");
goto out;
}
} else {
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (src_frame); i++) {
if (!gst_cuda_memory_get_texture (cmem,
i, priv->filter_mode[i], &texture[i])) {
CUdeviceptr src;
src = (CUdeviceptr) GST_VIDEO_FRAME_PLANE_DATA (src_frame, i);
texture[i] = gst_cuda_converter_create_texture (converter,
src, GST_VIDEO_FRAME_COMP_WIDTH (src_frame, i),
GST_VIDEO_FRAME_COMP_HEIGHT (src_frame, i),
GST_VIDEO_FRAME_PLANE_STRIDE (src_frame, i),
priv->filter_mode[i], format->array_format[i], format->channels[i],
i, stream);
need_sync = TRUE;
}
if (!texture[i]) {
GST_ERROR_OBJECT (converter, "Couldn't create texture %d", i);
goto out;
}
}
}
width = GST_VIDEO_FRAME_WIDTH (dst_frame);
height = GST_VIDEO_FRAME_HEIGHT (dst_frame);
for (i = 0; i < GST_VIDEO_FRAME_N_PLANES (dst_frame); i++)
dst[i] = GST_VIDEO_FRAME_PLANE_DATA (dst_frame, i);
stride[0] = stride[1] = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 0);
if (GST_VIDEO_FRAME_N_PLANES (dst_frame) > 1)
stride[1] = GST_VIDEO_FRAME_PLANE_STRIDE (dst_frame, 1);
cuda_ret = CuLaunchKernel (priv->main_func, DIV_UP (width, CUDA_BLOCK_X),
DIV_UP (height, CUDA_BLOCK_Y), 1, CUDA_BLOCK_X, CUDA_BLOCK_Y, 1, 0,
stream, args, NULL);
if (!gst_cuda_result (cuda_ret)) {
GST_ERROR_OBJECT (converter, "Couldn't convert frame");
goto out;
}
if (need_sync)
CuStreamSynchronize (stream);
if (synchronized)
*synchronized = need_sync;
ret = TRUE;
out:
gst_cuda_context_pop (NULL);
return ret;
}