gstreamer/subprojects/gstreamer/gst/gstsystemclock.c
Seungha Yang 9f70328b70 systemclock: Use Windows interlocked APIs
MSVC most likely does not support C11 atomic operations
with given compile options

Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/4794>
2023-06-08 01:02:45 +00:00

1456 lines
45 KiB
C

/* GStreamer
* Copyright (C) 1999,2000 Erik Walthinsen <omega@cse.ogi.edu>
* 2004 Wim Taymans <wim@fluendo.com>
*
* gstsystemclock.c: Default clock, uses the system clock
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/**
* SECTION:gstsystemclock
* @title: GstSystemClock
* @short_description: Default clock that uses the current system time
* @see_also: #GstClock
*
* The GStreamer core provides a GstSystemClock based on the system time.
* Asynchronous callbacks are scheduled from an internal thread.
*
* Clock implementors are encouraged to subclass this systemclock as it
* implements the async notification.
*
* Subclasses can however override all of the important methods for sync and
* async notifications to implement their own callback methods or blocking
* wait operations.
*/
#include "gst_private.h"
#include "gstinfo.h"
#include "gstsystemclock.h"
#include "gstenumtypes.h"
#include "gstpoll.h"
#include "gstutils.h"
#include "glib-compat-private.h"
#include <errno.h>
#ifdef G_OS_WIN32
# define WIN32_LEAN_AND_MEAN /* prevents from including too many things */
# include <windows.h> /* QueryPerformance* stuff */
# undef WIN32_LEAN_AND_MEAN
# ifndef EWOULDBLOCK
# define EWOULDBLOCK EAGAIN /* This is just to placate gcc */
# endif
#endif /* G_OS_WIN32 */
#ifdef __APPLE__
#include <mach/mach_time.h>
#endif
#if defined __APPLE__
static struct mach_timebase_info mach_timebase;
#endif
#if defined G_OS_WIN32
static LARGE_INTEGER performance_counter_frequency;
#endif
/* Small helper to make the atomics below cheaper.
*
* GLib always uses SEQ_CST atomic ops while here it's more than enough to use
* ACQUIRE/RELEASE atomic ops. On x86 / x86-64 the ACQUIRE load is compiling
* to a simple memory read.
*/
#if defined __APPLE__ || defined G_OS_WIN32
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_ATOMICS)
#include <stdatomic.h>
typedef atomic_int gst_atomic_int;
static inline int
gst_atomic_int_get_acquire (gst_atomic_int * x)
{
return atomic_load_explicit (x, memory_order_acquire);
}
static inline void
gst_atomic_int_set_release (gst_atomic_int * x, gint val)
{
atomic_store_explicit (x, val, memory_order_release);
}
#elif defined G_OS_WIN32
/* MSVC's C11 atomic might require special cflags
* https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/
*
* Can remove this code once below GLib MR is merged
* https://gitlab.gnome.org/GNOME/glib/-/merge_requests/3436
*/
typedef LONG gst_atomic_int;
static inline int
gst_atomic_int_get_acquire (gst_atomic_int * x)
{
return InterlockedAndAcquire (x, 1);
}
static inline void
gst_atomic_int_set_release (gst_atomic_int * x, gint val)
{
InterlockedOrRelease (x, 1);
}
#else /* defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_ATOMICS) */
typedef int gst_atomic_int;
#define gst_atomic_int_get_acquire(x) g_atomic_int_get(x)
#define gst_atomic_int_set_release(x, val) g_atomic_int_set(x, val)
#endif /* defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_ATOMICS) */
#endif /* defined __APPLE__ || defined G_OS_WIN32 */
/* priv_gst_clock_init:
*
* Initialize internal state of the clock. This is safe to call multiple
* times.
*/
void
priv_gst_clock_init (void)
{
#if defined __APPLE__
static gst_atomic_int inited = FALSE;
if (!gst_atomic_int_get_acquire (&inited)) {
mach_timebase_info (&mach_timebase);
gst_atomic_int_set_release (&inited, TRUE);
}
#endif
#if defined G_OS_WIN32
static gst_atomic_int inited = FALSE;
if (!gst_atomic_int_get_acquire (&inited)) {
QueryPerformanceFrequency (&performance_counter_frequency);
gst_atomic_int_set_release (&inited, TRUE);
}
#endif
}
GstClockTime
priv_gst_get_monotonic_time (void)
{
#if defined __APPLE__
guint64 mach_t = mach_absolute_time ();
return gst_util_uint64_scale (mach_t, mach_timebase.numer,
mach_timebase.denom);
#elif defined G_OS_WIN32
LARGE_INTEGER now;
QueryPerformanceCounter (&now);
return gst_util_uint64_scale (now.QuadPart, GST_SECOND,
performance_counter_frequency.QuadPart);
#elif defined (HAVE_POSIX_TIMERS) && defined(HAVE_MONOTONIC_CLOCK) &&\
defined (HAVE_CLOCK_GETTIME)
struct timespec now;
clock_gettime (CLOCK_MONOTONIC, &now);
return GST_TIMESPEC_TO_TIME (now);
#else
return g_get_monotonic_time () * 1000;
#endif
}
GstClockTime
priv_gst_get_real_time (void)
{
#if defined (HAVE_POSIX_TIMERS) && defined (HAVE_CLOCK_GETTIME)
struct timespec now;
clock_gettime (CLOCK_REALTIME, &now);
return GST_TIMESPEC_TO_TIME (now);
#else
return g_get_real_time () * 1000;
#endif
}
/* Define this to get some extra debug about jitter from each clock_wait */
#undef WAIT_DEBUGGING
#define GST_SYSTEM_CLOCK_GET_LOCK(clock) GST_OBJECT_GET_LOCK(clock)
#define GST_SYSTEM_CLOCK_LOCK(clock) g_mutex_lock(GST_SYSTEM_CLOCK_GET_LOCK(clock))
#define GST_SYSTEM_CLOCK_UNLOCK(clock) g_mutex_unlock(GST_SYSTEM_CLOCK_GET_LOCK(clock))
#define GST_SYSTEM_CLOCK_GET_COND(clock) (&GST_SYSTEM_CLOCK_CAST(clock)->priv->entries_changed)
#define GST_SYSTEM_CLOCK_WAIT(clock) g_cond_wait(GST_SYSTEM_CLOCK_GET_COND(clock),GST_SYSTEM_CLOCK_GET_LOCK(clock))
#define GST_SYSTEM_CLOCK_BROADCAST(clock) g_cond_broadcast(GST_SYSTEM_CLOCK_GET_COND(clock))
#if defined(HAVE_FUTEX) || defined(HAVE_FUTEX_TIME64)
#include <unistd.h>
#include <linux/futex.h>
#include <sys/syscall.h>
#if !defined(__NR_futex) && !defined(__NR_futex_time64)
#error "Neither __NR_futex nor __NR_futex_time64 are defined but were found by meson"
#endif
#ifndef FUTEX_WAIT_BITSET_PRIVATE
#define FUTEX_WAIT_BITSET_PRIVATE FUTEX_WAIT_BITSET
#endif
#ifndef FUTEX_WAKE_PRIVATE
#define FUTEX_WAKE_PRIVATE FUTEX_WAKE
#endif
#define GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry) (&(entry)->lock)
#define GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry) (&(entry)->cond_val)
#define GST_SYSTEM_CLOCK_ENTRY_LOCK(entry) (g_mutex_lock(GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry)))
#define GST_SYSTEM_CLOCK_ENTRY_UNLOCK(entry) (g_mutex_unlock(GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry)))
#define GST_SYSTEM_CLOCK_ENTRY_WAIT_UNTIL(entry,ns) gst_futex_cond_wait_until(GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry),GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry),(ns))
#define GST_SYSTEM_CLOCK_ENTRY_BROADCAST(entry) gst_futex_cond_broadcast(GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry))
#define CLOCK_MIN_WAIT_TIME 100 /* ns */
typedef struct _GstClockEntryFutex GstClockEntryImpl;
struct _GstClockEntryFutex
{
GstClockEntry entry;
GWeakRef clock;
GDestroyNotify destroy_entry;
gboolean initialized;
GMutex lock;
guint cond_val;
};
static void
clear_entry (GstClockEntryImpl * entry)
{
g_mutex_clear (&entry->lock);
}
static void
init_entry (GstClockEntryImpl * entry)
{
g_mutex_init (&entry->lock);
entry->destroy_entry = (GDestroyNotify) clear_entry;
}
static void
gst_futex_cond_broadcast (guint * cond_val)
{
g_atomic_int_inc (cond_val);
#if defined(__NR_futex_time64)
{
int res;
res = syscall (__NR_futex_time64, cond_val, (gsize) FUTEX_WAKE_PRIVATE,
(gsize) INT_MAX, NULL);
/* If the syscall does not exist (`ENOSYS`), we retry again below with the
* normal `futex` syscall. This can happen if newer kernel headers are
* used than the kernel that is actually running.
*/
#ifdef __NR_futex
if (res >= 0 || errno != ENOSYS) {
#else
{
#endif
return;
}
}
#endif
#if defined(__NR_futex)
syscall (__NR_futex, cond_val, (gsize) FUTEX_WAKE_PRIVATE, (gsize) INT_MAX,
NULL);
#endif
}
static gboolean
gst_futex_cond_wait_until (guint * cond_val, GMutex * mutex, gint64 end_time)
{
guint sampled;
int res;
gboolean success;
if (end_time < 0)
return FALSE;
sampled = *cond_val;
g_mutex_unlock (mutex);
/* `struct timespec` as defined by the libc headers does not necessarily
* have any relation to the one used by the kernel for the `futex` syscall.
*
* Specifically, the libc headers might use 64-bit `time_t` while the kernel
* headers use 32-bit `__kernel_old_time_t` on certain systems.
*
* To get around this problem we
* a) check if `futex_time64` is available, which only exists on 32-bit
* platforms and always uses 64-bit `time_t`.
* b) otherwise (or if that returns `ENOSYS`), we call the normal `futex`
* syscall with the `struct timespec_t` used by the kernel, which uses
* `__kernel_long_t` for both its fields. We use that instead of
* `__kernel_old_time_t` because it is equivalent and available in the
* kernel headers for a longer time.
*
* Also some 32-bit systems do not define `__NR_futex` at all and only
* define `__NR_futex_time64`.
*/
#ifdef __NR_futex_time64
{
struct
{
gint64 tv_sec;
gint64 tv_nsec;
} end;
end.tv_sec = end_time / 1000000000;
end.tv_nsec = end_time % 1000000000;
/* we use FUTEX_WAIT_BITSET_PRIVATE rather than FUTEX_WAIT_PRIVATE to be
* able to use absolute time */
res =
syscall (__NR_futex_time64, cond_val, (gsize) FUTEX_WAIT_BITSET_PRIVATE,
(gsize) sampled, &end, NULL, FUTEX_BITSET_MATCH_ANY);
/* If the syscall does not exist (`ENOSYS`), we retry again below with the
* normal `futex` syscall. This can happen if newer kernel headers are
* used than the kernel that is actually running.
*/
#ifdef __NR_futex
if (res >= 0 || errno != ENOSYS) {
#else
{
#endif
success = (res < 0 && errno == ETIMEDOUT) ? FALSE : TRUE;
g_mutex_lock (mutex);
return success;
}
}
#endif
#ifdef __NR_futex
{
struct
{
__kernel_long_t tv_sec;
__kernel_long_t tv_nsec;
} end;
/* Make sure to only ever call this if the end time actually fits into the
* target type */
g_assert (sizeof (__kernel_long_t) >= 8
|| end_time / 1000000000 <= G_MAXINT32);
end.tv_sec = end_time / 1000000000;
end.tv_nsec = end_time % 1000000000;
/* we use FUTEX_WAIT_BITSET_PRIVATE rather than FUTEX_WAIT_PRIVATE to be
* able to use absolute time */
res =
syscall (__NR_futex, cond_val, (gsize) FUTEX_WAIT_BITSET_PRIVATE,
(gsize) sampled, &end, NULL, FUTEX_BITSET_MATCH_ANY);
success = (res < 0 && errno == ETIMEDOUT) ? FALSE : TRUE;
g_mutex_lock (mutex);
return success;
}
#endif
/* We can't end up here because of the checks above */
g_assert_not_reached ();
}
#elif defined (G_OS_UNIX)
#define GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry) (&(entry)->lock)
#define GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry) (&(entry)->cond)
#define GST_SYSTEM_CLOCK_ENTRY_LOCK(entry) (pthread_mutex_lock(GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry)))
#define GST_SYSTEM_CLOCK_ENTRY_UNLOCK(entry) (pthread_mutex_unlock(GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry)))
#define GST_SYSTEM_CLOCK_ENTRY_WAIT_UNTIL(entry,ns) gst_pthread_cond_wait_until(GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry),GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry),(ns))
#define GST_SYSTEM_CLOCK_ENTRY_BROADCAST(entry) pthread_cond_broadcast(GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry))
#define CLOCK_MIN_WAIT_TIME 500 /* ns */
typedef struct _GstClockEntryPThread GstClockEntryImpl;
struct _GstClockEntryPThread
{
GstClockEntry entry;
GWeakRef clock;
GDestroyNotify destroy_entry;
gboolean initialized;
pthread_cond_t cond;
pthread_mutex_t lock;
};
static gboolean
gst_pthread_cond_wait_until (pthread_cond_t * cond, pthread_mutex_t * lock,
guint64 end_time)
{
struct timespec ts;
gint status;
#if defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
/* This is the exact check we used during init to set the clock to
* monotonic, so if we're in this branch, timedwait() will already be
* expecting a monotonic clock.
*/
{
ts.tv_sec = end_time / 1000000000;
ts.tv_nsec = end_time % 1000000000;
if ((status = pthread_cond_timedwait (cond, lock, &ts)) == 0)
return TRUE;
}
#elif defined (HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP)
/* end_time is given relative to the monotonic clock as returned by
* g_get_monotonic_time().
*
* Since this pthreads wants the relative time, convert it back again.
*/
{
gint64 now = priv_gst_get_monotonic_time ();
gint64 relative;
if (end_time <= now)
return FALSE;
relative = end_time - now;
ts.tv_sec = relative / 1000000000;
ts.tv_nsec = relative % 1000000000;
if ((status = pthread_cond_timedwait_relative_np (cond, lock, &ts)) == 0)
return TRUE;
}
#else
#error Cannot use pthread condition variables on your platform.
#endif
if (G_UNLIKELY (status != ETIMEDOUT)) {
g_error ("pthread_cond_timedwait returned %d", status);
}
return FALSE;
}
static void
clear_entry (GstClockEntryImpl * entry)
{
pthread_cond_destroy (&entry->cond);
pthread_mutex_destroy (&entry->lock);
}
static void
init_entry (GstClockEntryImpl * entry)
{
pthread_mutexattr_t *m_pattr = NULL;
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
pthread_mutexattr_t m_attr;
#endif
pthread_condattr_t c_attr;
gint status;
pthread_condattr_init (&c_attr);
#if defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
status = pthread_condattr_setclock (&c_attr, CLOCK_MONOTONIC);
if (G_UNLIKELY (status != 0)) {
g_error ("pthread_condattr_setclock returned %d", status);
}
#elif defined (HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP)
#else
#error Cannot use pthread condition variables on your platform.
#endif
status = pthread_cond_init (&entry->cond, &c_attr);
if (G_UNLIKELY (status != 0)) {
g_error ("pthread_cond_init returned %d", status);
}
pthread_condattr_destroy (&c_attr);
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
pthread_mutexattr_init (&m_attr);
pthread_mutexattr_settype (&m_attr, PTHREAD_MUTEX_ADAPTIVE_NP);
m_pattr = &m_attr;
#endif
status = pthread_mutex_init (&entry->lock, m_pattr);
if (G_UNLIKELY (status != 0)) {
g_error ("pthread_mutex_init returned %d", status);
}
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
pthread_mutexattr_destroy (&m_attr);
#endif
entry->destroy_entry = (GDestroyNotify) clear_entry;
}
#else
#define GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry) (&(entry)->lock)
#define GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry) (&(entry)->cond)
#define GST_SYSTEM_CLOCK_ENTRY_LOCK(entry) (g_mutex_lock(GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry)))
#define GST_SYSTEM_CLOCK_ENTRY_UNLOCK(entry) (g_mutex_unlock(GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry)))
#define GST_SYSTEM_CLOCK_ENTRY_WAIT_UNTIL(entry,ns) g_cond_wait_until(GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry),GST_SYSTEM_CLOCK_ENTRY_GET_LOCK(entry),((ns) / 1000))
#define GST_SYSTEM_CLOCK_ENTRY_BROADCAST(entry) g_cond_broadcast(GST_SYSTEM_CLOCK_ENTRY_GET_COND(entry))
#if defined (G_OS_WIN32)
/* min wait time is 1ms on windows with GCond */
#define CLOCK_MIN_WAIT_TIME GST_MSECOND
#else
/* min wait time is 1us on non-windows with GCond */
#define CLOCK_MIN_WAIT_TIME GST_USECOND
#endif
typedef struct _GstClockEntryGLib GstClockEntryImpl;
struct _GstClockEntryGLib
{
GstClockEntry entry;
GWeakRef clock;
GDestroyNotify destroy_entry;
gboolean initialized;
GMutex lock;
GCond cond;
};
static void
clear_entry (GstClockEntryImpl * entry)
{
g_cond_clear (&entry->cond);
g_mutex_clear (&entry->lock);
}
static void
init_entry (GstClockEntryImpl * entry)
{
g_cond_init (&entry->cond);
g_mutex_init (&entry->lock);
entry->destroy_entry = (GDestroyNotify) clear_entry;
}
#endif
/* check that our impl is smaller than what will be allocated by gstclock.c */
G_STATIC_ASSERT (sizeof (GstClockEntryImpl) <=
sizeof (struct _GstClockEntryImpl));
/* Must be called with clock lock */
static inline void
ensure_entry_initialized (GstClockEntryImpl * entry_impl)
{
if (!entry_impl->initialized) {
init_entry (entry_impl);
entry_impl->initialized = TRUE;
}
}
struct _GstSystemClockPrivate
{
GThread *thread; /* thread for async notify */
gboolean stopping;
GList *entries;
GCond entries_changed;
GstClockType clock_type;
};
#ifdef HAVE_POSIX_TIMERS
# ifdef HAVE_MONOTONIC_CLOCK
# define DEFAULT_CLOCK_TYPE GST_CLOCK_TYPE_MONOTONIC
# else
# define DEFAULT_CLOCK_TYPE GST_CLOCK_TYPE_REALTIME
# endif
#else
#define DEFAULT_CLOCK_TYPE GST_CLOCK_TYPE_MONOTONIC
#endif
enum
{
PROP_0,
PROP_CLOCK_TYPE,
/* FILL ME */
};
/* the one instance of the systemclock */
static GstClock *_the_system_clock = NULL;
static gboolean _external_default_clock = FALSE;
static void gst_system_clock_dispose (GObject * object);
static void gst_system_clock_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec);
static void gst_system_clock_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec);
static GstClockTime gst_system_clock_get_internal_time (GstClock * clock);
static guint64 gst_system_clock_get_resolution (GstClock * clock);
static GstClockReturn gst_system_clock_id_wait_jitter (GstClock * clock,
GstClockEntry * entry, GstClockTimeDiff * jitter);
static GstClockReturn gst_system_clock_id_wait_jitter_unlocked
(GstClock * clock, GstClockEntry * entry, GstClockTimeDiff * jitter,
gboolean restart);
static GstClockReturn gst_system_clock_id_wait_async (GstClock * clock,
GstClockEntry * entry);
static void gst_system_clock_id_unschedule (GstClock * clock,
GstClockEntry * entry);
static void gst_system_clock_async_thread (GstClock * clock);
static gboolean gst_system_clock_start_async (GstSystemClock * clock);
static GMutex _gst_sysclock_mutex;
/* static guint gst_system_clock_signals[LAST_SIGNAL] = { 0 }; */
#define gst_system_clock_parent_class parent_class
G_DEFINE_TYPE_WITH_PRIVATE (GstSystemClock, gst_system_clock, GST_TYPE_CLOCK);
static void
gst_system_clock_class_init (GstSystemClockClass * klass)
{
GObjectClass *gobject_class;
GstClockClass *gstclock_class;
gobject_class = (GObjectClass *) klass;
gstclock_class = (GstClockClass *) klass;
gobject_class->dispose = gst_system_clock_dispose;
gobject_class->set_property = gst_system_clock_set_property;
gobject_class->get_property = gst_system_clock_get_property;
g_object_class_install_property (gobject_class, PROP_CLOCK_TYPE,
g_param_spec_enum ("clock-type", "Clock type",
"The type of underlying clock implementation used",
GST_TYPE_CLOCK_TYPE, DEFAULT_CLOCK_TYPE,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
gstclock_class->get_internal_time = gst_system_clock_get_internal_time;
gstclock_class->get_resolution = gst_system_clock_get_resolution;
gstclock_class->wait = gst_system_clock_id_wait_jitter;
gstclock_class->wait_async = gst_system_clock_id_wait_async;
gstclock_class->unschedule = gst_system_clock_id_unschedule;
}
static void
gst_system_clock_init (GstSystemClock * clock)
{
GstSystemClockPrivate *priv;
GST_OBJECT_FLAG_SET (clock,
GST_CLOCK_FLAG_CAN_DO_SINGLE_SYNC |
GST_CLOCK_FLAG_CAN_DO_SINGLE_ASYNC |
GST_CLOCK_FLAG_CAN_DO_PERIODIC_SYNC |
GST_CLOCK_FLAG_CAN_DO_PERIODIC_ASYNC);
clock->priv = priv = gst_system_clock_get_instance_private (clock);
priv->clock_type = DEFAULT_CLOCK_TYPE;
priv->entries = NULL;
g_cond_init (&priv->entries_changed);
#if 0
/* Uncomment this to start the async clock thread straight away */
GST_SYSTEM_CLOCK_LOCK (clock);
gst_system_clock_start_async (clock);
GST_SYSTEM_CLOCK_UNLOCK (clock);
#endif
}
static void
gst_system_clock_dispose (GObject * object)
{
GstClock *clock = (GstClock *) object;
GstSystemClock *sysclock = GST_SYSTEM_CLOCK_CAST (clock);
GstSystemClockPrivate *priv = sysclock->priv;
GList *entries;
/* else we have to stop the thread */
GST_SYSTEM_CLOCK_LOCK (clock);
priv->stopping = TRUE;
/* unschedule all entries */
for (entries = priv->entries; entries; entries = g_list_next (entries)) {
GstClockEntryImpl *entry = (GstClockEntryImpl *) entries->data;
/* We don't need to take the entry lock here because the async thread
* would only ever look at the head entry, which is locked below and only
* accesses new entries with the clock lock, which we hold here.
*/
GST_CLOCK_ENTRY_STATUS ((GstClockEntry *) entry) = GST_CLOCK_UNSCHEDULED;
/* Wake up only the head entry: the async thread would only be waiting for
* this one, not all of them. Once the head entry is unscheduled it tries
* to get the system clock lock (which we hold here) and then look for the
* next entry. Once it gets the lock it will notice that all further
* entries are unscheduled, would remove them one by one from the list and
* then shut down. */
if (!entries->prev) {
/* it was initialized before adding to the list */
g_assert (entry->initialized);
GST_SYSTEM_CLOCK_ENTRY_LOCK (entry);
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "unscheduling entry %p",
entry);
GST_SYSTEM_CLOCK_ENTRY_BROADCAST (entry);
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
}
}
GST_SYSTEM_CLOCK_BROADCAST (clock);
GST_SYSTEM_CLOCK_UNLOCK (clock);
if (priv->thread)
g_thread_join (priv->thread);
priv->thread = NULL;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "joined thread");
g_list_foreach (priv->entries, (GFunc) gst_clock_id_unref, NULL);
g_list_free (priv->entries);
priv->entries = NULL;
g_cond_clear (&priv->entries_changed);
G_OBJECT_CLASS (parent_class)->dispose (object);
if (_the_system_clock == clock) {
_the_system_clock = NULL;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "disposed system clock");
}
}
static void
gst_system_clock_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstSystemClock *sysclock = GST_SYSTEM_CLOCK (object);
switch (prop_id) {
case PROP_CLOCK_TYPE:
sysclock->priv->clock_type = (GstClockType) g_value_get_enum (value);
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, sysclock, "clock-type set to %d",
sysclock->priv->clock_type);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_system_clock_get_property (GObject * object, guint prop_id, GValue * value,
GParamSpec * pspec)
{
GstSystemClock *sysclock = GST_SYSTEM_CLOCK (object);
switch (prop_id) {
case PROP_CLOCK_TYPE:
g_value_set_enum (value, sysclock->priv->clock_type);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
/**
* gst_system_clock_set_default:
* @new_clock: (allow-none): a #GstClock
*
* Sets the default system clock that can be obtained with
* gst_system_clock_obtain().
*
* This is mostly used for testing and debugging purposes when you
* want to have control over the time reported by the default system
* clock.
*
* MT safe.
*
* Since: 1.4
*/
void
gst_system_clock_set_default (GstClock * new_clock)
{
GstClock *clock;
g_mutex_lock (&_gst_sysclock_mutex);
clock = _the_system_clock;
if (clock != NULL)
gst_object_unref (clock);
if (new_clock == NULL) {
GST_CAT_DEBUG (GST_CAT_CLOCK, "resetting default system clock");
_external_default_clock = FALSE;
} else {
GST_CAT_DEBUG (GST_CAT_CLOCK, "setting new default system clock to %p",
new_clock);
_external_default_clock = TRUE;
g_object_ref (new_clock);
}
_the_system_clock = new_clock;
g_mutex_unlock (&_gst_sysclock_mutex);
}
/**
* gst_system_clock_obtain:
*
* Get a handle to the default system clock. The refcount of the
* clock will be increased so you need to unref the clock after
* usage.
*
* Returns: (transfer full): the default clock.
*
* MT safe.
*/
GstClock *
gst_system_clock_obtain (void)
{
GstClock *clock;
g_mutex_lock (&_gst_sysclock_mutex);
clock = _the_system_clock;
if (clock == NULL) {
GST_CAT_DEBUG (GST_CAT_CLOCK, "creating new static system clock");
g_assert (!_external_default_clock);
clock = g_object_new (GST_TYPE_SYSTEM_CLOCK,
"name", "GstSystemClock", NULL);
/* Clear floating flag */
gst_object_ref_sink (clock);
GST_OBJECT_FLAG_SET (clock, GST_OBJECT_FLAG_MAY_BE_LEAKED);
_the_system_clock = clock;
g_mutex_unlock (&_gst_sysclock_mutex);
} else {
g_mutex_unlock (&_gst_sysclock_mutex);
GST_CAT_DEBUG (GST_CAT_CLOCK, "returning static system clock");
}
/* we ref it since we are a clock factory. */
gst_object_ref (clock);
return clock;
}
/* this thread reads the sorted clock entries from the queue.
*
* It waits on each of them and fires the callback when the timeout occurs.
*
* When an entry in the queue was canceled before we wait for it, it is
* simply skipped.
*
* When waiting for an entry, it can become canceled, in that case we don't
* call the callback but move to the next item in the queue.
*
* MT safe.
*/
static void
gst_system_clock_async_thread (GstClock * clock)
{
GstSystemClock *sysclock = GST_SYSTEM_CLOCK_CAST (clock);
GstSystemClockPrivate *priv = sysclock->priv;
GstClockReturn status;
gboolean entry_needs_unlock = FALSE;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "enter system clock thread");
GST_SYSTEM_CLOCK_LOCK (clock);
/* signal spinup */
GST_SYSTEM_CLOCK_BROADCAST (clock);
/* now enter our (almost) infinite loop */
while (!priv->stopping) {
GstClockEntry *entry;
GstClockTime requested;
GstClockReturn res;
/* check if something to be done */
while (priv->entries == NULL) {
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"no clock entries, waiting..");
/* wait for work to do */
GST_SYSTEM_CLOCK_WAIT (clock);
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "got signal");
/* clock was stopping, exit */
if (priv->stopping)
goto exit;
}
/* pick the next entry */
entry = priv->entries->data;
/* it was initialized before adding to the list */
g_assert (((GstClockEntryImpl *) entry)->initialized);
/* unlocked before the next loop iteration at latest */
GST_SYSTEM_CLOCK_ENTRY_LOCK ((GstClockEntryImpl *) entry);
entry_needs_unlock = TRUE;
/* set entry status to busy before we release the clock lock */
status = GST_CLOCK_ENTRY_STATUS (entry);
/* check for unscheduled */
if (G_UNLIKELY (status == GST_CLOCK_UNSCHEDULED)) {
/* entry was unscheduled, move to the next one */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"async entry %p unscheduled", entry);
GST_SYSTEM_CLOCK_UNLOCK (clock);
goto next_entry;
}
/* for periodic timers, status can be EARLY from a previous run */
if (G_UNLIKELY (status != GST_CLOCK_OK && status != GST_CLOCK_EARLY))
GST_CAT_ERROR_OBJECT (GST_CAT_CLOCK, clock,
"unexpected status %d for entry %p", status, entry);
/* mark the entry as busy */
GST_CLOCK_ENTRY_STATUS (entry) = GST_CLOCK_BUSY;
requested = entry->time;
/* needs to be locked again before the next loop iteration, and we only
* unlock it here so that gst_system_clock_id_wait_async() is guaranteed
* to see status==BUSY later and wakes up this thread, and dispose() does
* not override BUSY with UNSCHEDULED here. */
GST_SYSTEM_CLOCK_UNLOCK (clock);
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "waiting on entry %p", entry);
/* now wait for the entry */
res =
gst_system_clock_id_wait_jitter_unlocked (clock, (GstClockID) entry,
NULL, FALSE);
switch (res) {
case GST_CLOCK_UNSCHEDULED:
/* entry was unscheduled, move to the next */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"async entry %p unscheduled", entry);
goto next_entry;
case GST_CLOCK_OK:
case GST_CLOCK_EARLY:
{
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
entry_needs_unlock = FALSE;
/* entry timed out normally, fire the callback and move to the next
* entry */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "async entry %p timed out",
entry);
if (entry->func) {
/* unlock before firing the callback */
entry->func (clock, entry->time, (GstClockID) entry,
entry->user_data);
}
if (entry->type == GST_CLOCK_ENTRY_PERIODIC) {
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"updating periodic entry %p", entry);
GST_SYSTEM_CLOCK_LOCK (clock);
/* adjust time now */
entry->time = requested + entry->interval;
/* and resort the list now */
priv->entries =
g_list_sort (priv->entries, gst_clock_id_compare_func);
/* and restart */
continue;
} else {
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "moving to next entry");
goto next_entry;
}
}
case GST_CLOCK_BUSY:
/* somebody unlocked the entry but is was not canceled, This means that
* a new entry was added in front of the queue. Pick the new head
* entry of the list and continue waiting. */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"async entry %p needs restart", entry);
/* we set the entry back to the OK state. This is needed so that the
* _unschedule() code can see if an entry is currently being waited
* on (when its state is BUSY). */
GST_CLOCK_ENTRY_STATUS (entry) = GST_CLOCK_OK;
if (entry_needs_unlock)
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
GST_SYSTEM_CLOCK_LOCK (clock);
continue;
default:
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"strange result %d waiting for %p, skipping", res, entry);
g_warning ("%s: strange result %d waiting for %p, skipping",
GST_OBJECT_NAME (clock), res, entry);
goto next_entry;
}
next_entry:
if (entry_needs_unlock)
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
GST_SYSTEM_CLOCK_LOCK (clock);
/* we remove the current entry and unref it */
priv->entries = g_list_remove (priv->entries, entry);
gst_clock_id_unref ((GstClockID) entry);
}
exit:
/* signal exit */
GST_SYSTEM_CLOCK_BROADCAST (clock);
GST_SYSTEM_CLOCK_UNLOCK (clock);
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "exit system clock thread");
}
#ifdef HAVE_POSIX_TIMERS
static inline clockid_t
clock_type_to_posix_id (GstClockType clock_type)
{
#ifdef HAVE_MONOTONIC_CLOCK
if (clock_type == GST_CLOCK_TYPE_MONOTONIC)
return CLOCK_MONOTONIC;
#endif
if (clock_type == GST_CLOCK_TYPE_TAI)
#ifdef CLOCK_TAI
return CLOCK_TAI;
#else
GST_ERROR
("No CLOCK_TAI available on the system. Falling back to CLOCK_REALTIME");
#endif
return CLOCK_REALTIME;
}
#endif
/* MT safe */
static GstClockTime
gst_system_clock_get_internal_time (GstClock * clock)
{
GstSystemClock *sysclock = GST_SYSTEM_CLOCK_CAST (clock);
/* For the monotonic and realtime clock, always directly call the specific
* helper functions above */
if (sysclock->priv->clock_type == GST_CLOCK_TYPE_MONOTONIC)
return priv_gst_get_monotonic_time ();
else if (sysclock->priv->clock_type == GST_CLOCK_TYPE_REALTIME)
return priv_gst_get_real_time ();
/* If POSIX timers are available, use those for any other clock,
* or otherwise return the monotonic time */
#if defined HAVE_POSIX_TIMERS && defined HAVE_CLOCK_GETTIME
// BSD and Linux' Posix timers and clock_gettime cover all of the different clock types
// without need for special handling so we'll use those.
clockid_t ptype;
struct timespec ts;
ptype = clock_type_to_posix_id (sysclock->priv->clock_type);
if (G_UNLIKELY (clock_gettime (ptype, &ts)))
return GST_CLOCK_TIME_NONE;
return GST_TIMESPEC_TO_TIME (ts);
#else /* !HAVE_POSIX_TIMERS || !HAVE_CLOCK_GETTIME */
return priv_gst_get_monotonic_time ();
#endif /* !HAVE_POSIX_TIMERS || !HAVE_CLOCK_GETTIME */
}
static guint64
gst_system_clock_get_resolution (GstClock * clock)
{
GstSystemClock *sysclock = GST_SYSTEM_CLOCK_CAST (clock);
#if defined G_OS_WIN32
if (sysclock->priv->clock_type == GST_CLOCK_TYPE_REALTIME) {
return 1 * GST_USECOND;
} else {
return GST_SECOND / performance_counter_frequency.QuadPart;
}
#endif
#if defined __APPLE__
// On Apple platforms we want to use mach_absolute_time() unconditionally
// for the monotonic clock even if clock_gettime() support is available.
// Only use the latter for other clock types there.
if (sysclock->priv->clock_type == GST_CLOCK_TYPE_MONOTONIC) {
return gst_util_uint64_scale (GST_NSECOND,
mach_timebase.numer, mach_timebase.denom);
}
#endif
#if defined(HAVE_POSIX_TIMERS) && defined(HAVE_CLOCK_GETTIME)
{
clockid_t ptype;
struct timespec ts;
ptype = clock_type_to_posix_id (sysclock->priv->clock_type);
if (G_UNLIKELY (clock_getres (ptype, &ts)))
return GST_CLOCK_TIME_NONE;
return GST_TIMESPEC_TO_TIME (ts);
}
#endif /* HAVE_POSIX_TIMERS && HAVE_CLOCK_GETTIME */
return 1 * GST_USECOND;
}
/* synchronously wait on the given GstClockEntry.
*
* We do this by blocking on the entry specifically rather than a global
* condition variable so that each possible thread may be woken up
* individually. This ensures that we don't wake up possibly multiple threads
* when unscheduling an entry.
*
* Entries that arrive too late are simply not waited on and a
* GST_CLOCK_EARLY result is returned.
*
* This is called with the ENTRY_LOCK but not SYSTEM_CLOCK_LOCK!
*
* MT safe.
*/
static GstClockReturn
gst_system_clock_id_wait_jitter_unlocked (GstClock * clock,
GstClockEntry * entry, GstClockTimeDiff * jitter, gboolean restart)
{
GstClockTime entryt, now;
GstClockTimeDiff diff;
GstClockReturn status;
gint64 mono_ts;
status = GST_CLOCK_ENTRY_STATUS (entry);
if (G_UNLIKELY (status == GST_CLOCK_UNSCHEDULED)) {
return GST_CLOCK_UNSCHEDULED;
}
/* need to call the overridden method because we want to sync against the time
* of the clock, whatever the subclass uses as a clock. */
now = gst_clock_get_time (clock);
mono_ts = g_get_monotonic_time ();
/* get the time of the entry */
entryt = GST_CLOCK_ENTRY_TIME (entry);
/* the diff of the entry with the clock is the amount of time we have to
* wait */
diff = GST_CLOCK_DIFF (now, entryt);
if (G_LIKELY (jitter))
*jitter = -diff;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "entry %p"
" time %" GST_TIME_FORMAT
" now %" GST_TIME_FORMAT
" diff (time-now) %" G_GINT64_FORMAT,
entry, GST_TIME_ARGS (entryt), GST_TIME_ARGS (now), diff);
if (G_LIKELY (diff > CLOCK_MIN_WAIT_TIME)) {
#ifdef WAIT_DEBUGGING
GstClockTime final;
#endif
while (TRUE) {
gboolean waitret;
#ifdef HAVE_CLOCK_NANOSLEEP
if (diff <= 500 * GST_USECOND) {
/* In order to provide more accurate wait, we will use BLOCKING
clock_nanosleep for any deadlines at or below 500us */
struct timespec end;
GST_TIME_TO_TIMESPEC (mono_ts * 1000 + diff, end);
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
waitret =
clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME, &end, NULL) == 0;
GST_SYSTEM_CLOCK_ENTRY_LOCK ((GstClockEntryImpl *) entry);
} else {
if (diff < 2 * GST_MSECOND) {
/* For any deadline within 2ms, we first use the regular non-blocking
wait by reducing the diff accordingly */
diff -= 500 * GST_USECOND;
}
#endif
/* now wait on the entry, it either times out or the cond is signalled.
* The status of the entry is BUSY only around the wait. */
waitret =
GST_SYSTEM_CLOCK_ENTRY_WAIT_UNTIL ((GstClockEntryImpl *) entry,
mono_ts * 1000 + diff);
#ifdef HAVE_CLOCK_NANOSLEEP
}
#endif
/* get the new status, mark as DONE. We do this so that the unschedule
* function knows when we left the poll and doesn't need to wakeup the
* poll anymore. */
status = GST_CLOCK_ENTRY_STATUS (entry);
/* we were unscheduled, exit immediately */
if (G_UNLIKELY (status == GST_CLOCK_UNSCHEDULED))
break;
if (G_UNLIKELY (status != GST_CLOCK_BUSY))
GST_CAT_ERROR_OBJECT (GST_CAT_CLOCK, clock,
"unexpected status %d for entry %p", status, entry);
GST_CLOCK_ENTRY_STATUS (entry) = GST_CLOCK_DONE;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"entry %p unlocked, status %d", entry, status);
if (G_UNLIKELY (status == GST_CLOCK_UNSCHEDULED)) {
goto done;
} else {
if (waitret) {
/* some other id got unlocked */
if (!restart) {
/* this can happen if the entry got unlocked because of an async
* entry was added to the head of the async queue. */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"wakeup waiting for entry %p", entry);
goto done;
}
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"entry %p needs to be restarted", entry);
} else {
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"entry %p unlocked after timeout", entry);
}
/* reschedule if gst_cond_wait_until returned early or we have to reschedule after
* an unlock*/
mono_ts = g_get_monotonic_time ();
now = gst_clock_get_time (clock);
diff = GST_CLOCK_DIFF (now, entryt);
if (diff <= CLOCK_MIN_WAIT_TIME) {
/* timeout, this is fine, we can report success now */
GST_CLOCK_ENTRY_STATUS (entry) = status = GST_CLOCK_OK;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"entry %p finished, diff %" G_GINT64_FORMAT, entry, diff);
#ifdef WAIT_DEBUGGING
final = gst_system_clock_get_internal_time (clock);
GST_CAT_DEBUG (GST_CAT_CLOCK, "Waited for %" G_GINT64_FORMAT
" got %" G_GINT64_FORMAT " diff %" G_GINT64_FORMAT
" %g target-offset %" G_GINT64_FORMAT " %g", entryt, now,
now - entryt,
(double) (GstClockTimeDiff) (now - entryt) / GST_SECOND,
(final - target),
((double) (GstClockTimeDiff) (final - target)) / GST_SECOND);
#endif
goto done;
} else {
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"entry %p restart, diff %" G_GINT64_FORMAT, entry, diff);
/* we are going to poll again, set status back to busy */
GST_CLOCK_ENTRY_STATUS (entry) = GST_CLOCK_BUSY;
}
}
}
} else {
/* we are right on time or too late */
if (G_UNLIKELY (diff == 0)) {
GST_CLOCK_ENTRY_STATUS (entry) = status = GST_CLOCK_OK;
} else {
GST_CLOCK_ENTRY_STATUS (entry) = status = GST_CLOCK_EARLY;
}
}
done:
return status;
}
static GstClockReturn
gst_system_clock_id_wait_jitter (GstClock * clock, GstClockEntry * entry,
GstClockTimeDiff * jitter)
{
GstClockReturn status;
GstClockEntryImpl *entry_impl = (GstClockEntryImpl *) entry;
GST_SYSTEM_CLOCK_LOCK (clock);
ensure_entry_initialized (entry_impl);
GST_SYSTEM_CLOCK_UNLOCK (clock);
GST_SYSTEM_CLOCK_ENTRY_LOCK (entry_impl);
status = GST_CLOCK_ENTRY_STATUS (entry);
/* stop when we are unscheduled */
if (G_UNLIKELY (status == GST_CLOCK_UNSCHEDULED)) {
GST_SYSTEM_CLOCK_ENTRY_UNLOCK (entry_impl);
return status;
}
if (G_UNLIKELY (status != GST_CLOCK_OK))
GST_CAT_ERROR_OBJECT (GST_CAT_CLOCK, clock,
"unexpected status %d for entry %p", status, entry);
/* mark the entry as busy */
GST_CLOCK_ENTRY_STATUS (entry) = GST_CLOCK_BUSY;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "waiting on entry %p", entry);
status =
gst_system_clock_id_wait_jitter_unlocked (clock, entry, jitter, TRUE);
GST_SYSTEM_CLOCK_ENTRY_UNLOCK (entry_impl);
return status;
}
/* Start the async clock thread. Must be called with the object lock
* held */
static gboolean
gst_system_clock_start_async (GstSystemClock * clock)
{
GError *error = NULL;
GstSystemClockPrivate *priv = clock->priv;
if (G_LIKELY (priv->thread != NULL))
return TRUE; /* Thread already running. Nothing to do */
priv->thread = g_thread_try_new ("GstSystemClock",
(GThreadFunc) gst_system_clock_async_thread, clock, &error);
if (G_UNLIKELY (error))
goto no_thread;
/* wait for it to spin up */
GST_SYSTEM_CLOCK_WAIT (clock);
return TRUE;
/* ERRORS */
no_thread:
{
g_warning ("could not create async clock thread: %s", error->message);
g_error_free (error);
}
return FALSE;
}
/* Add an entry to the list of pending async waits. The entry is inserted
* in sorted order. If we inserted the entry at the head of the list, we
* need to signal the thread as it might either be waiting on it or waiting
* for a new entry.
*
* MT safe.
*/
static GstClockReturn
gst_system_clock_id_wait_async (GstClock * clock, GstClockEntry * entry)
{
GstSystemClock *sysclock;
GstSystemClockPrivate *priv;
GstClockEntry *head;
sysclock = GST_SYSTEM_CLOCK_CAST (clock);
priv = sysclock->priv;
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "adding async entry %p", entry);
GST_SYSTEM_CLOCK_LOCK (clock);
/* Start the clock async thread if needed */
if (G_UNLIKELY (!gst_system_clock_start_async (sysclock)))
goto thread_error;
ensure_entry_initialized ((GstClockEntryImpl *) entry);
GST_SYSTEM_CLOCK_ENTRY_LOCK ((GstClockEntryImpl *) entry);
if (G_UNLIKELY (GST_CLOCK_ENTRY_STATUS (entry) == GST_CLOCK_UNSCHEDULED))
goto was_unscheduled;
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
if (priv->entries)
head = priv->entries->data;
else
head = NULL;
/* need to take a ref */
gst_clock_id_ref ((GstClockID) entry);
/* insert the entry in sorted order */
priv->entries = g_list_insert_sorted (priv->entries, entry,
gst_clock_id_compare_func);
/* only need to send the signal if the entry was added to the
* front, else the thread is just waiting for another entry and
* will get to this entry automatically. */
if (priv->entries->data == entry) {
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"async entry added to head %p", head);
if (head == NULL) {
/* the list was empty before, signal the cond so that the async thread can
* start taking a look at the queue */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"first entry, sending signal");
GST_SYSTEM_CLOCK_BROADCAST (clock);
} else {
GstClockReturn status;
/* it was initialized before adding to the list */
g_assert (((GstClockEntryImpl *) head)->initialized);
GST_SYSTEM_CLOCK_ENTRY_LOCK ((GstClockEntryImpl *) head);
status = GST_CLOCK_ENTRY_STATUS (head);
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "head entry %p status %d",
head, status);
if (status == GST_CLOCK_BUSY) {
/* the async thread was waiting for an entry, unlock the wait so that it
* looks at the new head entry instead, we only need to do this once */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock,
"head entry was busy. Wakeup async thread");
GST_SYSTEM_CLOCK_ENTRY_BROADCAST ((GstClockEntryImpl *) head);
}
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) head);
}
}
GST_SYSTEM_CLOCK_UNLOCK (clock);
return GST_CLOCK_OK;
/* ERRORS */
thread_error:
{
/* Could not start the async clock thread */
GST_SYSTEM_CLOCK_UNLOCK (clock);
return GST_CLOCK_ERROR;
}
was_unscheduled:
{
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
GST_SYSTEM_CLOCK_UNLOCK (clock);
return GST_CLOCK_UNSCHEDULED;
}
}
/* unschedule an entry. This will set the state of the entry to GST_CLOCK_UNSCHEDULED
* and will signal any thread waiting for entries to recheck their entry.
* We cannot really decide if the signal is needed or not because the entry
* could be waited on in async or sync mode.
*
* MT safe.
*/
static void
gst_system_clock_id_unschedule (GstClock * clock, GstClockEntry * entry)
{
GstClockReturn status;
GST_SYSTEM_CLOCK_LOCK (clock);
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "unscheduling entry %p time %"
GST_TIME_FORMAT, entry, GST_TIME_ARGS (GST_CLOCK_ENTRY_TIME (entry)));
ensure_entry_initialized ((GstClockEntryImpl *) entry);
GST_SYSTEM_CLOCK_ENTRY_LOCK ((GstClockEntryImpl *) entry);
/* change the entry status to unscheduled */
status = GST_CLOCK_ENTRY_STATUS (entry);
GST_CLOCK_ENTRY_STATUS (entry) = GST_CLOCK_UNSCHEDULED;
if (G_LIKELY (status == GST_CLOCK_BUSY)) {
/* the entry was being busy, wake up the entry */
GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "entry was BUSY, doing wakeup");
GST_SYSTEM_CLOCK_ENTRY_BROADCAST ((GstClockEntryImpl *) entry);
}
GST_SYSTEM_CLOCK_ENTRY_UNLOCK ((GstClockEntryImpl *) entry);
GST_SYSTEM_CLOCK_UNLOCK (clock);
}