mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-06 23:45:35 +00:00
229 lines
6.9 KiB
C
229 lines
6.9 KiB
C
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
|
* Copyright (C) 2008 Thorvald Natvig
|
|
*/
|
|
/**
|
|
@file resample_sse.h
|
|
@brief Resampler functions (SSE version)
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_XMMINTRIN_H
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#define OVERRIDE_INNER_PRODUCT_SINGLE
|
|
static inline float inner_product_single(const float *a, const float *b, unsigned int len)
|
|
{
|
|
int i = 0;
|
|
float ret = 0;
|
|
__m128 sum = _mm_setzero_ps();
|
|
|
|
if (len > 7)
|
|
{
|
|
for (;i<len-7;i+=8)
|
|
{
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i)));
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4)));
|
|
}
|
|
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
|
|
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
|
|
_mm_store_ss(&ret, sum);
|
|
}
|
|
|
|
for (; i < len; i++)
|
|
ret += a[i] * b[i];
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
|
|
static inline float interpolate_product_single(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
|
|
int i = 0;
|
|
float ret = 0;
|
|
__m128 sum = _mm_setzero_ps();
|
|
__m128 f = _mm_loadu_ps(frac);
|
|
|
|
if (len > 1)
|
|
{
|
|
for(;i<len-1;i+=2)
|
|
{
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample)));
|
|
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample)));
|
|
}
|
|
|
|
sum = _mm_mul_ps(f, sum);
|
|
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
|
|
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
|
|
_mm_store_ss(&ret, sum);
|
|
}
|
|
|
|
if (i == len-1)
|
|
ret += a[i] * (frac[0]*b[i*oversample] + frac[1]*b[i*oversample + 1] + frac[2]*b[i*oversample + 2] + frac[3]*b[i*oversample + 3]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef _USE_SSE2
|
|
#ifdef HAVE_EMMINTRIN_H
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#define OVERRIDE_INNER_PRODUCT_DOUBLE
|
|
|
|
#ifdef DOUBLE_PRECISION
|
|
static inline double inner_product_double(const double *a, const double *b, unsigned int len)
|
|
{
|
|
int i = 0;
|
|
double ret = 0;
|
|
__m128d sum = _mm_setzero_pd();
|
|
|
|
if (len > 3)
|
|
{
|
|
for (;i<len-3;i+=4)
|
|
{
|
|
sum = _mm_add_pd(sum, _mm_mul_pd(_mm_loadu_pd(a+i), _mm_loadu_pd(b+i)));
|
|
sum = _mm_add_pd(sum, _mm_mul_pd(_mm_loadu_pd(a+i+2), _mm_loadu_pd(b+i+2)));
|
|
}
|
|
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
|
_mm_store_sd(&ret, sum);
|
|
}
|
|
|
|
for (; i < len; i++)
|
|
ret += a[i] * b[i];
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline double inner_product_double(const float *a, const float *b, unsigned int len)
|
|
{
|
|
int i = 0;
|
|
double ret = 0;
|
|
__m128d sum = _mm_setzero_pd();
|
|
__m128 t;
|
|
|
|
if (len > 7)
|
|
{
|
|
for (;i<len-7;i+=8)
|
|
{
|
|
t = _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
|
|
t = _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
|
|
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
}
|
|
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
|
_mm_store_sd(&ret, sum);
|
|
}
|
|
|
|
for (; i < len; i++)
|
|
ret += a[i] * b[i];
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
|
|
#define OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
|
|
|
|
#ifdef DOUBLE_PRECISION
|
|
static inline double interpolate_product_double(const double *a, const double *b, unsigned int len, const spx_uint32_t oversample, double *frac) {
|
|
int i = 0;
|
|
double ret = 0;
|
|
__m128d sum;
|
|
__m128d sum1 = _mm_setzero_pd();
|
|
__m128d sum2 = _mm_setzero_pd();
|
|
__m128d f1 = _mm_loadu_pd(frac);
|
|
__m128d f2 = _mm_loadu_pd(frac+2);
|
|
__m128d t;
|
|
|
|
if (len > 1)
|
|
{
|
|
for(;i<len-1;i+=2)
|
|
{
|
|
t = _mm_mul_pd(_mm_load1_pd(a+i), _mm_loadu_pd(b+i*oversample));
|
|
sum1 = _mm_add_pd(sum1, t);
|
|
sum2 = _mm_add_pd(sum2, _mm_unpackhi_pd(t, t));
|
|
|
|
t = _mm_mul_pd(_mm_load1_pd(a+i+1), _mm_loadu_pd(b+(i+1)*oversample));
|
|
sum1 = _mm_add_pd(sum1, t);
|
|
sum2 = _mm_add_pd(sum2, _mm_unpackhi_pd(t, t));
|
|
}
|
|
sum1 = _mm_mul_pd(f1, sum1);
|
|
sum2 = _mm_mul_pd(f2, sum2);
|
|
sum = _mm_add_pd(sum1, sum2);
|
|
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
|
_mm_store_sd(&ret, sum);
|
|
}
|
|
|
|
if (i == len-1)
|
|
ret += a[i] * (frac[0]*b[i*oversample] + frac[1]*b[i*oversample + 1] + frac[2]*b[i*oversample + 2] + frac[3]*b[i*oversample + 3]);
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline double interpolate_product_double(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
|
|
int i = 0;
|
|
double ret = 0;
|
|
__m128d sum;
|
|
__m128d sum1 = _mm_setzero_pd();
|
|
__m128d sum2 = _mm_setzero_pd();
|
|
__m128 f = _mm_loadu_ps(frac);
|
|
__m128d f1 = _mm_cvtps_pd(f);
|
|
__m128d f2 = _mm_cvtps_pd(_mm_movehl_ps(f,f));
|
|
__m128 t;
|
|
|
|
if (len > 1)
|
|
{
|
|
for(;i<len-1;i+=2)
|
|
{
|
|
t = _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample));
|
|
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
|
|
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
|
|
t = _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample));
|
|
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
|
|
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
|
}
|
|
sum1 = _mm_mul_pd(f1, sum1);
|
|
sum2 = _mm_mul_pd(f2, sum2);
|
|
sum = _mm_add_pd(sum1, sum2);
|
|
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
|
_mm_store_sd(&ret, sum);
|
|
}
|
|
|
|
if (i == len-1)
|
|
ret += a[i] * (frac[0]*b[i*oversample] + frac[1]*b[i*oversample + 1] + frac[2]*b[i*oversample + 2] + frac[3]*b[i*oversample + 3]);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#endif
|