mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2024-12-23 16:50:47 +00:00
f71eb29497
This MR provides a transform element that leverage ONNX runtime to run AI inference on a broad range of neural network toolkits, running on either CPU or GPU. ONNX supports 16 different providers at the moment, so with ONNX we immediately get support for Nvidia, AMD, Xilinx and many others. For the first release, this plugin adds a gstonnxobjectdetector element to detect objects in video frames. Meta data generated by the model is attached to the video buffer as a custom GstObjectDetectorMeta meta. Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1997>
104 lines
3.2 KiB
C
104 lines
3.2 KiB
C
/*
|
|
* GStreamer gstreamer-onnxelement
|
|
* Copyright (C) 2021 Collabora Ltd
|
|
*
|
|
* gstonnxelement.c
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "gstonnxelement.h"
|
|
|
|
GType
|
|
gst_onnx_optimization_level_get_type (void)
|
|
{
|
|
static GType onnx_optimization_type = 0;
|
|
|
|
if (g_once_init_enter (&onnx_optimization_type)) {
|
|
static GEnumValue optimization_level_types[] = {
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_DISABLE_ALL, "Disable all optimization",
|
|
"disable-all"},
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_BASIC,
|
|
"Enable basic optimizations (redundant node removals))",
|
|
"enable-basic"},
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED,
|
|
"Enable extended optimizations (redundant node removals + node fusions)",
|
|
"enable-extended"},
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_ALL,
|
|
"Enable all possible optimizations", "enable-all"},
|
|
{0, NULL, NULL},
|
|
};
|
|
|
|
GType temp = g_enum_register_static ("GstOnnxOptimizationLevel",
|
|
optimization_level_types);
|
|
|
|
g_once_init_leave (&onnx_optimization_type, temp);
|
|
}
|
|
|
|
return onnx_optimization_type;
|
|
}
|
|
|
|
GType
|
|
gst_onnx_execution_provider_get_type (void)
|
|
{
|
|
static GType onnx_execution_type = 0;
|
|
|
|
if (g_once_init_enter (&onnx_execution_type)) {
|
|
static GEnumValue execution_provider_types[] = {
|
|
{GST_ONNX_EXECUTION_PROVIDER_CPU, "CPU execution provider",
|
|
"cpu"},
|
|
{GST_ONNX_EXECUTION_PROVIDER_CUDA,
|
|
"CUDA execution provider",
|
|
"cuda"},
|
|
{0, NULL, NULL},
|
|
};
|
|
|
|
GType temp = g_enum_register_static ("GstOnnxExecutionProvider",
|
|
execution_provider_types);
|
|
|
|
g_once_init_leave (&onnx_execution_type, temp);
|
|
}
|
|
|
|
return onnx_execution_type;
|
|
}
|
|
|
|
GType
|
|
gst_ml_model_input_image_format_get_type (void)
|
|
{
|
|
static GType ml_model_input_image_format = 0;
|
|
|
|
if (g_once_init_enter (&ml_model_input_image_format)) {
|
|
static GEnumValue ml_model_input_image_format_types[] = {
|
|
{GST_ML_MODEL_INPUT_IMAGE_FORMAT_HWC,
|
|
"Height Width Channel (HWC) a.k.a. interleaved image data format",
|
|
"hwc"},
|
|
{GST_ML_MODEL_INPUT_IMAGE_FORMAT_CHW,
|
|
"Channel Height Width (CHW) a.k.a. planar image data format",
|
|
"chw"},
|
|
{0, NULL, NULL},
|
|
};
|
|
|
|
GType temp = g_enum_register_static ("GstMlModelInputImageFormat",
|
|
ml_model_input_image_format_types);
|
|
|
|
g_once_init_leave (&ml_model_input_image_format, temp);
|
|
}
|
|
|
|
return ml_model_input_image_format;
|
|
}
|