gstreamer/ext/kate/gstkatespu.c
2012-11-04 00:09:59 +00:00

908 lines
26 KiB
C

/* GStreamer
* Copyright (C) 2009 Vincent Penquerc'h <ogg.k.ogg.k@googlemail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include <kate/kate.h>
#include <gst/gst.h>
#include <gst/gstpad.h>
#include "gstkatespu.h"
#define MAX_SPU_SIZE 53220
GST_DEBUG_CATEGORY_EXTERN (gst_kateenc_debug);
GST_DEBUG_CATEGORY_EXTERN (gst_katedec_debug);
/* taken off the dvdsubdec element */
const guint32 gst_kate_spu_default_clut[16] = {
0xb48080, 0x248080, 0x628080, 0xd78080,
0x808080, 0x808080, 0x808080, 0x808080,
0x808080, 0x808080, 0x808080, 0x808080,
0x808080, 0x808080, 0x808080, 0x808080
};
#define GST_CAT_DEFAULT gst_kateenc_debug
static void
gst_kate_spu_decode_colormap (GstKateEnc * ke, const guint8 * ptr)
{
ke->spu_colormap[3] = ptr[0] >> 4;
ke->spu_colormap[2] = ptr[0] & 0x0f;
ke->spu_colormap[1] = ptr[1] >> 4;
ke->spu_colormap[0] = ptr[1] & 0x0f;
}
static void
gst_kate_spu_decode_alpha (GstKateEnc * ke, const guint8 * ptr)
{
ke->spu_alpha[3] = ptr[0] >> 4;
ke->spu_alpha[2] = ptr[0] & 0x0f;
ke->spu_alpha[1] = ptr[1] >> 4;
ke->spu_alpha[0] = ptr[1] & 0x0f;
}
static void
gst_kate_spu_decode_area (GstKateEnc * ke, const guint8 * ptr)
{
ke->spu_left = ((((guint16) ptr[0]) & 0xff) << 4) | (ptr[1] >> 4);
ke->spu_top = ((((guint16) ptr[3]) & 0xff) << 4) | (ptr[4] >> 4);
ke->spu_right = ((((guint16) ptr[1]) & 0x0f) << 8) | ptr[2];
ke->spu_bottom = ((((guint16) ptr[4]) & 0x0f) << 8) | ptr[5];
GST_DEBUG_OBJECT (ke, "SPU area %u %u -> %u %d", ke->spu_left, ke->spu_top,
ke->spu_right, ke->spu_bottom);
}
static void
gst_kate_spu_decode_pixaddr (GstKateEnc * ke, const guint8 * ptr)
{
ke->spu_pix_data[0] = GST_KATE_UINT16_BE (ptr + 0);
ke->spu_pix_data[1] = GST_KATE_UINT16_BE (ptr + 2);
}
/* heavily inspired from dvdspudec */
static guint16
gst_kate_spu_decode_colcon (GstKateEnc * ke, const guint8 * ptr)
{
guint16 nbytes = GST_KATE_UINT16_BE (ptr + 0);
guint16 nbytes_left = nbytes;
GST_LOG_OBJECT (ke, "Number of bytes in color/contrast change command is %u",
nbytes);
if (G_UNLIKELY (nbytes < 2)) {
GST_WARNING_OBJECT (ke,
"Number of bytes in color/contrast change command is %u, should be at least 2",
nbytes);
return 0;
}
ptr += 2;
nbytes_left -= 2;
/* we will just skip that data for now */
while (nbytes_left > 0) {
guint32 entry, nchanges, sz;
GST_LOG_OBJECT (ke, "Reading a color/contrast change entry, %u bytes left",
nbytes_left);
if (G_UNLIKELY (nbytes_left < 4)) {
GST_WARNING_OBJECT (ke,
"Not enough bytes to read a full color/contrast entry header");
break;
}
entry = GST_READ_UINT32_BE (ptr);
GST_LOG_OBJECT (ke, "Color/contrast change entry header is %08x", entry);
nchanges = CLAMP ((ptr[2] >> 4), 1, 8);
ptr += 4;
nbytes_left -= 4;
if (entry == 0x0fffffff) {
GST_LOG_OBJECT (ke,
"Encountered color/contrast change termination code, breaking, %u bytes left",
nbytes_left);
break;
}
GST_LOG_OBJECT (ke, "Color/contrast change entry has %u changes", nchanges);
sz = 6 * nchanges;
if (G_UNLIKELY (sz > nbytes_left)) {
GST_WARNING_OBJECT (ke,
"Not enough bytes to read a full color/contrast entry");
break;
}
ptr += sz;
nbytes_left -= sz;
}
return nbytes - nbytes_left;
}
static inline guint8
gst_kate_spu_get_nybble (const guint8 * nybbles, size_t * nybble_offset)
{
guint8 ret;
ret = nybbles[(*nybble_offset) / 2];
/* If the offset is even, we shift the answer down 4 bits, otherwise not */
if ((*nybble_offset) & 0x01)
ret &= 0x0f;
else
ret = ret >> 4;
(*nybble_offset)++;
return ret;
}
static guint16
gst_kate_spu_get_rle_code (const guint8 * nybbles, size_t * nybble_offset)
{
guint16 code;
code = gst_kate_spu_get_nybble (nybbles, nybble_offset);
if (code < 0x4) { /* 4 .. f */
code = (code << 4) | gst_kate_spu_get_nybble (nybbles, nybble_offset);
if (code < 0x10) { /* 1x .. 3x */
code = (code << 4) | gst_kate_spu_get_nybble (nybbles, nybble_offset);
if (code < 0x40) { /* 04x .. 0fx */
code = (code << 4) | gst_kate_spu_get_nybble (nybbles, nybble_offset);
}
}
}
return code;
}
static void
gst_kate_spu_crop_bitmap (GstKateEnc * ke, kate_bitmap * kb, guint16 * dx,
guint16 * dy)
{
int top, bottom, left, right;
guint8 zero = 0;
size_t n, x, y, w, h;
#if 0
/* find the zero */
zero = kb->pixels[0];
for (x = 0; x < kb->width; ++x) {
if (kb->pixels[x] != zero) {
GST_LOG_OBJECT (ke, "top line at %u is not zero: %u", x, kb->pixels[x]);
return;
}
}
#endif
/* top */
for (top = 0; top < kb->height; ++top) {
int empty = 1;
for (x = 0; x < kb->width; ++x) {
if (G_UNLIKELY (kb->pixels[x + top * kb->width] != zero)) {
empty = 0;
break;
}
}
if (!empty)
break;
}
/* bottom */
for (bottom = kb->height - 1; bottom >= top; --bottom) {
int empty = 1;
for (x = 0; x < kb->width; ++x) {
if (G_UNLIKELY (kb->pixels[x + bottom * kb->width] != zero)) {
empty = 0;
break;
}
}
if (!empty)
break;
}
/* left */
for (left = 0; left < kb->width; ++left) {
int empty = 1;
for (y = top; y <= bottom; ++y) {
if (G_UNLIKELY (kb->pixels[left + y * kb->width] != zero)) {
empty = 0;
break;
}
}
if (!empty)
break;
}
/* right */
for (right = kb->width - 1; right >= left; --right) {
int empty = 1;
for (y = top; y <= bottom; ++y) {
if (G_UNLIKELY (kb->pixels[right + y * kb->width] != zero)) {
empty = 0;
break;
}
}
if (!empty)
break;
}
w = right - left + 1;
h = bottom - top + 1;
GST_LOG_OBJECT (ke, "cropped from %" G_GSIZE_FORMAT " %" G_GSIZE_FORMAT
" to %" G_GSIZE_FORMAT " %" G_GSIZE_FORMAT, kb->width, kb->height, w, h);
*dx += left;
*dy += top;
n = 0;
for (y = 0; y < h; ++y) {
memmove (kb->pixels + n, kb->pixels + kb->width * (y + top) + left, w);
n += w;
}
kb->width = w;
kb->height = h;
}
#define CHECK(x) G_STMT_START { \
guint16 _ = (x); \
if (G_UNLIKELY((_) > sz)) { \
GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Read outside buffer")); \
return GST_FLOW_ERROR; \
} \
} G_STMT_END
#define ADVANCE(x) G_STMT_START { \
guint16 _ = (x); ptr += (_); sz -= (_); \
} G_STMT_END
#define IGNORE(x) G_STMT_START { \
guint16 __ = (x); \
CHECK (__); \
ADVANCE (__); \
} G_STMT_END
static GstFlowReturn
gst_kate_spu_decode_command_sequence (GstKateEnc * ke, GstBuffer * buf,
guint16 command_sequence_offset)
{
guint16 date;
guint16 next_command_sequence;
const guint8 *ptr;
guint8 *data;
guint16 sz;
gsize size;
data = gst_buffer_map (buf, &size, NULL, GST_MAP_READ);
if (command_sequence_offset >= size)
goto out_of_range;
ptr = data + command_sequence_offset;
sz = size - command_sequence_offset;
GST_DEBUG_OBJECT (ke, "Decoding command sequence at %u (%u bytes)",
command_sequence_offset, sz);
CHECK (2);
date = GST_KATE_UINT16_BE (ptr);
ADVANCE (2);
GST_DEBUG_OBJECT (ke, "date %u", date);
CHECK (2);
next_command_sequence = GST_KATE_UINT16_BE (ptr);
ADVANCE (2);
GST_DEBUG_OBJECT (ke, "next command sequence at %u", next_command_sequence);
while (sz) {
guint8 cmd = *ptr++;
switch (cmd) {
case SPU_CMD_FSTA_DSP: /* 0x00 */
GST_DEBUG_OBJECT (ke, "[0] DISPLAY");
break;
case SPU_CMD_DSP: /* 0x01 */
GST_DEBUG_OBJECT (ke, "[1] SHOW");
ke->show_time = date;
break;
case SPU_CMD_STP_DSP: /* 0x02 */
GST_DEBUG_OBJECT (ke, "[2] HIDE");
ke->hide_time = date;
break;
case SPU_CMD_SET_COLOR: /* 0x03 */
GST_DEBUG_OBJECT (ke, "[3] SET COLOR");
CHECK (2);
gst_kate_spu_decode_colormap (ke, ptr);
ADVANCE (2);
break;
case SPU_CMD_SET_ALPHA: /* 0x04 */
GST_DEBUG_OBJECT (ke, "[4] SET ALPHA");
CHECK (2);
gst_kate_spu_decode_alpha (ke, ptr);
ADVANCE (2);
break;
case SPU_CMD_SET_DAREA: /* 0x05 */
GST_DEBUG_OBJECT (ke, "[5] SET DISPLAY AREA");
CHECK (6);
gst_kate_spu_decode_area (ke, ptr);
ADVANCE (6);
break;
case SPU_CMD_DSPXA: /* 0x06 */
GST_DEBUG_OBJECT (ke, "[6] SET PIXEL ADDRESSES");
CHECK (4);
gst_kate_spu_decode_pixaddr (ke, ptr);
GST_DEBUG_OBJECT (ke, " -> first pixel address %u",
ke->spu_pix_data[0]);
GST_DEBUG_OBJECT (ke, " -> second pixel address %u",
ke->spu_pix_data[1]);
ADVANCE (4);
break;
case SPU_CMD_CHG_COLCON: /* 0x07 */
GST_DEBUG_OBJECT (ke, "[7] CHANGE COLOR/CONTRAST");
CHECK (2);
ADVANCE (gst_kate_spu_decode_colcon (ke, ptr));
break;
case SPU_CMD_END: /* 0xff */
GST_DEBUG_OBJECT (ke, "[0xff] END");
if (next_command_sequence != command_sequence_offset) {
GST_DEBUG_OBJECT (ke, "Jumping to next sequence at offset %u",
next_command_sequence);
gst_buffer_unmap (buf, data, size);
return gst_kate_spu_decode_command_sequence (ke, buf,
next_command_sequence);
} else {
gst_buffer_unmap (buf, data, size);
GST_DEBUG_OBJECT (ke, "No more sequences to decode");
return GST_FLOW_OK;
}
break;
default:
gst_buffer_unmap (buf, data, size);
GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL),
("Invalid SPU command: %u", cmd));
return GST_FLOW_ERROR;
}
}
gst_buffer_unmap (buf, data, size);
GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Error parsing SPU"));
return GST_FLOW_ERROR;
/* ERRORS */
out_of_range:
{
gst_buffer_unmap (buf, data, size);
GST_ELEMENT_ERROR (ke, STREAM, DECODE, (NULL),
("Command sequence offset %u is out of range %u",
command_sequence_offset, size));
return GST_FLOW_ERROR;
}
}
static inline int
gst_kate_spu_clamp (int value)
{
if (value < 0)
return 0;
if (value > 255)
return 255;
return value;
}
static void
gst_kate_spu_yuv2rgb (int y, int u, int v, int *r, int *g, int *b)
{
#if 0
*r = gst_kate_spu_clamp (y + 1.371 * v);
*g = gst_kate_spu_clamp (y - 0.698 * v - 0.336 * u);
*b = gst_kate_spu_clamp (y + 1.732 * u);
#elif 0
*r = gst_kate_spu_clamp (y + u);
*g = gst_kate_spu_clamp (y - (76 * u - 26 * v) / 256);
*b = gst_kate_spu_clamp (y + v);
#else
y = (y - 16) * 255 / 219;
u = (u - 128) * 255 / 224;
v = (v - 128) * 255 / 224;
*r = gst_kate_spu_clamp (y + 1.402 * v);
*g = gst_kate_spu_clamp (y - 0.34414 * u - 0.71414 * v);
*b = gst_kate_spu_clamp (y + 1.772 * u);
#endif
}
static GstFlowReturn
gst_kate_spu_create_spu_palette (GstKateEnc * ke, kate_palette * kp)
{
size_t n;
kate_palette_init (kp);
kp->ncolors = 4;
kp->colors = (kate_color *) g_malloc (kp->ncolors * sizeof (kate_color));
if (G_UNLIKELY (!kp->colors)) {
GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL), ("Out of memory"));
return GST_FLOW_ERROR;
}
#if 1
for (n = 0; n < kp->ncolors; ++n) {
int idx = ke->spu_colormap[n];
guint32 color = ke->spu_clut[idx];
int y = (color >> 16) & 0xff;
int v = (color >> 8) & 0xff;
int u = color & 0xff;
int r, g, b;
gst_kate_spu_yuv2rgb (y, u, v, &r, &g, &b);
kp->colors[n].r = r;
kp->colors[n].g = g;
kp->colors[n].b = b;
kp->colors[n].a = ke->spu_alpha[n] * 17;
}
#else
/* just make a ramp from 0 to 255 for those non transparent colors */
for (n = 0; n < kp->ncolors; ++n)
if (ke->spu_alpha[n] == 0)
++ntrans;
for (n = 0; n < kp->ncolors; ++n) {
kp->colors[n].r = luma;
kp->colors[n].g = luma;
kp->colors[n].b = luma;
kp->colors[n].a = ke->spu_alpha[n] * 17;
if (ke->spu_alpha[n])
luma /= 2;
}
#endif
return GST_FLOW_OK;
}
GstFlowReturn
gst_kate_spu_decode_spu (GstKateEnc * ke, GstBuffer * buf, kate_region * kr,
kate_bitmap * kb, kate_palette * kp)
{
guint8 *data;
gsize size;
const guint8 *ptr;
size_t sz;
guint16 packet_size;
guint16 x, y;
size_t n;
guint8 *pixptr[2];
size_t nybble_offset[2];
size_t max_nybbles[2];
GstFlowReturn rflow;
guint16 next_command_sequence;
guint16 code;
data = gst_buffer_map (buf, &size, NULL, GST_MAP_READ);
ptr = data;
sz = size;
/* before decoding anything, initialize to sensible defaults */
memset (ke->spu_colormap, 0, sizeof (ke->spu_colormap));
memset (ke->spu_alpha, 0, sizeof (ke->spu_alpha));
ke->spu_top = ke->spu_left = 1;
ke->spu_bottom = ke->spu_right = 0;
ke->spu_pix_data[0] = ke->spu_pix_data[1] = 0;
ke->show_time = ke->hide_time = 0;
/* read sizes and get to the start of the data */
CHECK (2);
packet_size = GST_KATE_UINT16_BE (ptr);
ADVANCE (2);
GST_DEBUG_OBJECT (ke, "packet size %u (GstBuffer size %u)", packet_size,
size);
CHECK (2);
next_command_sequence = GST_KATE_UINT16_BE (ptr);
ADVANCE (2);
ptr = data + next_command_sequence;
sz = size - next_command_sequence;
GST_DEBUG_OBJECT (ke, "next command sequence at %u for %u",
next_command_sequence, (guint) sz);
rflow = gst_kate_spu_decode_command_sequence (ke, buf, next_command_sequence);
if (G_UNLIKELY (rflow != GST_FLOW_OK)) {
gst_buffer_unmap (buf, data, size);
return rflow;
}
/* if no addresses or sizes were given, or if they define an empty SPU, nothing more to do */
if (G_UNLIKELY (ke->spu_right - ke->spu_left < 0
|| ke->spu_bottom - ke->spu_top < 0 || ke->spu_pix_data[0] == 0
|| ke->spu_pix_data[1] == 0)) {
GST_DEBUG_OBJECT (ke,
"left %d, right %d, top %d, bottom %d, pix data %d %d", ke->spu_left,
ke->spu_right, ke->spu_top, ke->spu_bottom, ke->spu_pix_data[0],
ke->spu_pix_data[1]);
GST_WARNING_OBJECT (ke, "SPU area is empty, nothing to encode");
kate_bitmap_init (kb);
kb->width = kb->height = 0;
gst_buffer_unmap (buf, data, size);
return GST_FLOW_OK;
}
/* create the palette */
rflow = gst_kate_spu_create_spu_palette (ke, kp);
if (G_UNLIKELY (rflow != GST_FLOW_OK)) {
gst_buffer_unmap (buf, data, size);
return rflow;
}
/* create the bitmap */
kate_bitmap_init (kb);
kb->width = ke->spu_right - ke->spu_left + 1;
kb->height = ke->spu_bottom - ke->spu_top + 1;
kb->bpp = 2;
kb->type = kate_bitmap_type_paletted;
kb->pixels = (unsigned char *) g_malloc (kb->width * kb->height);
if (G_UNLIKELY (!kb->pixels)) {
gst_buffer_unmap (buf, data, size);
GST_ELEMENT_ERROR (ke, STREAM, ENCODE, (NULL),
("Failed to allocate memory for pixel data"));
return GST_FLOW_ERROR;
}
n = 0;
pixptr[0] = data + ke->spu_pix_data[0];
pixptr[1] = data + ke->spu_pix_data[1];
nybble_offset[0] = 0;
nybble_offset[1] = 0;
max_nybbles[0] = 2 * (packet_size - ke->spu_pix_data[0]);
max_nybbles[1] = 2 * (packet_size - ke->spu_pix_data[1]);
for (y = 0; y < kb->height; ++y) {
nybble_offset[y & 1] = GST_ROUND_UP_2 (nybble_offset[y & 1]);
for (x = 0; x < kb->width;) {
if (G_UNLIKELY (nybble_offset[y & 1] >= max_nybbles[y & 1])) {
GST_DEBUG_OBJECT (ke, "RLE overflow, clearing the remainder");
memset (kb->pixels + n, 0, kb->width - x);
n += kb->width - x;
break;
}
code = gst_kate_spu_get_rle_code (pixptr[y & 1], &nybble_offset[y & 1]);
if (code == 0) {
memset (kb->pixels + n, 0, kb->width - x);
n += kb->width - x;
break;
} else {
guint16 npixels = code >> 2;
guint16 pixel = code & 3;
if (npixels > kb->width - x) {
npixels = kb->width - x;
}
memset (kb->pixels + n, pixel, npixels);
n += npixels;
x += npixels;
}
}
}
GST_LOG_OBJECT (ke, "%u/%u bytes left in the data packet",
(guint) (max_nybbles[0] - nybble_offset[0]),
(guint) (max_nybbles[1] - nybble_offset[1]));
/* some streams seem to have huge uncropped SPUs, fix those up */
x = ke->spu_left;
y = ke->spu_top;
gst_kate_spu_crop_bitmap (ke, kb, &x, &y);
/* create the region */
kate_region_init (kr);
if (ke->original_canvas_width > 0 && ke->original_canvas_height > 0) {
/* prefer relative sizes in case we're encoding for a different resolution
that what the SPU was created for */
kr->metric = kate_millionths;
kr->x = 1000000 * x / ke->original_canvas_width;
kr->y = 1000000 * y / ke->original_canvas_height;
kr->w = 1000000 * kb->width / ke->original_canvas_width;
kr->h = 1000000 * kb->height / ke->original_canvas_height;
} else {
kr->metric = kate_pixel;
kr->x = x;
kr->y = y;
kr->w = kb->width;
kr->h = kb->height;
}
/* some SPUs have no hide time */
if (ke->hide_time == 0) {
GST_INFO_OBJECT (ke, "SPU has no hide time");
/* now, we don't know when the next SPU is scheduled to go, since we probably
haven't received it yet, so we'll just make it a 1 second delay, which is
probably going to end before the next one while being readable */
//ke->hide_time = ke->show_time + (1000 * 90 / 1024);
}
gst_buffer_unmap (buf, data, size);
return GST_FLOW_OK;
}
#undef IGNORE
#undef ADVANCE
#undef CHECK
#undef GST_CAT_DEFAULT
#define GST_CAT_DEFAULT gst_katedec_debug
static void
gst_kate_spu_add_nybble (unsigned char *bytes, size_t nbytes, int nybble_offset,
unsigned char nybble)
{
unsigned char *ptr = bytes + nbytes + nybble_offset / 2;
if (!(nybble_offset & 1)) {
*ptr = nybble << 4;
} else {
*ptr |= nybble;
}
}
static void
gst_kate_spu_rgb2yuv (int r, int g, int b, int *y, int *u, int *v)
{
*y = gst_kate_spu_clamp (r * 0.299 * 219 / 255 + g * 0.587 * 219 / 255 +
b * 0.114 * 219 / 255 + 16);
*u = gst_kate_spu_clamp (-r * 0.16874 * 224 / 255 - g * 0.33126 * 224 / 255 +
b * 0.5 * 224 / 255 + 128);
*v = gst_kate_spu_clamp (r * 0.5 * 224 / 255 - g * 0.41869 * 224 / 255 -
b * 0.08131 * 224 / 255 + 128);
}
static void
gst_kate_spu_make_palette (GstKateDec * kd, int palette[4],
const kate_palette * kp)
{
int n;
GstStructure *structure;
GstEvent *event;
char name[16];
int y, u, v;
palette[0] = 0;
palette[1] = 1;
palette[2] = 2;
palette[3] = 3;
structure = gst_structure_new ("application/x-gst-dvd",
"event", G_TYPE_STRING, "dvd-spu-clut-change", NULL);
/* Create a separate field for each value in the table. */
for (n = 0; n < 16; n++) {
guint32 color = 0;
if (n < 4) {
gst_kate_spu_rgb2yuv (kp->colors[n].r, kp->colors[n].g, kp->colors[n].b,
&y, &u, &v);
color = (y << 16) | (v << 8) | u;
}
g_snprintf (name, sizeof (name), "clut%02d", n);
gst_structure_set (structure, name, G_TYPE_INT, (int) color, NULL);
}
/* Create the DVD event and put the structure into it. */
event = gst_event_new_custom (GST_EVENT_CUSTOM_DOWNSTREAM, structure);
GST_LOG_OBJECT (kd, "preparing clut change event %" GST_PTR_FORMAT, event);
gst_pad_push_event (kd->srcpad, event);
}
GstBuffer *
gst_kate_spu_encode_spu (GstKateDec * kd, const kate_event * ev)
{
kate_tracker kin;
unsigned char *bytes = NULL;
size_t nbytes = 0;
GstBuffer *buffer = NULL;
int ret;
int ocw, och;
int top, left, right, bottom;
int pass, line, row;
int lines_offset[2];
int first_commands_offset, second_commands_offset;
int nybble_count;
const kate_bitmap *kb;
const kate_palette *kp;
int palette[4];
int delay;
/* we need a region, a bitmap, and a palette */
if (!ev || !ev->region || !ev->bitmap || !ev->palette)
return NULL;
kb = ev->bitmap;
kp = ev->palette;
/* these need particular properties */
if (kb->type != kate_bitmap_type_paletted || kb->bpp != 2)
return NULL;
if (kp->ncolors != 4)
return NULL;
ret = kate_tracker_init (&kin, ev->ki, ev);
if (ret < 0) {
GST_WARNING_OBJECT (kd, "Failed to initialize kate tracker");
return NULL;
}
ocw = ev->ki->original_canvas_width;
och = ev->ki->original_canvas_height;
ret = kate_tracker_update (&kin, (kate_float) 0, ocw, och, 0, 0, ocw, och);
if (ret < 0)
goto error;
if (kin.has.region) {
top = (int) (kin.region_y + (kate_float) 0.5);
left = (int) (kin.region_x + (kate_float) 0.5);
} else {
GST_WARNING_OBJECT (kd,
"No region information to place SPU, placing at 0 0");
top = left = 0;
}
right = left + kb->width - 1;
bottom = top + kb->height - 1;
/* Allocate space to build the SPU */
bytes = g_malloc (MAX_SPU_SIZE);
if (G_UNLIKELY (!bytes)) {
GST_WARNING_OBJECT (kd,
"Failed to allocate %" G_GSIZE_FORMAT " byte buffer", nbytes);
goto error;
}
nbytes = 4;
nybble_count = 0;
#define CHKBUFSPC(nybbles) \
do { \
if ((nbytes + (nybbles + nybble_count + 1) / 2) > MAX_SPU_SIZE) { \
GST_WARNING_OBJECT (kd, "Not enough space in SPU buffer"); \
goto error; \
} \
} while(0)
/* encode lines */
for (pass = 0; pass <= 1; ++pass) {
lines_offset[pass] = nbytes;
for (line = pass; line < bottom - top + 1; line += 2) {
const unsigned char *ptr = kb->pixels + line * kb->width;
for (row = 0; row < kb->width;) {
int run = 1;
while (row + run < kb->width && run < 255 && ptr[row + run] == ptr[row])
++run;
if (run >= 63 && row + run == kb->width) {
/* special end of line marker */
CHKBUFSPC (4);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, ptr[row]);
} else if (run >= 1 && run <= 3) {
CHKBUFSPC (1);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++,
(run << 2) | ptr[row]);
} else if (run <= 15) {
CHKBUFSPC (2);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, run >> 2);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++,
((run & 3) << 2) | ptr[row]);
} else if (run <= 63) {
CHKBUFSPC (3);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, run >> 2);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++,
((run & 3) << 2) | ptr[row]);
} else {
CHKBUFSPC (4);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, (run >> 6));
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++,
(run >> 2) & 0xf);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++,
((run & 3) << 2) | ptr[row]);
}
row += run;
}
if (nybble_count & 1) {
CHKBUFSPC (1);
gst_kate_spu_add_nybble (bytes, nbytes, nybble_count++, 0);
}
nbytes += nybble_count / 2;
nybble_count = 0;
}
}
first_commands_offset = nbytes;
gst_kate_spu_make_palette (kd, palette, kp);
/* Commands header */
CHKBUFSPC (4 * 2);
bytes[nbytes++] = 0;
bytes[nbytes++] = 0;
/* link to next command chunk will be filled later, when we know where it is */
bytes[nbytes++] = 0;
bytes[nbytes++] = 0;
CHKBUFSPC (3 * 2);
bytes[nbytes++] = SPU_CMD_SET_COLOR;
bytes[nbytes++] = (palette[3] << 4) | palette[2];
bytes[nbytes++] = (palette[1] << 4) | palette[0];
CHKBUFSPC (3 * 2);
bytes[nbytes++] = SPU_CMD_SET_ALPHA;
bytes[nbytes++] =
((kp->colors[palette[3]].a / 17) << 4) | (kp->colors[palette[2]].a / 17);
bytes[nbytes++] =
((kp->colors[palette[1]].a / 17) << 4) | (kp->colors[palette[0]].a / 17);
CHKBUFSPC (7 * 2);
bytes[nbytes++] = SPU_CMD_SET_DAREA;
bytes[nbytes++] = left >> 4;
bytes[nbytes++] = ((left & 0xf) << 4) | (right >> 8);
bytes[nbytes++] = right & 0xff;
bytes[nbytes++] = top >> 4;
bytes[nbytes++] = ((top & 0xf) << 4) | (bottom >> 8);
bytes[nbytes++] = bottom & 0xff;
CHKBUFSPC (5 * 2);
bytes[nbytes++] = SPU_CMD_DSPXA;
bytes[nbytes++] = (lines_offset[0] >> 8) & 0xff;
bytes[nbytes++] = lines_offset[0] & 0xff;
bytes[nbytes++] = (lines_offset[1] >> 8) & 0xff;
bytes[nbytes++] = lines_offset[1] & 0xff;
CHKBUFSPC (1 * 2);
bytes[nbytes++] = SPU_CMD_DSP;
CHKBUFSPC (1 * 2);
bytes[nbytes++] = SPU_CMD_END;
/* stop display chunk */
CHKBUFSPC (4 * 2);
second_commands_offset = nbytes;
bytes[first_commands_offset + 2] = (second_commands_offset >> 8) & 0xff;
bytes[first_commands_offset + 3] = second_commands_offset & 0xff;
delay = GST_KATE_GST_TO_STM (ev->end_time - ev->start_time);
bytes[nbytes++] = (delay >> 8) & 0xff;
bytes[nbytes++] = delay & 0xff;
/* close the loop by linking back to self */
bytes[nbytes++] = (second_commands_offset >> 8) & 0xff;
bytes[nbytes++] = second_commands_offset & 0xff;
CHKBUFSPC (1 * 2);
bytes[nbytes++] = SPU_CMD_STP_DSP;
CHKBUFSPC (1 * 2);
bytes[nbytes++] = SPU_CMD_END;
/* Now that we know the size of the SPU, update the size and pointers */
bytes[0] = (nbytes >> 8) & 0xff;
bytes[1] = nbytes & 0xff;
bytes[2] = (first_commands_offset >> 8) & 0xff;
bytes[3] = first_commands_offset & 0xff;
/* Create a buffer with those values */
buffer = gst_buffer_new_wrapped (bytes, nbytes);
if (G_UNLIKELY (!buffer)) {
GST_WARNING_OBJECT (kd,
"Failed to allocate %" G_GSIZE_FORMAT " byte buffer", nbytes);
goto error;
}
GST_BUFFER_OFFSET_END (buffer) = GST_SECOND * (ev->end_time);
GST_BUFFER_OFFSET (buffer) = GST_SECOND * (ev->start_time);
GST_BUFFER_TIMESTAMP (buffer) = GST_SECOND * (ev->start_time);
GST_BUFFER_DURATION (buffer) = GST_SECOND * (ev->end_time - ev->start_time);
GST_DEBUG_OBJECT (kd, "SPU uses %" G_GSIZE_FORMAT " bytes", nbytes);
kate_tracker_clear (&kin);
return buffer;
error:
kate_tracker_clear (&kin);
if (bytes)
g_free (bytes);
return NULL;
}