mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-04 06:29:31 +00:00
589407a077
If old opencv1-style legacy include directory is available, this change becomes purely cosmetic (maybe will compile a bit faster). It becomes an FTBFS fix when opencv1-style include directory is missing (possibly because opencv package maintainer decided not to pack it). https://bugzilla.gnome.org/show_bug.cgi?id=747705
854 lines
29 KiB
C++
854 lines
29 KiB
C++
/*
|
||
* GStreamer
|
||
* Copyright (C) 2013 Miguel Casas-Sanchez <miguelecasassanchez@gmail.com>
|
||
* Except: Parts of code inside the preprocessor define CODE_FROM_OREILLY_BOOK,
|
||
* which are downloaded from O'Reilly website
|
||
* [http://examples.oreilly.com/9780596516130/]
|
||
* and adapted. Its license reads:
|
||
* "Oct. 3, 2008
|
||
* Right to use this code in any way you want without warrenty, support or
|
||
* any guarentee of it working. "
|
||
*
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included in
|
||
* all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||
* DEALINGS IN THE SOFTWARE.
|
||
*
|
||
* Alternatively, the contents of this file may be used under the
|
||
* GNU Lesser General Public License Version 2.1 (the "LGPL"), in
|
||
* which case the following provisions apply instead of the ones
|
||
* mentioned above:
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Library General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Library General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Library General Public
|
||
* License along with this library; if not, write to the
|
||
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
||
* Boston, MA 02110-1301, USA.
|
||
*/
|
||
#define CODE_FROM_OREILLY_BOOK
|
||
|
||
/**
|
||
* SECTION:element-segmentation
|
||
*
|
||
* This element creates and updates a fg/bg model using one of several approaches.
|
||
* The one called "codebook" refers to the codebook approach following the opencv
|
||
* O'Reilly book [1] implementation of the algorithm described in K. Kim,
|
||
* T. H. Chalidabhongse, D. Harwood and L. Davis [2]. BackgroundSubtractorMOG [3],
|
||
* or MOG for shorts, refers to a Gaussian Mixture-based Background/Foreground
|
||
* Segmentation Algorithm. OpenCV MOG implements the algorithm described in [4].
|
||
* BackgroundSubtractorMOG2 [5], refers to another Gaussian Mixture-based
|
||
* Background/Foreground segmentation algorithm. OpenCV MOG2 implements the
|
||
* algorithm described in [6] and [7].
|
||
*
|
||
* [1] Learning OpenCV: Computer Vision with the OpenCV Library by Gary Bradski
|
||
* and Adrian Kaehler, Published by O'Reilly Media, October 3, 2008
|
||
* [2] "Real-time Foreground-Background Segmentation using Codebook Model",
|
||
* Real-time Imaging, Volume 11, Issue 3, Pages 167-256, June 2005.
|
||
* [3] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog
|
||
* [4] P. KadewTraKuPong and R. Bowden, "An improved adaptive background
|
||
* mixture model for real-time tracking with shadow detection", Proc. 2nd
|
||
* European Workshop on Advanced Video-Based Surveillance Systems, 2001
|
||
* [5] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog2
|
||
* [6] Z.Zivkovic, "Improved adaptive Gausian mixture model for background
|
||
* subtraction", International Conference Pattern Recognition, UK, August, 2004.
|
||
* [7] Z.Zivkovic, F. van der Heijden, "Efficient Adaptive Density Estimation
|
||
* per Image Pixel for the Task of Background Subtraction", Pattern Recognition
|
||
* Letters, vol. 27, no. 7, pages 773-780, 2006.
|
||
*
|
||
* <refsect2>
|
||
* <title>Example launch line</title>
|
||
* |[
|
||
* gst-launch-1.0 v4l2src device=/dev/video0 ! videoconvert ! video/x-raw,width=320,height=240 ! videoconvert ! segmentation test-mode=true method=2 ! videoconvert ! ximagesink
|
||
* ]|
|
||
* </refsect2>
|
||
*/
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
#include <config.h>
|
||
#endif
|
||
|
||
#include <gst/gst.h>
|
||
|
||
#include "gstsegmentation.h"
|
||
#include <opencv2/video/background_segm.hpp>
|
||
#include <opencv2/imgproc/imgproc_c.h>
|
||
|
||
GST_DEBUG_CATEGORY_STATIC (gst_segmentation_debug);
|
||
#define GST_CAT_DEFAULT gst_segmentation_debug
|
||
|
||
/* Filter signals and args */
|
||
enum
|
||
{
|
||
/* FILL ME */
|
||
LAST_SIGNAL
|
||
};
|
||
|
||
enum
|
||
{
|
||
PROP_0,
|
||
PROP_TEST_MODE,
|
||
PROP_METHOD,
|
||
PROP_LEARNING_RATE
|
||
};
|
||
typedef enum
|
||
{
|
||
METHOD_BOOK,
|
||
METHOD_MOG,
|
||
METHOD_MOG2
|
||
} GstSegmentationMethod;
|
||
|
||
#define DEFAULT_TEST_MODE FALSE
|
||
#define DEFAULT_METHOD METHOD_MOG2
|
||
#define DEFAULT_LEARNING_RATE 0.01
|
||
|
||
#define GST_TYPE_SEGMENTATION_METHOD (gst_segmentation_method_get_type ())
|
||
static GType
|
||
gst_segmentation_method_get_type (void)
|
||
{
|
||
static GType etype = 0;
|
||
if (etype == 0) {
|
||
static const GEnumValue values[] = {
|
||
{METHOD_BOOK, "Codebook-based segmentation (Bradski2008)", "codebook"},
|
||
{METHOD_MOG, "Mixture-of-Gaussians segmentation (Bowden2001)", "mog"},
|
||
{METHOD_MOG2, "Mixture-of-Gaussians segmentation (Zivkovic2004)", "mog2"},
|
||
{0, NULL, NULL},
|
||
};
|
||
etype = g_enum_register_static ("GstSegmentationMethod", values);
|
||
}
|
||
return etype;
|
||
}
|
||
|
||
G_DEFINE_TYPE (GstSegmentation, gst_segmentation, GST_TYPE_VIDEO_FILTER);
|
||
static GstStaticPadTemplate sink_factory = GST_STATIC_PAD_TEMPLATE ("sink",
|
||
GST_PAD_SINK,
|
||
GST_PAD_ALWAYS,
|
||
GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("RGBA")));
|
||
|
||
static GstStaticPadTemplate src_factory = GST_STATIC_PAD_TEMPLATE ("src",
|
||
GST_PAD_SRC,
|
||
GST_PAD_ALWAYS,
|
||
GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("RGBA")));
|
||
|
||
|
||
static void gst_segmentation_set_property (GObject * object, guint prop_id,
|
||
const GValue * value, GParamSpec * pspec);
|
||
static void gst_segmentation_get_property (GObject * object, guint prop_id,
|
||
GValue * value, GParamSpec * pspec);
|
||
|
||
static GstFlowReturn gst_segmentation_transform_ip (GstVideoFilter * btrans,
|
||
GstVideoFrame * frame);
|
||
|
||
static gboolean gst_segmentation_stop (GstBaseTransform * basesrc);
|
||
static gboolean gst_segmentation_set_info (GstVideoFilter * filter,
|
||
GstCaps * incaps, GstVideoInfo * in_info,
|
||
GstCaps * outcaps, GstVideoInfo * out_info);
|
||
static void gst_segmentation_release_all_pointers (GstSegmentation * filter);
|
||
|
||
/* Codebook algorithm + connected components functions*/
|
||
static int update_codebook (unsigned char *p, codeBook * c,
|
||
unsigned *cbBounds, int numChannels);
|
||
static int clear_stale_entries (codeBook * c);
|
||
static unsigned char background_diff (unsigned char *p, codeBook * c,
|
||
int numChannels, int *minMod, int *maxMod);
|
||
static void find_connected_components (IplImage * mask, int poly1_hull0,
|
||
float perimScale, CvMemStorage * mem_storage, CvSeq * contours);
|
||
|
||
/* MOG (Mixture-of-Gaussians functions */
|
||
static int initialise_mog (GstSegmentation * filter);
|
||
static int run_mog_iteration (GstSegmentation * filter);
|
||
static int run_mog2_iteration (GstSegmentation * filter);
|
||
static int finalise_mog (GstSegmentation * filter);
|
||
|
||
/* initialize the segmentation's class */
|
||
static void
|
||
gst_segmentation_class_init (GstSegmentationClass * klass)
|
||
{
|
||
GObjectClass *gobject_class;
|
||
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
|
||
GstBaseTransformClass *basesrc_class = GST_BASE_TRANSFORM_CLASS (klass);
|
||
GstVideoFilterClass *video_class = (GstVideoFilterClass *) klass;
|
||
|
||
gobject_class = (GObjectClass *) klass;
|
||
|
||
gobject_class->set_property = gst_segmentation_set_property;
|
||
gobject_class->get_property = gst_segmentation_get_property;
|
||
|
||
basesrc_class->stop = gst_segmentation_stop;
|
||
|
||
video_class->transform_frame_ip = gst_segmentation_transform_ip;
|
||
video_class->set_info = gst_segmentation_set_info;
|
||
|
||
g_object_class_install_property (gobject_class, PROP_METHOD,
|
||
g_param_spec_enum ("method",
|
||
"Segmentation method to use",
|
||
"Segmentation method to use",
|
||
GST_TYPE_SEGMENTATION_METHOD, DEFAULT_METHOD,
|
||
(GParamFlags) (G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
||
|
||
g_object_class_install_property (gobject_class, PROP_TEST_MODE,
|
||
g_param_spec_boolean ("test-mode", "test-mode",
|
||
"If true, the output RGB is overwritten with the calculated foreground (white color)",
|
||
DEFAULT_TEST_MODE, (GParamFlags)
|
||
(GParamFlags) (G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
||
|
||
g_object_class_install_property (gobject_class, PROP_LEARNING_RATE,
|
||
g_param_spec_float ("learning-rate", "learning-rate",
|
||
"Speed with which a motionless foreground pixel would become background (inverse of number of frames)",
|
||
0, 1, DEFAULT_LEARNING_RATE, (GParamFlags) (G_PARAM_READWRITE)));
|
||
|
||
gst_element_class_set_static_metadata (element_class,
|
||
"Foreground/background video sequence segmentation",
|
||
"Filter/Effect/Video",
|
||
"Create a Foregound/Background mask applying a particular algorithm",
|
||
"Miguel Casas-Sanchez <miguelecasassanchez@gmail.com>");
|
||
|
||
gst_element_class_add_pad_template (element_class,
|
||
gst_static_pad_template_get (&src_factory));
|
||
gst_element_class_add_pad_template (element_class,
|
||
gst_static_pad_template_get (&sink_factory));
|
||
|
||
}
|
||
|
||
/* initialize the new element
|
||
* instantiate pads and add them to element
|
||
* set pad calback functions
|
||
* initialize instance structure
|
||
*/
|
||
static void
|
||
gst_segmentation_init (GstSegmentation * filter)
|
||
{
|
||
filter->method = DEFAULT_METHOD;
|
||
filter->test_mode = DEFAULT_TEST_MODE;
|
||
filter->framecount = 0;
|
||
filter->learning_rate = DEFAULT_LEARNING_RATE;
|
||
gst_base_transform_set_in_place (GST_BASE_TRANSFORM (filter), TRUE);
|
||
}
|
||
|
||
|
||
static void
|
||
gst_segmentation_set_property (GObject * object, guint prop_id,
|
||
const GValue * value, GParamSpec * pspec)
|
||
{
|
||
GstSegmentation *filter = GST_SEGMENTATION (object);
|
||
|
||
switch (prop_id) {
|
||
case PROP_METHOD:
|
||
filter->method = g_value_get_enum (value);
|
||
break;
|
||
case PROP_TEST_MODE:
|
||
filter->test_mode = g_value_get_boolean (value);
|
||
break;
|
||
case PROP_LEARNING_RATE:
|
||
filter->learning_rate = g_value_get_float (value);
|
||
break;
|
||
default:
|
||
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
gst_segmentation_get_property (GObject * object, guint prop_id,
|
||
GValue * value, GParamSpec * pspec)
|
||
{
|
||
GstSegmentation *filter = GST_SEGMENTATION (object);
|
||
|
||
switch (prop_id) {
|
||
case PROP_METHOD:
|
||
g_value_set_enum (value, filter->method);
|
||
break;
|
||
case PROP_TEST_MODE:
|
||
g_value_set_boolean (value, filter->test_mode);
|
||
break;
|
||
case PROP_LEARNING_RATE:
|
||
g_value_set_float (value, filter->learning_rate);
|
||
break;
|
||
default:
|
||
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* GstElement vmethod implementations */
|
||
/* this function handles the link with other elements */
|
||
static gboolean
|
||
gst_segmentation_set_info (GstVideoFilter * filter,
|
||
GstCaps * incaps, GstVideoInfo * in_info,
|
||
GstCaps * outcaps, GstVideoInfo * out_info)
|
||
{
|
||
GstSegmentation *segmentation = GST_SEGMENTATION (filter);
|
||
CvSize size;
|
||
|
||
size = cvSize (in_info->width, in_info->height);
|
||
segmentation->width = in_info->width;
|
||
segmentation->height = in_info->height;
|
||
/* If cvRGB is already allocated, it means there's a cap modification, */
|
||
/* so release first all the images. */
|
||
if (NULL != segmentation->cvRGBA)
|
||
gst_segmentation_release_all_pointers (segmentation);
|
||
|
||
segmentation->cvRGBA = cvCreateImageHeader (size, IPL_DEPTH_8U, 4);
|
||
|
||
segmentation->cvRGB = cvCreateImage (size, IPL_DEPTH_8U, 3);
|
||
segmentation->cvYUV = cvCreateImage (size, IPL_DEPTH_8U, 3);
|
||
|
||
segmentation->cvFG = cvCreateImage (size, IPL_DEPTH_8U, 1);
|
||
cvZero (segmentation->cvFG);
|
||
|
||
segmentation->ch1 = cvCreateImage (size, IPL_DEPTH_8U, 1);
|
||
segmentation->ch2 = cvCreateImage (size, IPL_DEPTH_8U, 1);
|
||
segmentation->ch3 = cvCreateImage (size, IPL_DEPTH_8U, 1);
|
||
|
||
/* Codebook method */
|
||
segmentation->TcodeBook = (codeBook *)
|
||
g_malloc (sizeof (codeBook) *
|
||
(segmentation->width * segmentation->height + 1));
|
||
for (int j = 0; j < segmentation->width * segmentation->height; j++) {
|
||
segmentation->TcodeBook[j].numEntries = 0;
|
||
segmentation->TcodeBook[j].t = 0;
|
||
}
|
||
segmentation->learning_interval = (int) (1.0 / segmentation->learning_rate);
|
||
|
||
/* Mixture-of-Gaussians (mog) methods */
|
||
initialise_mog (segmentation);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Clean up */
|
||
static gboolean
|
||
gst_segmentation_stop (GstBaseTransform * basesrc)
|
||
{
|
||
GstSegmentation *filter = GST_SEGMENTATION (basesrc);
|
||
|
||
if (filter->cvRGBA != NULL)
|
||
gst_segmentation_release_all_pointers (filter);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static void
|
||
gst_segmentation_release_all_pointers (GstSegmentation * filter)
|
||
{
|
||
cvReleaseImage (&filter->cvRGBA);
|
||
cvReleaseImage (&filter->cvRGB);
|
||
cvReleaseImage (&filter->cvYUV);
|
||
cvReleaseImage (&filter->cvFG);
|
||
cvReleaseImage (&filter->ch1);
|
||
cvReleaseImage (&filter->ch2);
|
||
cvReleaseImage (&filter->ch3);
|
||
|
||
cvReleaseMemStorage (&filter->mem_storage);
|
||
|
||
g_free (filter->TcodeBook);
|
||
finalise_mog (filter);
|
||
}
|
||
|
||
static GstFlowReturn
|
||
gst_segmentation_transform_ip (GstVideoFilter * btrans, GstVideoFrame * frame)
|
||
{
|
||
GstSegmentation *filter = GST_SEGMENTATION (btrans);
|
||
int j;
|
||
|
||
/* get image data from the input, which is RGBA */
|
||
filter->cvRGBA->imageData = (char *) GST_VIDEO_FRAME_COMP_DATA (frame, 0);
|
||
filter->cvRGBA->widthStep = GST_VIDEO_FRAME_COMP_STRIDE (frame, 0);
|
||
filter->framecount++;
|
||
|
||
/* Image preprocessing: color space conversion etc */
|
||
cvCvtColor (filter->cvRGBA, filter->cvRGB, CV_RGBA2RGB);
|
||
cvCvtColor (filter->cvRGB, filter->cvYUV, CV_RGB2YCrCb);
|
||
|
||
/* Create and update a fg/bg model using a codebook approach following the
|
||
* opencv O'Reilly book [1] implementation of the algo described in [2].
|
||
*
|
||
* [1] Learning OpenCV: Computer Vision with the OpenCV Library by Gary
|
||
* Bradski and Adrian Kaehler, Published by O'Reilly Media, October 3, 2008
|
||
* [2] "Real-time Foreground-Background Segmentation using Codebook Model",
|
||
* Real-time Imaging, Volume 11, Issue 3, Pages 167-256, June 2005. */
|
||
if (METHOD_BOOK == filter->method) {
|
||
unsigned cbBounds[3] = { 10, 5, 5 };
|
||
int minMod[3] = { 20, 20, 20 }, maxMod[3] = {
|
||
20, 20, 20};
|
||
|
||
if (filter->framecount < 30) {
|
||
/* Learning background phase: update_codebook on every frame */
|
||
for (j = 0; j < filter->width * filter->height; j++) {
|
||
update_codebook ((unsigned char *) filter->cvYUV->imageData + j * 3,
|
||
(codeBook *) & (filter->TcodeBook[j]), cbBounds, 3);
|
||
}
|
||
} else {
|
||
/* this updating is responsible for FG becoming BG again */
|
||
if (filter->framecount % filter->learning_interval == 0) {
|
||
for (j = 0; j < filter->width * filter->height; j++) {
|
||
update_codebook ((uchar *) filter->cvYUV->imageData + j * 3,
|
||
(codeBook *) & (filter->TcodeBook[j]), cbBounds, 3);
|
||
}
|
||
}
|
||
if (filter->framecount % 60 == 0) {
|
||
for (j = 0; j < filter->width * filter->height; j++)
|
||
clear_stale_entries ((codeBook *) & (filter->TcodeBook[j]));
|
||
}
|
||
|
||
for (j = 0; j < filter->width * filter->height; j++) {
|
||
if (background_diff
|
||
((uchar *) filter->cvYUV->imageData + j * 3,
|
||
(codeBook *) & (filter->TcodeBook[j]), 3, minMod, maxMod)) {
|
||
filter->cvFG->imageData[j] = 255;
|
||
} else {
|
||
filter->cvFG->imageData[j] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* 3rd param is the smallest area to show: (w+h)/param , in pixels */
|
||
find_connected_components (filter->cvFG, 1, 10000,
|
||
filter->mem_storage, filter->contours);
|
||
|
||
}
|
||
/* Create the foreground and background masks using BackgroundSubtractorMOG [1],
|
||
* Gaussian Mixture-based Background/Foreground segmentation algorithm. OpenCV
|
||
* MOG implements the algorithm described in [2].
|
||
*
|
||
* [1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog
|
||
* [2] P. KadewTraKuPong and R. Bowden, "An improved adaptive background
|
||
* mixture model for real-time tracking with shadow detection", Proc. 2nd
|
||
* European Workshop on Advanced Video-Based Surveillance Systems, 2001
|
||
*/
|
||
else if (METHOD_MOG == filter->method) {
|
||
run_mog_iteration (filter);
|
||
}
|
||
/* Create the foreground and background masks using BackgroundSubtractorMOG2
|
||
* [1], Gaussian Mixture-based Background/Foreground segmentation algorithm.
|
||
* OpenCV MOG2 implements the algorithm described in [2] and [3].
|
||
*
|
||
* [1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog2
|
||
* [2] Z.Zivkovic, "Improved adaptive Gausian mixture model for background
|
||
* subtraction", International Conference Pattern Recognition, UK, Aug 2004.
|
||
* [3] Z.Zivkovic, F. van der Heijden, "Efficient Adaptive Density Estimation
|
||
* per Image Pixel for the Task of Background Subtraction", Pattern
|
||
* Recognition Letters, vol. 27, no. 7, pages 773-780, 2006. */
|
||
else if (METHOD_MOG2 == filter->method) {
|
||
run_mog2_iteration (filter);
|
||
}
|
||
|
||
/* if we want to test_mode, just overwrite the output */
|
||
if (filter->test_mode) {
|
||
cvCvtColor (filter->cvFG, filter->cvRGB, CV_GRAY2RGB);
|
||
|
||
cvSplit (filter->cvRGB, filter->ch1, filter->ch2, filter->ch3, NULL);
|
||
} else
|
||
cvSplit (filter->cvRGBA, filter->ch1, filter->ch2, filter->ch3, NULL);
|
||
|
||
/* copy anyhow the fg/bg to the alpha channel in the output image */
|
||
cvMerge (filter->ch1, filter->ch2, filter->ch3, filter->cvFG, filter->cvRGBA);
|
||
|
||
|
||
return GST_FLOW_OK;
|
||
}
|
||
|
||
/* entry point to initialize the plug-in
|
||
* initialize the plug-in itself
|
||
* register the element factories and other features
|
||
*/
|
||
gboolean
|
||
gst_segmentation_plugin_init (GstPlugin * plugin)
|
||
{
|
||
GST_DEBUG_CATEGORY_INIT (gst_segmentation_debug, "segmentation",
|
||
0, "Performs Foreground/Background segmentation in video sequences");
|
||
|
||
return gst_element_register (plugin, "segmentation", GST_RANK_NONE,
|
||
GST_TYPE_SEGMENTATION);
|
||
}
|
||
|
||
|
||
|
||
#ifdef CODE_FROM_OREILLY_BOOK /* See license at the beginning of the page */
|
||
/*
|
||
int update_codebook(uchar *p, codeBook &c, unsigned cbBounds)
|
||
Updates the codebook entry with a new data point
|
||
|
||
p Pointer to a YUV or HSI pixel
|
||
c Codebook for this pixel
|
||
cbBounds Learning bounds for codebook (Rule of thumb: 10)
|
||
numChannels Number of color channels we¡¯re learning
|
||
|
||
NOTES:
|
||
cvBounds must be of length equal to numChannels
|
||
|
||
RETURN
|
||
codebook index
|
||
*/
|
||
int
|
||
update_codebook (unsigned char *p, codeBook * c, unsigned *cbBounds,
|
||
int numChannels)
|
||
{
|
||
/* c->t+=1; */
|
||
unsigned int high[3], low[3];
|
||
int n, i;
|
||
int matchChannel;
|
||
|
||
for (n = 0; n < numChannels; n++) {
|
||
high[n] = p[n] + cbBounds[n];
|
||
if (high[n] > 255)
|
||
high[n] = 255;
|
||
|
||
if (p[n] > cbBounds[n])
|
||
low[n] = p[n] - cbBounds[n];
|
||
else
|
||
low[n] = 0;
|
||
}
|
||
|
||
/* SEE IF THIS FITS AN EXISTING CODEWORD */
|
||
for (i = 0; i < c->numEntries; i++) {
|
||
matchChannel = 0;
|
||
for (n = 0; n < numChannels; n++) {
|
||
if ((c->cb[i]->learnLow[n] <= *(p + n)) &&
|
||
/* Found an entry for this channel */
|
||
(*(p + n) <= c->cb[i]->learnHigh[n])) {
|
||
matchChannel++;
|
||
}
|
||
}
|
||
if (matchChannel == numChannels) { /* If an entry was found */
|
||
c->cb[i]->t_last_update = c->t;
|
||
/* adjust this codeword for the first channel */
|
||
for (n = 0; n < numChannels; n++) {
|
||
if (c->cb[i]->max[n] < *(p + n)) {
|
||
c->cb[i]->max[n] = *(p + n);
|
||
} else if (c->cb[i]->min[n] > *(p + n)) {
|
||
c->cb[i]->min[n] = *(p + n);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
/* OVERHEAD TO TRACK POTENTIAL STALE ENTRIES */
|
||
for (int s = 0; s < c->numEntries; s++) {
|
||
/* Track which codebook entries are going stale: */
|
||
int negRun = c->t - c->cb[s]->t_last_update;
|
||
if (c->cb[s]->stale < negRun)
|
||
c->cb[s]->stale = negRun;
|
||
}
|
||
/* ENTER A NEW CODEWORD IF NEEDED */
|
||
if (i == c->numEntries) { /* if no existing codeword found, make one */
|
||
code_element **foo =
|
||
(code_element **) g_malloc (sizeof (code_element *) *
|
||
(c->numEntries + 1));
|
||
for (int ii = 0; ii < c->numEntries; ii++) {
|
||
foo[ii] = c->cb[ii]; /* copy all pointers */
|
||
}
|
||
foo[c->numEntries] = (code_element *) g_malloc (sizeof (code_element));
|
||
if (c->numEntries)
|
||
g_free (c->cb);
|
||
c->cb = foo;
|
||
for (n = 0; n < numChannels; n++) {
|
||
c->cb[c->numEntries]->learnHigh[n] = high[n];
|
||
c->cb[c->numEntries]->learnLow[n] = low[n];
|
||
c->cb[c->numEntries]->max[n] = *(p + n);
|
||
c->cb[c->numEntries]->min[n] = *(p + n);
|
||
}
|
||
c->cb[c->numEntries]->t_last_update = c->t;
|
||
c->cb[c->numEntries]->stale = 0;
|
||
c->numEntries += 1;
|
||
}
|
||
/* SLOWLY ADJUST LEARNING BOUNDS */
|
||
for (n = 0; n < numChannels; n++) {
|
||
if (c->cb[i]->learnHigh[n] < high[n])
|
||
c->cb[i]->learnHigh[n] += 1;
|
||
if (c->cb[i]->learnLow[n] > low[n])
|
||
c->cb[i]->learnLow[n] -= 1;
|
||
}
|
||
return (i);
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
/*
|
||
int clear_stale_entries(codeBook &c)
|
||
During learning, after you've learned for some period of time,
|
||
periodically call this to clear out stale codebook entries
|
||
|
||
c Codebook to clean up
|
||
|
||
Return
|
||
number of entries cleared
|
||
*/
|
||
int
|
||
clear_stale_entries (codeBook * c)
|
||
{
|
||
int staleThresh = c->t >> 1;
|
||
int *keep = (int *) g_malloc (sizeof (int) * (c->numEntries));
|
||
int keepCnt = 0;
|
||
code_element **foo;
|
||
int k;
|
||
int numCleared;
|
||
/* SEE WHICH CODEBOOK ENTRIES ARE TOO STALE */
|
||
for (int i = 0; i < c->numEntries; i++) {
|
||
if (c->cb[i]->stale > staleThresh)
|
||
keep[i] = 0; /* Mark for destruction */
|
||
else {
|
||
keep[i] = 1; /* Mark to keep */
|
||
keepCnt += 1;
|
||
}
|
||
}
|
||
/* KEEP ONLY THE GOOD */
|
||
c->t = 0; /* Full reset on stale tracking */
|
||
foo = (code_element **) g_malloc (sizeof (code_element *) * keepCnt);
|
||
k = 0;
|
||
for (int ii = 0; ii < c->numEntries; ii++) {
|
||
if (keep[ii]) {
|
||
foo[k] = c->cb[ii];
|
||
/* We have to refresh these entries for next clearStale */
|
||
foo[k]->t_last_update = 0;
|
||
k++;
|
||
}
|
||
}
|
||
/* CLEAN UP */
|
||
g_free (keep);
|
||
g_free (c->cb);
|
||
c->cb = foo;
|
||
numCleared = c->numEntries - keepCnt;
|
||
c->numEntries = keepCnt;
|
||
return (numCleared);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
uchar background_diff( uchar *p, codeBook &c,
|
||
int minMod, int maxMod)
|
||
Given a pixel and a codebook, determine if the pixel is
|
||
covered by the codebook
|
||
|
||
p Pixel pointer (YUV interleaved)
|
||
c Codebook reference
|
||
numChannels Number of channels we are testing
|
||
maxMod Add this (possibly negative) number onto
|
||
|
||
max level when determining if new pixel is foreground
|
||
minMod Subract this (possibly negative) number from
|
||
min level when determining if new pixel is foreground
|
||
|
||
NOTES:
|
||
minMod and maxMod must have length numChannels,
|
||
e.g. 3 channels => minMod[3], maxMod[3]. There is one min and
|
||
one max threshold per channel.
|
||
|
||
Return
|
||
0 => background, 255 => foreground
|
||
*/
|
||
unsigned char
|
||
background_diff (unsigned char *p, codeBook * c, int numChannels,
|
||
int *minMod, int *maxMod)
|
||
{
|
||
int matchChannel;
|
||
/* SEE IF THIS FITS AN EXISTING CODEWORD */
|
||
int i;
|
||
for (i = 0; i < c->numEntries; i++) {
|
||
matchChannel = 0;
|
||
for (int n = 0; n < numChannels; n++) {
|
||
if ((c->cb[i]->min[n] - minMod[n] <= *(p + n)) &&
|
||
(*(p + n) <= c->cb[i]->max[n] + maxMod[n])) {
|
||
matchChannel++; /* Found an entry for this channel */
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
if (matchChannel == numChannels) {
|
||
break; /* Found an entry that matched all channels */
|
||
}
|
||
}
|
||
if (i >= c->numEntries)
|
||
return (255);
|
||
return (0);
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
void find_connected_components(IplImage *mask, int poly1_hull0,
|
||
float perimScale, int *num,
|
||
CvRect *bbs, CvPoint *centers)
|
||
This cleans up the foreground segmentation mask derived from calls
|
||
to backgroundDiff
|
||
|
||
mask Is a grayscale (8-bit depth) “raw†mask image that
|
||
will be cleaned up
|
||
|
||
OPTIONAL PARAMETERS:
|
||
poly1_hull0 If set, approximate connected component by
|
||
(DEFAULT) polygon, or else convex hull (0)
|
||
perimScale Len = image (width+height)/perimScale. If contour
|
||
len < this, delete that contour (DEFAULT: 4)
|
||
num Maximum number of rectangles and/or centers to
|
||
return; on return, will contain number filled
|
||
(DEFAULT: NULL)
|
||
bbs Pointer to bounding box rectangle vector of
|
||
length num. (DEFAULT SETTING: NULL)
|
||
centers Pointer to contour centers vector of length
|
||
num (DEFAULT: NULL)
|
||
*/
|
||
|
||
/* Approx.threshold - the bigger it is, the simpler is the boundary */
|
||
#define CVCONTOUR_APPROX_LEVEL 1
|
||
/* How many iterations of erosion and/or dilation there should be */
|
||
#define CVCLOSE_ITR 1
|
||
static void
|
||
find_connected_components (IplImage * mask, int poly1_hull0, float perimScale,
|
||
CvMemStorage * mem_storage, CvSeq * contours)
|
||
{
|
||
CvContourScanner scanner;
|
||
CvSeq *c;
|
||
int numCont = 0;
|
||
/* Just some convenience variables */
|
||
const CvScalar CVX_WHITE = CV_RGB (0xff, 0xff, 0xff);
|
||
const CvScalar CVX_BLACK = CV_RGB (0x00, 0x00, 0x00);
|
||
|
||
/* CLEAN UP RAW MASK */
|
||
cvMorphologyEx (mask, mask, 0, 0, CV_MOP_OPEN, CVCLOSE_ITR);
|
||
cvMorphologyEx (mask, mask, 0, 0, CV_MOP_CLOSE, CVCLOSE_ITR);
|
||
/* FIND CONTOURS AROUND ONLY BIGGER REGIONS */
|
||
if (mem_storage == NULL) {
|
||
mem_storage = cvCreateMemStorage (0);
|
||
} else {
|
||
cvClearMemStorage (mem_storage);
|
||
}
|
||
|
||
scanner = cvStartFindContours (mask, mem_storage, sizeof (CvContour),
|
||
CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cvPoint (0, 0));
|
||
|
||
while ((c = cvFindNextContour (scanner)) != NULL) {
|
||
double len = cvContourArea (c, CV_WHOLE_SEQ, 0);
|
||
/* calculate perimeter len threshold: */
|
||
double q = (mask->height + mask->width) / perimScale;
|
||
/* Get rid of blob if its perimeter is too small: */
|
||
if (len < q) {
|
||
cvSubstituteContour (scanner, NULL);
|
||
} else {
|
||
/* Smooth its edges if its large enough */
|
||
CvSeq *c_new;
|
||
if (poly1_hull0) {
|
||
/* Polygonal approximation */
|
||
c_new =
|
||
cvApproxPoly (c, sizeof (CvContour), mem_storage, CV_POLY_APPROX_DP,
|
||
CVCONTOUR_APPROX_LEVEL, 0);
|
||
} else {
|
||
/* Convex Hull of the segmentation */
|
||
c_new = cvConvexHull2 (c, mem_storage, CV_CLOCKWISE, 1);
|
||
}
|
||
cvSubstituteContour (scanner, c_new);
|
||
numCont++;
|
||
}
|
||
}
|
||
contours = cvEndFindContours (&scanner);
|
||
|
||
/* PAINT THE FOUND REGIONS BACK INTO THE IMAGE */
|
||
cvZero (mask);
|
||
/* DRAW PROCESSED CONTOURS INTO THE MASK */
|
||
for (c = contours; c != NULL; c = c->h_next)
|
||
cvDrawContours (mask, c, CVX_WHITE, CVX_BLACK, -1, CV_FILLED, 8, cvPoint (0,
|
||
0));
|
||
}
|
||
#endif /*ifdef CODE_FROM_OREILLY_BOOK */
|
||
|
||
|
||
int
|
||
initialise_mog (GstSegmentation * filter)
|
||
{
|
||
filter->img_input_as_cvMat = (void *) new cv::Mat (filter->cvYUV, false);
|
||
filter->img_fg_as_cvMat = (void *) new cv::Mat (filter->cvFG, false);
|
||
|
||
filter->mog = (void *) new cv::BackgroundSubtractorMOG ();
|
||
filter->mog2 = (void *) new cv::BackgroundSubtractorMOG2 ();
|
||
|
||
return (0);
|
||
}
|
||
|
||
int
|
||
run_mog_iteration (GstSegmentation * filter)
|
||
{
|
||
((cv::Mat *) filter->img_input_as_cvMat)->data =
|
||
(uchar *) filter->cvYUV->imageData;
|
||
((cv::Mat *) filter->img_fg_as_cvMat)->data =
|
||
(uchar *) filter->cvFG->imageData;
|
||
|
||
/*
|
||
BackgroundSubtractorMOG [1], Gaussian Mixture-based Background/Foreground
|
||
Segmentation Algorithm. OpenCV MOG implements the algorithm described in [2].
|
||
|
||
[1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog
|
||
[2] P. KadewTraKuPong and R. Bowden, "An improved adaptive background
|
||
mixture model for real-time tracking with shadow detection", Proc. 2nd
|
||
European Workshop on Advanced Video-Based Surveillance Systems, 2001
|
||
*/
|
||
|
||
(*((cv::BackgroundSubtractorMOG *) filter->mog)) (*((cv::Mat *) filter->
|
||
img_input_as_cvMat), *((cv::Mat *) filter->img_fg_as_cvMat),
|
||
filter->learning_rate);
|
||
|
||
return (0);
|
||
}
|
||
|
||
int
|
||
run_mog2_iteration (GstSegmentation * filter)
|
||
{
|
||
((cv::Mat *) filter->img_input_as_cvMat)->data =
|
||
(uchar *) filter->cvYUV->imageData;
|
||
((cv::Mat *) filter->img_fg_as_cvMat)->data =
|
||
(uchar *) filter->cvFG->imageData;
|
||
|
||
/*
|
||
BackgroundSubtractorMOG2 [1], Gaussian Mixture-based Background/Foreground
|
||
segmentation algorithm. OpenCV MOG2 implements the algorithm described in
|
||
[2] and [3].
|
||
|
||
[1] http://opencv.itseez.com/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog2
|
||
[2] Z.Zivkovic, "Improved adaptive Gausian mixture model for background
|
||
subtraction", International Conference Pattern Recognition, UK, August, 2004.
|
||
[3] Z.Zivkovic, F. van der Heijden, "Efficient Adaptive Density Estimation per
|
||
Image Pixel for the Task of Background Subtraction", Pattern Recognition
|
||
Letters, vol. 27, no. 7, pages 773-780, 2006.
|
||
*/
|
||
|
||
(*((cv::BackgroundSubtractorMOG *) filter->mog2)) (*((cv::Mat *) filter->
|
||
img_input_as_cvMat), *((cv::Mat *) filter->img_fg_as_cvMat),
|
||
filter->learning_rate);
|
||
|
||
return (0);
|
||
}
|
||
|
||
int
|
||
finalise_mog (GstSegmentation * filter)
|
||
{
|
||
delete (cv::Mat *) filter->img_input_as_cvMat;
|
||
delete (cv::Mat *) filter->img_fg_as_cvMat;
|
||
delete (cv::BackgroundSubtractorMOG *) filter->mog;
|
||
delete (cv::BackgroundSubtractorMOG2 *) filter->mog2;
|
||
return (0);
|
||
}
|