mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2024-12-15 04:46:32 +00:00
583f6660fa
Original commit message from CVS: Merged from HEAD to INCSCHED1 on 200104251
387 lines
13 KiB
C
387 lines
13 KiB
C
/* Gnome-Streamer
|
|
* Copyright (C) <1999> Erik Walthinsen <omega@cse.ogi.edu>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/* First, include the header file for the plugin, to bring in the
|
|
* object definition and other useful things.
|
|
*/
|
|
#include "example.h"
|
|
|
|
/* The ElementDetails structure gives a human-readable description
|
|
* of the plugin, as well as author and version data.
|
|
*/
|
|
static GstElementDetails example_details = {
|
|
"An example plugin",
|
|
"Example/FirstExample",
|
|
"Shows the basic structure of a plugin",
|
|
VERSION,
|
|
"your name <your.name@your.isp>",
|
|
"(C) 2001",
|
|
};
|
|
|
|
/* These are the signals that this element can fire. They are zero-
|
|
* based because the numbers themselves are private to the object.
|
|
* LAST_SIGNAL is used for initialization of the signal array.
|
|
*/
|
|
enum {
|
|
ASDF,
|
|
/* FILL ME */
|
|
LAST_SIGNAL
|
|
};
|
|
|
|
/* Arguments are identified the same way, but cannot be zero, so you
|
|
* must leave the ARG_0 entry in as a placeholder.
|
|
*/
|
|
enum {
|
|
ARG_0,
|
|
ARG_ACTIVE,
|
|
/* FILL ME */
|
|
};
|
|
|
|
/* The PadFactory structures describe what pads the element has or
|
|
* can have. They can be quite complex, but for this example plugin
|
|
* they are rather simple.
|
|
*/
|
|
static GstPadTemplate*
|
|
sink_factory (void)
|
|
{
|
|
return
|
|
gst_padtemplate_new (
|
|
"sink", /* The name of the pad */
|
|
GST_PAD_SINK, /* Direction of the pad */
|
|
GST_PAD_ALWAYS, /* The pad exists for every instance */
|
|
gst_caps_new (
|
|
"example_sink", /* The name of the caps */
|
|
"unknown/unknown", /* The overall MIME/type */
|
|
gst_props_new (
|
|
"foo", GST_PROPS_INT (1), /* An integer property */
|
|
"bar", GST_PROPS_BOOLEAN (TRUE), /* A boolean */
|
|
"baz", GST_PROPS_LIST ( /* A list of values for */
|
|
GST_PROPS_INT (1),
|
|
GST_PROPS_INT (3)
|
|
),
|
|
NULL)));
|
|
}
|
|
|
|
/* This factory is much simpler, and defines the source pad. */
|
|
static GstPadTemplate*
|
|
src_factory (void)
|
|
{
|
|
return
|
|
gst_padtemplate_new (
|
|
"src",
|
|
GST_PAD_SRC,
|
|
GST_PAD_ALWAYS,
|
|
gst_caps_new (
|
|
"example_src",
|
|
"unknown/unknown",
|
|
NULL));
|
|
}
|
|
|
|
|
|
/* A number of functon prototypes are given so we can refer to them later. */
|
|
static void gst_example_class_init (GstExampleClass *klass);
|
|
static void gst_example_init (GstExample *example);
|
|
|
|
static void gst_example_chain (GstPad *pad, GstBuffer *buf);
|
|
|
|
static void gst_example_set_arg (GtkObject *object,GtkArg *arg,guint id);
|
|
static void gst_example_get_arg (GtkObject *object,GtkArg *arg,guint id);
|
|
|
|
/* These hold the constructed pad templates, which are created during
|
|
* plugin load, and used during element instantiation.
|
|
*/
|
|
static GstPadTemplate *src_template, *sink_template;
|
|
|
|
/* The parent class pointer needs to be kept around for some object
|
|
* operations.
|
|
*/
|
|
static GstElementClass *parent_class = NULL;
|
|
|
|
/* This array holds the ids of the signals registered for this object.
|
|
* The array indexes are based on the enum up above.
|
|
*/
|
|
static guint gst_example_signals[LAST_SIGNAL] = { 0 };
|
|
|
|
/* This function is used to register and subsequently return the type
|
|
* identifier for this object class. On first invocation, it will
|
|
* register the type, providing the name of the class, struct sizes,
|
|
* and pointers to the various functions that define the class.
|
|
*/
|
|
GtkType
|
|
gst_example_get_type(void)
|
|
{
|
|
static GtkType example_type = 0;
|
|
|
|
if (!example_type) {
|
|
static const GtkTypeInfo example_info = {
|
|
"GstExample",
|
|
sizeof(GstExample),
|
|
sizeof(GstExampleClass),
|
|
(GtkClassInitFunc)gst_example_class_init,
|
|
(GtkObjectInitFunc)gst_example_init,
|
|
(GtkArgSetFunc)NULL, /* These last three are depracated */
|
|
(GtkArgGetFunc)NULL,
|
|
(GtkClassInitFunc)NULL,
|
|
};
|
|
example_type = gtk_type_unique(GST_TYPE_ELEMENT,&example_info);
|
|
}
|
|
return example_type;
|
|
}
|
|
|
|
/* In order to create an instance of an object, the class must be
|
|
* initialized by this function. GtkObject will take care of running
|
|
* it, based on the pointer to the function provided above.
|
|
*/
|
|
static void
|
|
gst_example_class_init (GstExampleClass *klass)
|
|
{
|
|
/* Class pointers are needed to supply pointers to the private
|
|
* implementations of parent class methods.
|
|
*/
|
|
GtkObjectClass *gtkobject_class;
|
|
GstElementClass *gstelement_class;
|
|
|
|
/* Since the example class contains the parent classes, you can simply
|
|
* cast the pointer to get access to the parent classes.
|
|
*/
|
|
gtkobject_class = (GtkObjectClass*)klass;
|
|
gstelement_class = (GstElementClass*)klass;
|
|
|
|
/* The parent class is needed for class method overrides. */
|
|
parent_class = gtk_type_class(GST_TYPE_ELEMENT);
|
|
|
|
/* Here we add an argument to the object. This argument is an integer,
|
|
* and can be both read and written.
|
|
*/
|
|
gtk_object_add_arg_type("GstExample::active", GTK_TYPE_INT,
|
|
GTK_ARG_READWRITE, ARG_ACTIVE);
|
|
|
|
/* Here we add a signal to the object. This is avery useless signal
|
|
* called asdf. The signal will also pass a pointer to the listeners
|
|
* which happens to be the example element itself */
|
|
gst_example_signals[ASDF] =
|
|
gtk_signal_new("asdf", GTK_RUN_LAST, gtkobject_class->type,
|
|
GTK_SIGNAL_OFFSET (GstExampleClass, asdf),
|
|
gtk_marshal_NONE__POINTER, GTK_TYPE_NONE, 1,
|
|
GST_TYPE_EXAMPLE);
|
|
|
|
gtk_object_class_add_signals (gtkobject_class, gst_example_signals,
|
|
LAST_SIGNAL);
|
|
|
|
/* The last thing is to provide the functions that implement get and set
|
|
* of arguments.
|
|
*/
|
|
gtkobject_class->set_arg = gst_example_set_arg;
|
|
gtkobject_class->get_arg = gst_example_get_arg;
|
|
}
|
|
|
|
/* This function is responsible for initializing a specific instance of
|
|
* the plugin.
|
|
*/
|
|
static void
|
|
gst_example_init(GstExample *example)
|
|
{
|
|
/* First we create the sink pad, which is the input to the element.
|
|
* We will use the sink_template constructed in the plugin_init function
|
|
* (below) to quickly generate the pad we need.
|
|
*/
|
|
example->sinkpad = gst_pad_new_from_template (sink_template, "sink");
|
|
/* Setting the chain function allows us to supply the function that will
|
|
* actually be performing the work. Without this, the element would do
|
|
* nothing, with undefined results (assertion failures and such).
|
|
*/
|
|
gst_pad_set_chain_function(example->sinkpad,gst_example_chain);
|
|
/* We then must add this pad to the element's list of pads. The base
|
|
* element class manages the list of pads, and provides accessors to it.
|
|
*/
|
|
gst_element_add_pad(GST_ELEMENT(example),example->sinkpad);
|
|
|
|
/* The src pad, the output of the element, is created and registered
|
|
* in the same way, with the exception of the chain function. Source
|
|
* pads don't have chain functions, because they can't accept buffers,
|
|
* they only produce them.
|
|
*/
|
|
example->srcpad = gst_pad_new_from_template (src_template, "src");
|
|
gst_element_add_pad(GST_ELEMENT(example),example->srcpad);
|
|
|
|
/* Initialization of element's private variables. */
|
|
example->active = FALSE;
|
|
}
|
|
|
|
/* The chain function is the heart of the element. It's where all the
|
|
* work is done. It is passed a pointer to the pad in question, as well
|
|
* as the buffer provided by the peer element.
|
|
*/
|
|
static void
|
|
gst_example_chain (GstPad *pad, GstBuffer *buf)
|
|
{
|
|
GstExample *example;
|
|
GstBuffer *outbuf;
|
|
|
|
/* Some of these checks are of dubious value, since if there were not
|
|
* already true, the chain function would never be called.
|
|
*/
|
|
g_return_if_fail(pad != NULL);
|
|
g_return_if_fail(GST_IS_PAD(pad));
|
|
g_return_if_fail(buf != NULL);
|
|
|
|
/* We need to get a pointer to the element this pad belogs to. */
|
|
example = GST_EXAMPLE(gst_pad_get_parent (pad));
|
|
|
|
/* A few more sanity checks to make sure that the element that owns
|
|
* this pad is the right kind of element, in case something got confused.
|
|
*/
|
|
g_return_if_fail(example != NULL);
|
|
g_return_if_fail(GST_IS_EXAMPLE(example));
|
|
|
|
/* If we are supposed to be doing something, here's where it happens. */
|
|
if (example->active) {
|
|
/* In this example we're going to copy the buffer to another one,
|
|
* so we need to allocate a new buffer first. */
|
|
outbuf = gst_buffer_new();
|
|
|
|
/* We need to copy the size and offset of the buffer at a minimum. */
|
|
GST_BUFFER_SIZE (outbuf) = GST_BUFFER_SIZE (buf);
|
|
GST_BUFFER_OFFSET (outbuf) = GST_BUFFER_OFFSET (buf);
|
|
|
|
/* Then allocate the memory for the new buffer */
|
|
GST_BUFFER_DATA (outbuf) = (guchar *)g_malloc (GST_BUFFER_SIZE (outbuf));
|
|
|
|
/* Then copy the data in the incoming buffer into the new buffer. */
|
|
memcpy (GST_BUFFER_DATA (outbuf), GST_BUFFER_DATA (buf), GST_BUFFER_SIZE (outbuf));
|
|
|
|
/* When we're done with the buffer, we push it on to the next element
|
|
* in the pipeline, through the element's source pad, which is stored
|
|
* in the element's structure.
|
|
*/
|
|
gst_pad_push(example->srcpad,outbuf);
|
|
|
|
/* For fun we'll emit our useless signal here */
|
|
gtk_signal_emit (GTK_OBJECT (example), gst_example_signals[ASDF],
|
|
example);
|
|
|
|
/* If we're not doing something, just send the original incoming buffer. */
|
|
} else {
|
|
gst_pad_push(example->srcpad,buf);
|
|
}
|
|
}
|
|
|
|
/* Arguments are part of the Gtk+ object system, and these functions
|
|
* enable the element to respond to various arguments.
|
|
*/
|
|
static void
|
|
gst_example_set_arg (GtkObject *object,GtkArg *arg,guint id)
|
|
{
|
|
GstExample *example;
|
|
|
|
/* It's not null if we got it, but it might not be ours */
|
|
g_return_if_fail(GST_IS_EXAMPLE(object));
|
|
|
|
/* Get a pointer of the right type. */
|
|
example = GST_EXAMPLE(object);
|
|
|
|
/* Check the argument id to see which argument we're setting. */
|
|
switch (id) {
|
|
case ARG_ACTIVE:
|
|
/* Here we simply copy the value of the argument to our private
|
|
* storage. More complex operations can be done, but beware that
|
|
* they may occur at any time, possibly even while your chain function
|
|
* is running, if you are using threads.
|
|
*/
|
|
example->active = GTK_VALUE_INT(*arg);
|
|
g_print("example: set active to %d\n",example->active);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* The set function is simply the inverse of the get fuction. */
|
|
static void
|
|
gst_example_get_arg (GtkObject *object,GtkArg *arg,guint id)
|
|
{
|
|
GstExample *example;
|
|
|
|
/* It's not null if we got it, but it might not be ours */
|
|
g_return_if_fail(GST_IS_EXAMPLE(object));
|
|
example = GST_EXAMPLE(object);
|
|
|
|
switch (id) {
|
|
case ARG_ACTIVE:
|
|
GTK_VALUE_INT(*arg) = example->active;
|
|
break;
|
|
default:
|
|
arg->type = GTK_TYPE_INVALID;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* This is the entry into the plugin itself. When the plugin loads,
|
|
* this function is called to register everything that the plugin provides.
|
|
*/
|
|
static gboolean
|
|
plugin_init (GModule *module, GstPlugin *plugin)
|
|
{
|
|
GstElementFactory *factory;
|
|
|
|
/* We need to create an ElementFactory for each element we provide.
|
|
* This consists of the name of the element, the GtkType identifier,
|
|
* and a pointer to the details structure at the top of the file.
|
|
*/
|
|
factory = gst_elementfactory_new("example", GST_TYPE_EXAMPLE, &example_details);
|
|
g_return_val_if_fail(factory != NULL, FALSE);
|
|
|
|
/* The pad templates can be easily generated from the factories above,
|
|
* and then added to the list of padtemplates for the elementfactory.
|
|
* Note that the generated padtemplates are stored in static global
|
|
* variables, for the gst_example_init function to use later on.
|
|
*/
|
|
sink_template = sink_factory ();
|
|
gst_elementfactory_add_padtemplate (factory, sink_template);
|
|
|
|
src_template = src_factory ();
|
|
gst_elementfactory_add_padtemplate (factory, src_template);
|
|
|
|
/* The very last thing is to register the elementfactory with the plugin. */
|
|
gst_plugin_add_factory (plugin, factory);
|
|
|
|
/* Now we can return successfully. */
|
|
return TRUE;
|
|
|
|
/* At this point, the GStreamer core registers the plugin, its
|
|
* elementfactories, padtemplates, etc., for use in you application.
|
|
*/
|
|
}
|
|
|
|
/* This structure describes the plugin to the system for dynamically loading
|
|
* plugins, so that the version number and name can be checked in a uniform
|
|
* way.
|
|
*
|
|
* The symbol pointing to this structure is the only symbol looked up when
|
|
* loading the plugin.
|
|
*/
|
|
GstPluginDesc plugin_desc = {
|
|
GST_VERSION_MAJOR, /* The major version of the core that this was built with */
|
|
GST_VERSION_MINOR, /* The minor version of the core that this was built with */
|
|
"example", /* The name of the plugin. This must be unique: plugins with
|
|
* the same name will be assumed to be identical, and only
|
|
* one will be loaded. */
|
|
plugin_init /* Pointer to the initialisation function for the plugin. */
|
|
};
|
|
|