gstreamer/subprojects/gst-plugins-bad/gst-libs/gst/d3d12/gstd3d12format.cpp
Seungha Yang 7d0e90b7bc d3d12: Move core part to gst-libs
Move buffer pool, converter, and device abstraction layer to
public library

Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/6494>
2024-04-01 10:37:50 +00:00

874 lines
26 KiB
C++

/* GStreamer
* Copyright (C) 2023 Seungha Yang <seungha@centricular.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gstd3d12.h"
#include "gstd3d12-private.h"
#include <string.h>
#ifndef GST_DISABLE_GST_DEBUG
#define GST_CAT_DEFAULT ensure_debug_category()
static GstDebugCategory *
ensure_debug_category (void)
{
static GstDebugCategory *cat = nullptr;
GST_D3D12_CALL_ONCE_BEGIN {
cat = _gst_debug_category_new ("d3d12format", 0, "d3d12format");
} GST_D3D12_CALL_ONCE_END;
return cat;
}
#endif
GstVideoFormat
gst_d3d12_dxgi_format_to_gst (DXGI_FORMAT format)
{
switch (format) {
case DXGI_FORMAT_B8G8R8A8_UNORM:
return GST_VIDEO_FORMAT_BGRA;
case DXGI_FORMAT_R8G8B8A8_UNORM:
return GST_VIDEO_FORMAT_RGBA;
case DXGI_FORMAT_R10G10B10A2_UNORM:
return GST_VIDEO_FORMAT_RGB10A2_LE;
case DXGI_FORMAT_AYUV:
return GST_VIDEO_FORMAT_VUYA;
case DXGI_FORMAT_YUY2:
return GST_VIDEO_FORMAT_YUY2;
case DXGI_FORMAT_Y210:
return GST_VIDEO_FORMAT_Y210;
case DXGI_FORMAT_Y410:
return GST_VIDEO_FORMAT_Y410;
case DXGI_FORMAT_NV12:
return GST_VIDEO_FORMAT_NV12;
case DXGI_FORMAT_P010:
return GST_VIDEO_FORMAT_P010_10LE;
case DXGI_FORMAT_P016:
return GST_VIDEO_FORMAT_P016_LE;
default:
break;
}
return GST_VIDEO_FORMAT_UNKNOWN;
}
guint
gst_d3d12_dxgi_format_get_resource_format (DXGI_FORMAT format,
DXGI_FORMAT resource_format[GST_VIDEO_MAX_PLANES])
{
g_return_val_if_fail (resource_format != nullptr, FALSE);
for (guint i = 0; i < GST_VIDEO_MAX_PLANES; i++)
resource_format[i] = DXGI_FORMAT_UNKNOWN;
if (format == DXGI_FORMAT_UNKNOWN)
return 0;
for (guint i = 0; i < GST_D3D12_N_FORMATS; i++) {
const GstD3D12Format *fmt = &g_gst_d3d12_default_format_map[i];
if (fmt->dxgi_format == format) {
guint n_planes = 0;
for (n_planes = 0; n_planes < GST_VIDEO_MAX_PLANES; n_planes++) {
if (fmt->resource_format[n_planes] == DXGI_FORMAT_UNKNOWN)
break;
resource_format[n_planes] = fmt->resource_format[n_planes];
}
return n_planes;
}
}
resource_format[0] = format;
return 1;
}
char *
gst_d3d12_dump_color_matrix (GstD3D12ColorMatrix * matrix)
{
/* *INDENT-OFF* */
static const gchar format[] =
"[MATRIX]\n"
"|% .6f, % .6f, % .6f|\n"
"|% .6f, % .6f, % .6f|\n"
"|% .6f, % .6f, % .6f|\n"
"[OFFSET]\n"
"|% .6f, % .6f, % .6f|\n"
"[MIN]\n"
"|% .6f, % .6f, % .6f|\n"
"[MAX]\n"
"|% .6f, % .6f, % .6f|";
/* *INDENT-ON* */
g_return_val_if_fail (matrix != nullptr, nullptr);
return g_strdup_printf (format,
matrix->matrix[0][0], matrix->matrix[0][1], matrix->matrix[0][2],
matrix->matrix[1][0], matrix->matrix[1][1], matrix->matrix[1][2],
matrix->matrix[2][0], matrix->matrix[2][1], matrix->matrix[2][2],
matrix->offset[0], matrix->offset[1], matrix->offset[2],
matrix->min[0], matrix->min[1], matrix->min[2],
matrix->max[0], matrix->max[1], matrix->max[2]);
}
static void
color_matrix_copy (GstD3D12ColorMatrix * dst, const GstD3D12ColorMatrix * src)
{
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
dst->matrix[i][j] = src->matrix[i][j];
}
}
}
static void
color_matrix_multiply (GstD3D12ColorMatrix * dst, GstD3D12ColorMatrix * a,
GstD3D12ColorMatrix * b)
{
GstD3D12ColorMatrix tmp;
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
gdouble val = 0;
for (guint k = 0; k < 3; k++) {
val += a->matrix[i][k] * b->matrix[k][j];
}
tmp.matrix[i][j] = val;
}
}
color_matrix_copy (dst, &tmp);
}
static void
color_matrix_identity (GstD3D12ColorMatrix * m)
{
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
if (i == j)
m->matrix[i][j] = 1.0;
else
m->matrix[i][j] = 0;
}
}
}
void
gst_d3d12_color_matrix_init (GstD3D12ColorMatrix * matrix)
{
g_return_if_fail (matrix);
color_matrix_identity (matrix);
for (guint i = 0; i < 3; i++) {
matrix->min[i] = 0;
matrix->max[i] = 1;
matrix->offset[i] = 0;
}
}
static gboolean
color_matrix_invert (GstD3D12ColorMatrix * dst, GstD3D12ColorMatrix * src)
{
GstD3D12ColorMatrix tmp;
gdouble det;
color_matrix_identity (&tmp);
for (guint j = 0; j < 3; j++) {
for (guint i = 0; i < 3; i++) {
tmp.matrix[j][i] =
src->matrix[(i + 1) % 3][(j + 1) % 3] *
src->matrix[(i + 2) % 3][(j + 2) % 3] -
src->matrix[(i + 1) % 3][(j + 2) % 3] *
src->matrix[(i + 2) % 3][(j + 1) % 3];
}
}
det = tmp.matrix[0][0] * src->matrix[0][0] +
tmp.matrix[0][1] * src->matrix[1][0] +
tmp.matrix[0][2] * src->matrix[2][0];
if (det == 0)
return FALSE;
for (guint j = 0; j < 3; j++) {
for (guint i = 0; i < 3; i++) {
tmp.matrix[i][j] /= det;
}
}
color_matrix_copy (dst, &tmp);
return TRUE;
}
/**
* gst_d3d12_color_range_adjust_matrix_unorm:
* @in_info: a #GstVideoInfo
* @out_info: a #GstVideoInfo
* @matrix: a #GstD3D12ColorMatrix
*
* Calculates matrix for color range adjustment. Both input and output
* signals are in normalized [0.0..1.0] space.
*
* Resulting values can be calculated by
* | Yout | | Yin | | matrix.offset[0] |
* | Uout | = clamp ( matrix.matrix * | Uin | + | matrix.offset[1] |, matrix.min, matrix.max )
* | Vout | | Vin | | matrix.offset[2] |
*
* Returns: %TRUE if successful
*/
gboolean
gst_d3d12_color_range_adjust_matrix_unorm (const GstVideoInfo * in_info,
const GstVideoInfo * out_info, GstD3D12ColorMatrix * matrix)
{
gboolean in_rgb, out_rgb;
gint in_offset[GST_VIDEO_MAX_COMPONENTS];
gint in_scale[GST_VIDEO_MAX_COMPONENTS];
gint out_offset[GST_VIDEO_MAX_COMPONENTS];
gint out_scale[GST_VIDEO_MAX_COMPONENTS];
GstVideoColorRange in_range;
GstVideoColorRange out_range;
gdouble src_fullscale, dst_fullscale;
g_return_val_if_fail (in_info != nullptr, FALSE);
g_return_val_if_fail (out_info != nullptr, FALSE);
g_return_val_if_fail (matrix != nullptr, FALSE);
memset (matrix, 0, sizeof (GstD3D12ColorMatrix));
for (guint i = 0; i < 3; i++) {
matrix->matrix[i][i] = 1.0;
matrix->matrix[i][i] = 1.0;
matrix->matrix[i][i] = 1.0;
matrix->max[i] = 1.0;
}
in_rgb = GST_VIDEO_INFO_IS_RGB (in_info);
out_rgb = GST_VIDEO_INFO_IS_RGB (out_info);
if (in_rgb != out_rgb) {
GST_WARNING ("Invalid format conversion");
return FALSE;
}
in_range = in_info->colorimetry.range;
out_range = out_info->colorimetry.range;
if (in_range == GST_VIDEO_COLOR_RANGE_UNKNOWN) {
GST_WARNING ("Unknown input color range");
if (in_rgb || GST_VIDEO_INFO_IS_GRAY (in_info))
in_range = GST_VIDEO_COLOR_RANGE_0_255;
else
in_range = GST_VIDEO_COLOR_RANGE_16_235;
}
if (out_range == GST_VIDEO_COLOR_RANGE_UNKNOWN) {
GST_WARNING ("Unknown output color range");
if (out_rgb || GST_VIDEO_INFO_IS_GRAY (out_info))
out_range = GST_VIDEO_COLOR_RANGE_0_255;
else
out_range = GST_VIDEO_COLOR_RANGE_16_235;
}
src_fullscale = (gdouble) ((1 << in_info->finfo->depth[0]) - 1);
dst_fullscale = (gdouble) ((1 << out_info->finfo->depth[0]) - 1);
gst_video_color_range_offsets (in_range, in_info->finfo, in_offset, in_scale);
gst_video_color_range_offsets (out_range,
out_info->finfo, out_offset, out_scale);
matrix->min[0] = matrix->min[1] = matrix->min[2] =
(gdouble) out_offset[0] / dst_fullscale;
matrix->max[0] = (out_scale[0] + out_offset[0]) / dst_fullscale;
matrix->max[1] = matrix->max[2] =
(out_scale[1] + out_offset[0]) / dst_fullscale;
if (in_info->colorimetry.range == out_info->colorimetry.range) {
GST_DEBUG ("Same color range");
return TRUE;
}
/* Formula
*
* 1) Scales and offset compensates input to [0..1] range
* SRC_NORM[i] = (src[i] * src_fullscale - in_offset[i]) / in_scale[i]
* = (src[i] * src_fullscale / in_scale[i]) - in_offset[i] / in_scale[i]
*
* 2) Reverse to output UNIT scale
* DST_UINT[i] = SRC_NORM[i] * out_scale[i] + out_offset[i]
* = src[i] * src_fullscale * out_scale[i] / in_scale[i]
* - in_offset[i] * out_scale[i] / in_scale[i]
* + out_offset[i]
*
* 3) Back to [0..1] scale
* dst[i] = DST_UINT[i] / dst_fullscale
* = COEFF[i] * src[i] + OFF[i]
* where
* src_fullscale * out_scale[i]
* COEFF[i] = ------------------------------
* dst_fullscale * in_scale[i]
*
* out_offset[i] in_offset[i] * out_scale[i]
* OFF[i] = -------------- - ------------------------------
* dst_fullscale dst_fullscale * in_scale[i]
*/
for (guint i = 0; i < 3; i++) {
matrix->matrix[i][i] = (src_fullscale * out_scale[i]) /
(dst_fullscale * in_scale[i]);
matrix->offset[i] = (out_offset[i] / dst_fullscale) -
((gdouble) in_offset[i] * out_scale[i] / (dst_fullscale * in_scale[i]));
}
return TRUE;
}
/**
* gst_d3d12_yuv_to_rgb_matrix_unorm:
* @in_yuv_info: a #GstVideoInfo of input YUV signal
* @out_rgb_info: a #GstVideoInfo of output RGB signal
* @matrix: a #GstD3D12ColorMatrix
*
* Calculates transform matrix from YUV to RGB conversion. Both input and output
* signals are in normalized [0.0..1.0] space and additional gamma decoding
* or primary/transfer function transform is not performed by this matrix.
*
* Resulting non-linear RGB values can be calculated by
* | R' | | Y' | | matrix.offset[0] |
* | G' | = clamp ( matrix.matrix * | Cb | + | matrix.offset[1] | matrix.min, matrix.max )
* | B' | | Cr | | matrix.offset[2] |
*
* Returns: %TRUE if successful
*/
gboolean
gst_d3d12_yuv_to_rgb_matrix_unorm (const GstVideoInfo * in_yuv_info,
const GstVideoInfo * out_rgb_info, GstD3D12ColorMatrix * matrix)
{
gint offset[4], scale[4];
gdouble Kr, Kb, Kg;
g_return_val_if_fail (in_yuv_info != nullptr, FALSE);
g_return_val_if_fail (out_rgb_info != nullptr, FALSE);
g_return_val_if_fail (matrix != nullptr, FALSE);
/*
* <Formula>
*
* Input: Unsigned normalized Y'CbCr(unorm), [0.0..1.0] range
* Output: Unsigned normalized non-linear R'G'B'(unorm), [0.0..1.0] range
*
* 1) Y'CbCr(unorm) to scaled Y'CbCr
* | Y' | | Y'(unorm) |
* | Cb | = S | Cb(unorm) |
* | Cb | | Cr(unorm) |
* where S = (2 ^ bitdepth) - 1
*
* 2) Y'CbCr to YPbPr
* Y = (Y' - offsetY ) / scaleY
* Pb = [(Cb - offsetCbCr) / scaleCbCr]
* Pr = [(Cr - offsetCrCr) / scaleCrCr]
* =>
* Y = Y'(unorm) * Sy + Oy
* Pb = Cb(unorm) * Suv + Ouv
* Pb = Cr(unorm) * Suv + Ouv
* where
* Sy = S / scaleY
* Suv = S / scaleCbCr
* Oy = -(offsetY / scaleY)
* Ouv = -(offsetCbCr / scaleCbCr)
*
* 3) YPbPr to R'G'B'
* | R' | | Y |
* | G' | = M *| Pb |
* | B' | | Pr |
* where
* | vecR |
* M = | vecG |
* | vecB |
* vecR = | 1, 0 , 2(1 - Kr) |
* vecG = | 1, -(Kb/Kg) * 2(1 - Kb), -(Kr/Kg) * 2(1 - Kr) |
* vecB = | 1, 2(1 - Kb) , 0 |
* =>
* R' = dot(vecR, (Syuv * Y'CbCr(unorm))) + dot(vecR, Offset)
* G' = dot(vecG, (Svuy * Y'CbCr(unorm))) + dot(vecG, Offset)
* B' = dot(vecB, (Syuv * Y'CbCr(unorm)) + dot(vecB, Offset)
* where
* | Sy, 0, 0 |
* Syuv = | 0, Suv, 0 |
* | 0 0, Suv |
*
* | Oy |
* Offset = | Ouv |
* | Ouv |
*
* 4) YUV -> RGB matrix
* | R' | | Y'(unorm) | | offsetA |
* | G' | = Matrix * | Cb(unorm) | + | offsetB |
* | B' | | Cr(unorm) | | offsetC |
*
* where
* | vecR |
* Matrix = | vecG | * Syuv
* | vecB |
*
* offsetA = dot(vecR, Offset)
* offsetB = dot(vecG, Offset)
* offsetC = dot(vecB, Offset)
*
* 4) Consider 16-235 scale RGB
* RGBfull(0..255) -> RGBfull(16..235) matrix is represented by
* | Rs | | Rf | | Or |
* | Gs | = Ms | Gf | + | Og |
* | Bs | | Bf | | Ob |
*
* Combining all matrix into
* | Rs | | Y'(unorm) | | offsetA | | Or |
* | Gs | = Ms * ( Matrix * | Cb(unorm) | + | offsetB | ) + | Og |
* | Bs | | Cr(unorm) | | offsetC | | Ob |
*
* | Y'(unorm) | | offsetA | | Or |
* = Ms * Matrix * | Cb(unorm) | + Ms | offsetB | + | Og |
* | Cr(unorm) | | offsetC | | Ob |
*/
memset (matrix, 0, sizeof (GstD3D12ColorMatrix));
for (guint i = 0; i < 3; i++)
matrix->max[i] = 1.0;
gst_video_color_range_offsets (in_yuv_info->colorimetry.range,
in_yuv_info->finfo, offset, scale);
if (gst_video_color_matrix_get_Kr_Kb (in_yuv_info->colorimetry.matrix,
&Kr, &Kb)) {
guint S;
gdouble Sy, Suv;
gdouble Oy, Ouv;
gdouble vecR[3], vecG[3], vecB[3];
Kg = 1.0 - Kr - Kb;
vecR[0] = 1.0;
vecR[1] = 0;
vecR[2] = 2 * (1 - Kr);
vecG[0] = 1.0;
vecG[1] = -(Kb / Kg) * 2 * (1 - Kb);
vecG[2] = -(Kr / Kg) * 2 * (1 - Kr);
vecB[0] = 1.0;
vecB[1] = 2 * (1 - Kb);
vecB[2] = 0;
/* Assume all components has the same bitdepth */
S = (1 << in_yuv_info->finfo->depth[0]) - 1;
Sy = (gdouble) S / scale[0];
Suv = (gdouble) S / scale[1];
Oy = -((gdouble) offset[0] / scale[0]);
Ouv = -((gdouble) offset[1] / scale[1]);
matrix->matrix[0][0] = Sy * vecR[0];
matrix->matrix[1][0] = Sy * vecG[0];
matrix->matrix[2][0] = Sy * vecB[0];
matrix->matrix[0][1] = Suv * vecR[1];
matrix->matrix[1][1] = Suv * vecG[1];
matrix->matrix[2][1] = Suv * vecB[1];
matrix->matrix[0][2] = Suv * vecR[2];
matrix->matrix[1][2] = Suv * vecG[2];
matrix->matrix[2][2] = Suv * vecB[2];
matrix->offset[0] = vecR[0] * Oy + vecR[1] * Ouv + vecR[2] * Ouv;
matrix->offset[1] = vecG[0] * Oy + vecG[1] * Ouv + vecG[2] * Ouv;
matrix->offset[2] = vecB[0] * Oy + vecB[1] * Ouv + vecB[2] * Ouv;
/* Apply RGB range scale matrix */
if (out_rgb_info->colorimetry.range == GST_VIDEO_COLOR_RANGE_16_235) {
GstD3D12ColorMatrix scale_matrix, rst;
GstVideoInfo full_rgb = *out_rgb_info;
full_rgb.colorimetry.range = GST_VIDEO_COLOR_RANGE_0_255;
if (gst_d3d12_color_range_adjust_matrix_unorm (&full_rgb,
out_rgb_info, &scale_matrix)) {
/* Ms * Matrix */
color_matrix_multiply (&rst, &scale_matrix, matrix);
/* Ms * transform offsets */
for (guint i = 0; i < 3; i++) {
gdouble val = 0;
for (guint j = 0; j < 3; j++) {
val += scale_matrix.matrix[i][j] * matrix->offset[j];
}
rst.offset[i] = val + scale_matrix.offset[i];
}
/* copy back to output matrix */
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
matrix->matrix[i][j] = rst.matrix[i][j];
}
matrix->offset[i] = rst.offset[i];
matrix->min[i] = scale_matrix.min[i];
matrix->max[i] = scale_matrix.max[i];
}
}
}
} else {
/* Unknown matrix */
matrix->matrix[0][0] = 1.0;
matrix->matrix[1][1] = 1.0;
matrix->matrix[2][2] = 1.0;
}
return TRUE;
}
/**
* gst_d3d12_rgb_to_yuv_matrix_unorm:
* @in_rgb_info: a #GstVideoInfo of input RGB signal
* @out_yuv_info: a #GstVideoInfo of output YUV signal
* @matrix: a #GstD3D12ColorMatrix
*
* Calculates transform matrix from RGB to YUV conversion. Both input and output
* signals are in normalized [0.0..1.0] space and additional gamma decoding
* or primary/transfer function transform is not performed by this matrix.
*
* Resulting RGB values can be calculated by
* | Y' | | R' | | matrix.offset[0] |
* | Cb | = clamp ( matrix.matrix * | G' | + | matrix.offset[1] |, matrix.min, matrix.max )
* | Cr | | B' | | matrix.offset[2] |
*
* Returns: %TRUE if successful
*/
gboolean
gst_d3d12_rgb_to_yuv_matrix_unorm (const GstVideoInfo * in_rgb_info,
const GstVideoInfo * out_yuv_info, GstD3D12ColorMatrix * matrix)
{
gint offset[4], scale[4];
gdouble Kr, Kb, Kg;
g_return_val_if_fail (in_rgb_info != nullptr, FALSE);
g_return_val_if_fail (out_yuv_info != nullptr, FALSE);
g_return_val_if_fail (matrix != nullptr, FALSE);
/*
* <Formula>
*
* Input: Unsigned normalized non-linear R'G'B'(unorm), [0.0..1.0] range
* Output: Unsigned normalized Y'CbCr(unorm), [0.0..1.0] range
*
* 1) R'G'B' to YPbPr
* | Y | | R' |
* | Pb | = M *| G' |
* | Pr | | B' |
* where
* | vecY |
* M = | vecU |
* | vecV |
* vecY = | Kr , Kg , Kb |
* vecU = | -0.5*Kr/(1-Kb), -0.5*Kg/(1-Kb), 0.5 |
* vecV = | 0.5 , -0.5*Kg/(1-Kr), -0.5*Kb(1-Kr) |
*
* 2) YPbPr to Y'CbCr(unorm)
* Y'(unorm) = (Y * scaleY + offsetY) / S
* Cb(unorm) = (Pb * scaleCbCr + offsetCbCr) / S
* Cr(unorm) = (Pr * scaleCbCr + offsetCbCr) / S
* =>
* Y'(unorm) = (Y * scaleY / S) + (offsetY / S)
* Cb(unorm) = (Pb * scaleCbCr / S) + (offsetCbCr / S)
* Cr(unorm) = (Pb * scaleCbCr / S) + (offsetCbCr / S)
* where S = (2 ^ bitdepth) - 1
*
* 3) RGB -> YUV matrix
* | Y'(unorm) | | R' | | offsetA |
* | Cb(unorm) | = Matrix * | G' | + | offsetB |
* | Cr(unorm) | | B' | | offsetC |
*
* where
* | (scaleY/S) * vecY |
* Matrix = | (scaleCbCr/S) * vecU |
* | (scaleCbCr/S) * vecV |
*
* offsetA = offsetY / S
* offsetB = offsetCbCr / S
* offsetC = offsetCbCr / S
*
* 4) Consider 16-235 scale RGB
* RGBstudio(16..235) -> RGBfull(0..255) matrix is represented by
* | Rf | | Rs | | Or |
* | Gf | = Ms | Gs | + | Og |
* | Bf | | Bs | | Ob |
*
* Combining all matrix into
* | Y'(unorm) | | Rs | | Or | | offsetA |
* | Cb(unorm) | = Matrix * ( Ms | Gs | + | Og | ) + | offsetB |
* | Cr(unorm) | | Bs | | Ob | | offsetC |
*
* | Rs | | Or | | offsetA |
* = Matrix * Ms | Gs | + Matrix | Og | + | offsetB |
* | Bs | | Ob | | offsetB |
*/
memset (matrix, 0, sizeof (GstD3D12ColorMatrix));
for (guint i = 0; i < 3; i++)
matrix->max[i] = 1.0;
gst_video_color_range_offsets (out_yuv_info->colorimetry.range,
out_yuv_info->finfo, offset, scale);
if (gst_video_color_matrix_get_Kr_Kb (out_yuv_info->colorimetry.matrix,
&Kr, &Kb)) {
guint S;
gdouble Sy, Suv;
gdouble Oy, Ouv;
gdouble vecY[3], vecU[3], vecV[3];
Kg = 1.0 - Kr - Kb;
vecY[0] = Kr;
vecY[1] = Kg;
vecY[2] = Kb;
vecU[0] = -0.5 * Kr / (1 - Kb);
vecU[1] = -0.5 * Kg / (1 - Kb);
vecU[2] = 0.5;
vecV[0] = 0.5;
vecV[1] = -0.5 * Kg / (1 - Kr);
vecV[2] = -0.5 * Kb / (1 - Kr);
/* Assume all components has the same bitdepth */
S = (1 << out_yuv_info->finfo->depth[0]) - 1;
Sy = (gdouble) scale[0] / S;
Suv = (gdouble) scale[1] / S;
Oy = (gdouble) offset[0] / S;
Ouv = (gdouble) offset[1] / S;
for (guint i = 0; i < 3; i++) {
matrix->matrix[0][i] = Sy * vecY[i];
matrix->matrix[1][i] = Suv * vecU[i];
matrix->matrix[2][i] = Suv * vecV[i];
}
matrix->offset[0] = Oy;
matrix->offset[1] = Ouv;
matrix->offset[2] = Ouv;
matrix->min[0] = Oy;
matrix->min[1] = Oy;
matrix->min[2] = Oy;
matrix->max[0] = ((gdouble) scale[0] + offset[0]) / S;
matrix->max[1] = ((gdouble) scale[1] + offset[0]) / S;
matrix->max[2] = ((gdouble) scale[1] + offset[0]) / S;
/* Apply RGB range scale matrix */
if (in_rgb_info->colorimetry.range == GST_VIDEO_COLOR_RANGE_16_235) {
GstD3D12ColorMatrix scale_matrix, rst;
GstVideoInfo full_rgb = *in_rgb_info;
full_rgb.colorimetry.range = GST_VIDEO_COLOR_RANGE_0_255;
if (gst_d3d12_color_range_adjust_matrix_unorm (in_rgb_info,
&full_rgb, &scale_matrix)) {
/* Matrix * Ms */
color_matrix_multiply (&rst, matrix, &scale_matrix);
/* Matrix * scale offsets */
for (guint i = 0; i < 3; i++) {
gdouble val = 0;
for (guint j = 0; j < 3; j++) {
val += matrix->matrix[i][j] * scale_matrix.offset[j];
}
rst.offset[i] = val + matrix->offset[i];
}
/* copy back to output matrix */
for (guint i = 0; i < 3; i++) {
for (guint j = 0; j < 3; j++) {
matrix->matrix[i][j] = rst.matrix[i][j];
}
matrix->offset[i] = rst.offset[i];
}
}
}
} else {
/* Unknown matrix */
matrix->matrix[0][0] = 1.0;
matrix->matrix[1][1] = 1.0;
matrix->matrix[2][2] = 1.0;
}
return TRUE;
}
static gboolean
rgb_to_xyz_matrix (const GstVideoColorPrimariesInfo * info,
GstD3D12ColorMatrix * matrix)
{
GstD3D12ColorMatrix m, im;
gdouble Sr, Sg, Sb;
gdouble Xw, Yw, Zw;
if (info->Rx == 0 || info->Gx == 0 || info->By == 0 || info->Wy == 0)
return FALSE;
color_matrix_identity (&m);
m.matrix[0][0] = info->Rx / info->Ry;
m.matrix[1][0] = 1.0;
m.matrix[2][0] = (1.0 - info->Rx - info->Ry) / info->Ry;
m.matrix[0][1] = info->Gx / info->Gy;
m.matrix[1][1] = 1.0;
m.matrix[2][1] = (1.0 - info->Gx - info->Gy) / info->Gy;
m.matrix[0][2] = info->Bx / info->By;
m.matrix[1][2] = 1.0;
m.matrix[2][2] = (1.0 - info->Bx - info->By) / info->By;
if (!color_matrix_invert (&im, &m))
return FALSE;
Xw = info->Wx / info->Wy;
Yw = 1.0;
Zw = (1.0 - info->Wx - info->Wy) / info->Wy;
Sr = im.matrix[0][0] * Xw + im.matrix[0][1] * Yw + im.matrix[0][2] * Zw;
Sg = im.matrix[1][0] * Xw + im.matrix[1][1] * Yw + im.matrix[1][2] * Zw;
Sb = im.matrix[2][0] * Xw + im.matrix[2][1] * Yw + im.matrix[2][2] * Zw;
for (guint i = 0; i < 3; i++) {
m.matrix[i][0] *= Sr;
m.matrix[i][1] *= Sg;
m.matrix[i][2] *= Sb;
}
color_matrix_copy (matrix, &m);
return TRUE;
}
/**
* gst_d3d12_color_primaries_matrix_unorm:
* @in_info: a #GstVideoColorPrimariesInfo of input signal
* @out_info: a #GstVideoColorPrimariesInfo of output signal
* @matrix: a #GstD3D12ColorMatrix
*
* Calculates color primaries conversion matrix
*
* Resulting RGB values can be calculated by
* | Rout | | Rin |
* | Gout | = saturate ( matrix.matrix * | Gin | )
* | Bout | | Bin |
*
* Returns: %TRUE if successful
*/
gboolean
gst_d3d12_color_primaries_matrix_unorm (const GstVideoColorPrimariesInfo *
in_info, const GstVideoColorPrimariesInfo * out_info,
GstD3D12ColorMatrix * matrix)
{
GstD3D12ColorMatrix Ms, invMd, ret;
g_return_val_if_fail (in_info != nullptr, FALSE);
g_return_val_if_fail (out_info != nullptr, FALSE);
g_return_val_if_fail (matrix != nullptr, FALSE);
/*
* <Formula>
*
* 1) RGB -> XYZ conversion
* | X | | R |
* | Y | = M | G |
* | Z | | B |
* where
* | SrXr, SgXg, SbXb |
* M = | SrYr, SgYg, SbYb |
* | SrZr, SgZg, SbZb |
*
* Xr = xr / yr
* Yr = 1
* Zr = (1 - xr - yr) / yr
* xr and yr are xy coordinates of red primary in the CIE 1931 color space.
* And its applied to G and B components
*
* | Sr | | Xr, Xg, Xb | | Xw |
* | Sg | = inv( | Yr, Yg, Yb | ) * | Yw |
* | Sb | | Zr, Zg, Zb | | Zw |
*
* 2) XYZsrc -> XYZdst conversion
* Apply chromatic adaptation
* | Xdst | | Xsrc |
* | Ydst | = Mc | Ysrc |
* | Zdst | | Zsrc |
* where
* | Xwdst / Xwsrc, 0 , 0 |
* Mc = | 0 , Ywdst / Ywsrc, 0 |
* | 0 , 0 , Zwdst / Zwsrc |
*
* where
*
* 3) Final matrix
* | Rd | | Rs |
* | Gd | = inv (Md) * Mc * Ms | Gs |
* | Bd | | Bs |
*/
memset (matrix, 0, sizeof (GstD3D12ColorMatrix));
for (guint i = 0; i < 3; i++)
matrix->max[i] = 1.0;
if (!rgb_to_xyz_matrix (in_info, &Ms)) {
GST_WARNING ("Failed to get src XYZ matrix");
return FALSE;
}
if (!rgb_to_xyz_matrix (out_info, &invMd) ||
!color_matrix_invert (&invMd, &invMd)) {
GST_WARNING ("Failed to get dst XYZ matrix");
return FALSE;
}
if (in_info->Wx != out_info->Wx || in_info->Wy != out_info->Wy) {
GstD3D12ColorMatrix Mc;
color_matrix_identity (&Mc);
Mc.matrix[0][0] = (out_info->Wx / out_info->Wy) /
(in_info->Wx / in_info->Wy);
/* Yw == 1.0 */
Mc.matrix[2][2] = ((1.0 - out_info->Wx - out_info->Wy) / out_info->Wy) /
((1.0 - in_info->Wx - in_info->Wy) / in_info->Wy);
color_matrix_multiply (&ret, &Mc, &Ms);
} else {
color_matrix_copy (&ret, &Ms);
}
color_matrix_multiply (&ret, &invMd, &ret);
color_matrix_copy (matrix, &ret);
return TRUE;
}