mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2024-12-11 02:46:33 +00:00
GStreamer multimedia framework
abea5e81c8
The h265 encoder just support tune mode: (0): none - None (3): low-power - Low power mode So, no need to check and set the high compression parameters. And by the way, the current ensure_tuning_high_compression manner of choosing the hightest profile idc as the best compression profile is not correct. Unlike h264, in h265 the higher profile idc number does not mean it has more compression tools, and so it has better compression performance. It may even be un-compatible with the lower profile idc. For example, the SCREEN_CONTENT_CODING profile with idc 9 is not compatible with 3D_MAIN profile with idc 8. Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer-vaapi/-/merge_requests/348> |
||
---|---|---|
docs | ||
gst | ||
gst-libs | ||
hooks | ||
tests | ||
.gitignore | ||
.gitlab-ci.yml | ||
AUTHORS | ||
ChangeLog | ||
COPYING.LIB | ||
gstreamer-vaapi.doap | ||
meson.build | ||
meson_options.txt | ||
NEWS | ||
README | ||
RELEASE |
gstreamer-vaapi VA-API support to GStreamer Copyright (C) 2010-2011 Splitted-Desktop Systems Copyright (C) 2011-2020 Intel Corporation Copyright (C) 2011 Collabora Ltd. Copyright (C) 2015-2020 Igalia, S.L. License ------- gstreamer-vaapi helper libraries and plugin elements are available under the terms of the GNU Lesser General Public License v2.1+ Overview -------- gstreamer-vaapi consists in a collection of VA-API based plugins for GStreamer and helper libraries. * `vaapi<CODEC>dec' is used to decode JPEG, MPEG-2, MPEG-4:2, H.264 AVC, H.264 MVC, VP8, VP9, VC-1, WMV3, HEVC videos to VA surfaces, depending on the actual value of <CODEC> and the underlying hardware capabilities. This plugin is also able to implicitly download the decoded surface to raw YUV buffers. * `vaapi<CODEC>enc' is used to encode into MPEG-2, H.264 AVC, H.264 MVC, JPEG, VP8, VP9, HEVC videos, depending on the actual value of <CODEC> (mpeg2, h264, etc.) and the hardware capabilities. By default, raw format bitstreams are generated, so the result may be piped to a muxer, e.g. qtmux for MP4 containers. * `vaapipostproc' is used to filter VA surfaces, for e.g. scaling, deinterlacing (bob, motion-adaptive, motion-compensated), noise reduction or sharpening. This plugin is also used to upload raw YUV pixels into VA surfaces. * `vaapisink' is used to render VA surfaces to an X11 or Wayland display. This plugin also features a "headless" mode (DRM) more suited to remote transcode scenarios, with faster throughput. * `vaapioverlay` is a accelerated compositor that blends or composite different video streams. Features -------- * VA-API support from 0.39 * JPEG, MPEG-2, MPEG-4, H.264 AVC, H.264 MVC, VP8, VC-1, HEVC and VP9 ad-hoc decoders * MPEG-2, H.264 AVC,H.264 MVC, JPEG, VP8, VP9 and HEVC ad-hoc encoders * OpenGL rendering through VA/GLX or GLX texture-from-pixmap + FBO * Support for EGL backend * Support for the Wayland display server * Support for headless decode pipelines with VA/DRM * Support for major HW video decoding solutions on Linux (AMD, Intel, NVIDIA) * Support for HW video encoding on Intel HD Graphics hardware * Support for VA Video Processing APIs (VA/VPP) - Scaling and color conversion - Image enhancement filters: Sharpening, Noise Reductio, Color Balance, Skin-Tone-Enhancement - Advanced deinterlacing: Motion-Adaptive, Motion-Compensated Requirements ------------ Hardware requirements * Hardware supported by i965 driver or iHD, such as - Intel Ironlake, Sandybridge, Ivybridge, Haswell, Broadwell, Skylake, etc. (HD Graphics) - Intel BayTrail, Braswell - Intel Poulsbo (US15W) - Intel Medfield or Cedar Trail * Hardware supported by AMD Radeonsi driver, such as the list below - AMD Carrizo, Bristol Ridge, Raven Ridge, Picasso, Renoir - AMD Tonga, Fiji, Polaris XX, Vega XX, Navi 1X * Other hardware supported by Mesa VA gallium state-tracker Usage ----- VA elements are automatically plugged into GStreamer pipelines. So, using playbin should work as is. However, here are a few alternate pipelines that could be manually constructed. * Play an H.264 video with an MP4 container in fullscreen mode $ gst-launch-1.0 -v filesrc location=/path/to/video.mp4 ! \ qtdemux ! vaapidecodebin ! vaapisink fullscreen=true * Play a raw MPEG-2 interlaced stream $ gst-launch-1.0 -v filesrc location=/path/to/mpeg2.bits ! \ mpegvideoparse ! vaapimpeg2dec ! vaapipostproc ! vaapisink * Convert from one pixel format to another, while also downscaling $ gst-launch-1.0 -v filesrc location=/path/to/raw_video.yuv ! \ videoparse format=yuy2 width=1280 height=720 ! \ vaapipostproc format=nv12 height=480 ! vaapisink * Encode a 1080p stream in raw I420 format into H.264 $ gst-launch-1.0 -v filesrc location=/path/to/raw_video.yuv ! \ videoparse format=i420 width=1920 height=1080 framerate=30/1 ! \ vaapih264enc rate-control=cbr tune=high-compression ! \ qtmux ! filesink location=/path/to/encoded_video.mp4 Sources ------- gstreamer-vaapi is Open Source software, so updates to this framework are really easy to get. Stable source code releases can be found at: <https://gstreamer.freedesktop.org/src/gstreamer-vaapi/> GitLab repository for work-in-progress changes is available at: <https://gitlab.freedesktop.org/gstreamer/gstreamer-vaapi> Reporting Bugs -------------- Bugs can be reported in the GStreamer's GitLab system at: <https://gitlab.freedesktop.org/gstreamer/gstreamer-vaapi/issues>