gstreamer/gst-libs/gst/fft/_kiss_fft_guts_f64.h
Sebastian Dröge ad68f71d9a fft: Update our kiss fft version
This fixes thread-safety issues and various other minor issues. Our
previous version was about 13 years old.

Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-base/issues/715
2019-12-27 11:53:14 +02:00

173 lines
5.1 KiB
C

/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
/* kiss_fft_f64.h
defines kiss_fft_f64_scalar as either short or a float type
and defines
typedef struct { kiss_fft_f64_scalar r; kiss_fft_f64_scalar i; }kiss_fft_f64_cpx; */
#include "kiss_fft_f64.h"
#include <limits.h>
/* The 2*sizeof(size_t) alignment here is borrowed from
* GNU libc, so it should be good most everywhere.
* It is more conservative than is needed on some 64-bit
* platforms, but ia64 does require a 16-byte alignment.
* The SIMD extensions for x86 and ppc32 would want a
* larger alignment than this, but we don't need to
* do better than malloc.
*
* Borrowed from GLib's gobject/gtype.c
*/
#define STRUCT_ALIGNMENT (2 * sizeof (size_t))
#define ALIGN_STRUCT(offset) \
((offset + (STRUCT_ALIGNMENT - 1)) & -STRUCT_ALIGNMENT)
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_f64_state{
int nfft;
int inverse;
int factors[2*MAXFACTORS];
kiss_fft_f64_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#ifdef FIXED_POINT
#include <stdint.h>
#if (FIXED_POINT==32)
# define FRACBITS 31
# define SAMPPROD int64_t
#define SAMP_MAX INT32_MAX
#define SAMP_MIN INT32_MIN
#else
# define FRACBITS 15
# define SAMPPROD int32_t
#define SAMP_MAX INT16_MAX
#define SAMP_MIN INT16_MIN
#endif
#if defined(CHECK_OVERFLOW)
# define CHECK_OVERFLOW_OP(a,op,b) \
if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \
g_critical("overflow @ " __FILE__ "(%d): (%d " #op" %d) = %ld",__LINE__,(a),(b),(SAMPPROD)(a) op (SAMPPROD)(b) ); }
#endif
# define smul(a,b) ( (SAMPPROD)(a)*(b) )
# define sround( x ) (kiss_fft_f64_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS )
# define S_MUL(a,b) sround( smul(a,b) )
# define C_MUL(m,a,b) \
do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \
(m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0)
# define DIVSCALAR(x,k) \
(x) = sround( smul( x, SAMP_MAX/k ) )
# define C_FIXDIV(c,div) \
do { DIVSCALAR( (c).r , div); \
DIVSCALAR( (c).i , div); }while (0)
# define C_MULBYSCALAR( c, s ) \
do{ (c).r = sround( smul( (c).r , s ) ) ;\
(c).i = sround( smul( (c).i , s ) ) ; }while(0)
#else /* not FIXED_POINT*/
# define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
# define C_FIXDIV(c,div) /* NOOP */
# define C_MULBYSCALAR( c, s ) \
do{ (c).r *= (s);\
(c).i *= (s); }while(0)
#endif
#ifndef CHECK_OVERFLOW_OP
# define CHECK_OVERFLOW_OP(a,op,b) /* noop */
#endif
#define C_ADD( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
}while(0)
#define C_SUB( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
}while(0)
#define C_ADDTO( res , a)\
do { \
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
(res).r += (a).r; (res).i += (a).i;\
}while(0)
#define C_SUBFROM( res , a)\
do {\
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
(res).r -= (a).r; (res).i -= (a).i; \
}while(0)
#ifdef FIXED_POINT
# define KISS_FFT_F64_COS(phase) floor(.5+SAMP_MAX * cos (phase))
# define KISS_FFT_F64_SIN(phase) floor(.5+SAMP_MAX * sin (phase))
# define HALF_OF(x) ((x)>>1)
#elif defined(USE_SIMD)
# define KISS_FFT_F64_COS(phase) _mm_set1_ps( cos(phase) )
# define KISS_FFT_F64_SIN(phase) _mm_set1_ps( sin(phase) )
# define HALF_OF(x) ((x)*_mm_set1_ps(.5))
#else
# define KISS_FFT_F64_COS(phase) (kiss_fft_f64_scalar) cos(phase)
# define KISS_FFT_F64_SIN(phase) (kiss_fft_f64_scalar) sin(phase)
# define HALF_OF(x) ((x)*.5)
#endif
#define kf_cexp(x,phase) \
do{ \
(x)->r = KISS_FFT_F64_COS(phase);\
(x)->i = KISS_FFT_F64_SIN(phase);\
}while(0)
/* a debugging function */
#define pcpx(c)\
fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) )
#ifdef KISS_FFT_F64_USE_ALLOCA
// define this to allow use of alloca instead of malloc for temporary buffers
// Temporary buffers are used in two case:
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform.
#include <alloca.h>
#define KISS_FFT_F64_TMP_ALLOC(nbytes) alloca(nbytes)
#define KISS_FFT_F64_TMP_FREE(ptr)
#else
#define KISS_FFT_F64_TMP_ALLOC(nbytes) KISS_FFT_F64_MALLOC(nbytes)
#define KISS_FFT_F64_TMP_FREE(ptr) KISS_FFT_F64_FREE(ptr)
#endif