gstreamer/subprojects/gst-plugins-bad/ext/sctp/usrsctp/usrsctplib/user_socket.c

3590 lines
88 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California.
* Copyright (c) 2004 The FreeBSD Foundation
* Copyright (c) 2004-2008 Robert N. M. Watson
* Copyright (c) 2009-2010 Brad Penoff
* Copyright (c) 2009-2010 Humaira Kamal
* Copyright (c) 2011-2012 Irene Ruengeler
* Copyright (c) 2011-2012 Michael Tuexen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <netinet/sctp_os.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctputil.h>
#include <netinet/sctp_var.h>
#include <netinet/sctp_sysctl.h>
#include <netinet/sctp_input.h>
#include <netinet/sctp_peeloff.h>
#include <netinet/sctp_callout.h>
#include <netinet/sctp_crc32.h>
#ifdef INET6
#include <netinet6/sctp6_var.h>
#endif
#if defined(__FreeBSD__)
#include <sys/param.h>
#endif
#if defined(__linux__)
#define __FAVOR_BSD /* (on Ubuntu at least) enables UDP header field names like BSD in RFC 768 */
#endif
#if !defined(_WIN32)
#if defined INET || defined INET6
#include <netinet/udp.h>
#endif
#include <arpa/inet.h>
#else
#include <user_socketvar.h>
#endif
userland_mutex_t accept_mtx;
userland_cond_t accept_cond;
#ifdef _WIN32
#include <time.h>
#include <sys/timeb.h>
#endif
MALLOC_DEFINE(M_PCB, "sctp_pcb", "sctp pcb");
MALLOC_DEFINE(M_SONAME, "sctp_soname", "sctp soname");
#define MAXLEN_MBUF_CHAIN 32
/* Prototypes */
extern int sctp_sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
struct mbuf *top, struct mbuf *control, int flags,
/* proc is a dummy in __Userspace__ and will not be passed to sctp_lower_sosend */
struct proc *p);
extern int sctp_attach(struct socket *so, int proto, uint32_t vrf_id);
extern int sctpconn_attach(struct socket *so, int proto, uint32_t vrf_id);
static void init_sync(void) {
#if defined(_WIN32)
#if defined(INET) || defined(INET6)
WSADATA wsaData;
if (WSAStartup(MAKEWORD(2,2), &wsaData) != 0) {
SCTP_PRINTF("WSAStartup failed\n");
exit (-1);
}
#endif
InitializeConditionVariable(&accept_cond);
InitializeCriticalSection(&accept_mtx);
#else
pthread_mutexattr_t mutex_attr;
pthread_mutexattr_init(&mutex_attr);
#ifdef INVARIANTS
pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_ERRORCHECK);
#endif
pthread_mutex_init(&accept_mtx, &mutex_attr);
pthread_mutexattr_destroy(&mutex_attr);
pthread_cond_init(&accept_cond, NULL);
#endif
}
void
usrsctp_init(uint16_t port,
int (*conn_output)(void *addr, void *buffer, size_t length, uint8_t tos, uint8_t set_df),
void (*debug_printf)(const char *format, ...))
{
init_sync();
sctp_init(port, conn_output, debug_printf, 1);
}
void
usrsctp_init_nothreads(uint16_t port,
int (*conn_output)(void *addr, void *buffer, size_t length, uint8_t tos, uint8_t set_df),
void (*debug_printf)(const char *format, ...))
{
init_sync();
sctp_init(port, conn_output, debug_printf, 0);
}
/* Taken from usr/src/sys/kern/uipc_sockbuf.c and modified for __Userspace__*/
/*
* Socantsendmore indicates that no more data will be sent on the socket; it
* would normally be applied to a socket when the user informs the system
* that no more data is to be sent, by the protocol code (in case
* PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
* received, and will normally be applied to the socket by a protocol when it
* detects that the peer will send no more data. Data queued for reading in
* the socket may yet be read.
*/
void socantrcvmore_locked(struct socket *so)
{
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
sorwakeup_locked(so);
}
void socantrcvmore(struct socket *so)
{
SOCKBUF_LOCK(&so->so_rcv);
socantrcvmore_locked(so);
}
void
socantsendmore_locked(struct socket *so)
{
SOCKBUF_LOCK_ASSERT(&so->so_snd);
so->so_snd.sb_state |= SBS_CANTSENDMORE;
sowwakeup_locked(so);
}
void
socantsendmore(struct socket *so)
{
SOCKBUF_LOCK(&so->so_snd);
socantsendmore_locked(so);
}
/* Taken from usr/src/sys/kern/uipc_sockbuf.c and called within sctp_lower_sosend.
*/
int
sbwait(struct sockbuf *sb)
{
SOCKBUF_LOCK_ASSERT(sb);
sb->sb_flags |= SB_WAIT;
#if defined(_WIN32)
if (SleepConditionVariableCS(&(sb->sb_cond), &(sb->sb_mtx), INFINITE))
return (0);
else
return (-1);
#else
return (pthread_cond_wait(&(sb->sb_cond), &(sb->sb_mtx)));
#endif
}
/* Taken from /src/sys/kern/uipc_socket.c
* and modified for __Userspace__
*/
static struct socket *
soalloc(void)
{
struct socket *so;
/*
* soalloc() sets of socket layer state for a socket,
* called only by socreate() and sonewconn().
*
* sodealloc() tears down socket layer state for a socket,
* called only by sofree() and sonewconn().
* __Userspace__ TODO : Make sure so is properly deallocated
* when tearing down the connection.
*/
so = (struct socket *)malloc(sizeof(struct socket));
if (so == NULL) {
return (NULL);
}
memset(so, 0, sizeof(struct socket));
/* __Userspace__ Initializing the socket locks here */
SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
SOCKBUF_COND_INIT(&so->so_snd);
SOCKBUF_COND_INIT(&so->so_rcv);
SOCK_COND_INIT(so); /* timeo_cond */
/* __Userspace__ Any ref counting required here? Will we have any use for aiojobq?
What about gencnt and numopensockets?*/
TAILQ_INIT(&so->so_aiojobq);
return (so);
}
static void
sodealloc(struct socket *so)
{
KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
SOCKBUF_COND_DESTROY(&so->so_snd);
SOCKBUF_COND_DESTROY(&so->so_rcv);
SOCK_COND_DESTROY(so);
SOCKBUF_LOCK_DESTROY(&so->so_snd);
SOCKBUF_LOCK_DESTROY(&so->so_rcv);
free(so);
}
/* Taken from /src/sys/kern/uipc_socket.c
* and modified for __Userspace__
*/
void
sofree(struct socket *so)
{
struct socket *head;
ACCEPT_LOCK_ASSERT();
SOCK_LOCK_ASSERT(so);
/* SS_NOFDREF unset in accept call. this condition seems irrelevent
* for __Userspace__...
*/
if (so->so_count != 0 ||
(so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
SOCK_UNLOCK(so);
ACCEPT_UNLOCK();
return;
}
head = so->so_head;
if (head != NULL) {
KASSERT((so->so_qstate & SQ_COMP) != 0 ||
(so->so_qstate & SQ_INCOMP) != 0,
("sofree: so_head != NULL, but neither SQ_COMP nor "
"SQ_INCOMP"));
KASSERT((so->so_qstate & SQ_COMP) == 0 ||
(so->so_qstate & SQ_INCOMP) == 0,
("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
TAILQ_REMOVE(&head->so_incomp, so, so_list);
head->so_incqlen--;
so->so_qstate &= ~SQ_INCOMP;
so->so_head = NULL;
}
KASSERT((so->so_qstate & SQ_COMP) == 0 &&
(so->so_qstate & SQ_INCOMP) == 0,
("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
if (so->so_options & SCTP_SO_ACCEPTCONN) {
KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
}
SOCK_UNLOCK(so);
ACCEPT_UNLOCK();
sctp_close(so); /* was... sctp_detach(so); */
/*
* From this point on, we assume that no other references to this
* socket exist anywhere else in the stack. Therefore, no locks need
* to be acquired or held.
*
* We used to do a lot of socket buffer and socket locking here, as
* well as invoke sorflush() and perform wakeups. The direct call to
* dom_dispose() and sbrelease_internal() are an inlining of what was
* necessary from sorflush().
*
* Notice that the socket buffer and kqueue state are torn down
* before calling pru_detach. This means that protocols shold not
* assume they can perform socket wakeups, etc, in their detach code.
*/
sodealloc(so);
}
/* Taken from /src/sys/kern/uipc_socket.c */
void
soabort(struct socket *so)
{
#if defined(INET6)
struct sctp_inpcb *inp;
#endif
#if defined(INET6)
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
sctp6_abort(so);
} else {
#if defined(INET)
sctp_abort(so);
#endif
}
#elif defined(INET)
sctp_abort(so);
#endif
ACCEPT_LOCK();
SOCK_LOCK(so);
sofree(so);
}
/* Taken from usr/src/sys/kern/uipc_socket.c and called within sctp_connect (sctp_usrreq.c).
* We use sctp_connect for send_one_init_real in ms1.
*/
void
soisconnecting(struct socket *so)
{
SOCK_LOCK(so);
so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
so->so_state |= SS_ISCONNECTING;
SOCK_UNLOCK(so);
}
/* Taken from usr/src/sys/kern/uipc_socket.c and called within sctp_disconnect (sctp_usrreq.c).
* TODO Do we use sctp_disconnect?
*/
void
soisdisconnecting(struct socket *so)
{
/*
* Note: This code assumes that SOCK_LOCK(so) and
* SOCKBUF_LOCK(&so->so_rcv) are the same.
*/
SOCKBUF_LOCK(&so->so_rcv);
so->so_state &= ~SS_ISCONNECTING;
so->so_state |= SS_ISDISCONNECTING;
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
sorwakeup_locked(so);
SOCKBUF_LOCK(&so->so_snd);
so->so_snd.sb_state |= SBS_CANTSENDMORE;
sowwakeup_locked(so);
wakeup("dummy",so);
/* requires 2 args but this was in orig */
/* wakeup(&so->so_timeo); */
}
/* Taken from sys/kern/kern_synch.c and
modified for __Userspace__
*/
/*
* Make all threads sleeping on the specified identifier runnable.
* Associating wakeup with so_timeo identifier and timeo_cond
* condition variable. TODO. If we use iterator thread then we need to
* modify wakeup so it can distinguish between iterator identifier and
* timeo identifier.
*/
void
wakeup(void *ident, struct socket *so)
{
SOCK_LOCK(so);
#if defined(_WIN32)
WakeAllConditionVariable(&(so)->timeo_cond);
#else
pthread_cond_broadcast(&(so)->timeo_cond);
#endif
SOCK_UNLOCK(so);
}
/*
* Make a thread sleeping on the specified identifier runnable.
* May wake more than one thread if a target thread is currently
* swapped out.
*/
void
wakeup_one(void *ident)
{
/* __Userspace__ Check: We are using accept_cond for wakeup_one.
It seems that wakeup_one is only called within
soisconnected() and sonewconn() with ident &head->so_timeo
head is so->so_head, which is back pointer to listen socket
This seems to indicate that the use of accept_cond is correct
since socket where accepts occur is so_head in all
subsidiary sockets.
*/
ACCEPT_LOCK();
#if defined(_WIN32)
WakeAllConditionVariable(&accept_cond);
#else
pthread_cond_broadcast(&accept_cond);
#endif
ACCEPT_UNLOCK();
}
/* Called within sctp_process_cookie_[existing/new] */
void
soisconnected(struct socket *so)
{
struct socket *head;
ACCEPT_LOCK();
SOCK_LOCK(so);
so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
so->so_state |= SS_ISCONNECTED;
head = so->so_head;
if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
SOCK_UNLOCK(so);
TAILQ_REMOVE(&head->so_incomp, so, so_list);
head->so_incqlen--;
so->so_qstate &= ~SQ_INCOMP;
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
head->so_qlen++;
so->so_qstate |= SQ_COMP;
ACCEPT_UNLOCK();
sorwakeup(head);
wakeup_one(&head->so_timeo);
return;
}
SOCK_UNLOCK(so);
ACCEPT_UNLOCK();
wakeup(&so->so_timeo, so);
sorwakeup(so);
sowwakeup(so);
}
/* called within sctp_handle_cookie_echo */
struct socket *
sonewconn(struct socket *head, int connstatus)
{
struct socket *so;
int over;
ACCEPT_LOCK();
over = (head->so_qlen > 3 * head->so_qlimit / 2);
ACCEPT_UNLOCK();
#ifdef REGRESSION
if (regression_sonewconn_earlytest && over)
#else
if (over)
#endif
return (NULL);
so = soalloc();
if (so == NULL)
return (NULL);
so->so_head = head;
so->so_type = head->so_type;
so->so_options = head->so_options &~ SCTP_SO_ACCEPTCONN;
so->so_linger = head->so_linger;
so->so_state = head->so_state | SS_NOFDREF;
so->so_dom = head->so_dom;
#ifdef MAC
SOCK_LOCK(head);
mac_create_socket_from_socket(head, so);
SOCK_UNLOCK(head);
#endif
if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
sodealloc(so);
return (NULL);
}
switch (head->so_dom) {
#ifdef INET
case AF_INET:
if (sctp_attach(so, IPPROTO_SCTP, SCTP_DEFAULT_VRFID)) {
sodealloc(so);
return (NULL);
}
break;
#endif
#ifdef INET6
case AF_INET6:
if (sctp6_attach(so, IPPROTO_SCTP, SCTP_DEFAULT_VRFID)) {
sodealloc(so);
return (NULL);
}
break;
#endif
case AF_CONN:
if (sctpconn_attach(so, IPPROTO_SCTP, SCTP_DEFAULT_VRFID)) {
sodealloc(so);
return (NULL);
}
break;
default:
sodealloc(so);
return (NULL);
break;
}
so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
so->so_snd.sb_lowat = head->so_snd.sb_lowat;
so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
so->so_snd.sb_timeo = head->so_snd.sb_timeo;
so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
so->so_state |= connstatus;
ACCEPT_LOCK();
if (connstatus) {
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
so->so_qstate |= SQ_COMP;
head->so_qlen++;
} else {
/*
* Keep removing sockets from the head until there's room for
* us to insert on the tail. In pre-locking revisions, this
* was a simple if (), but as we could be racing with other
* threads and soabort() requires dropping locks, we must
* loop waiting for the condition to be true.
*/
while (head->so_incqlen > head->so_qlimit) {
struct socket *sp;
sp = TAILQ_FIRST(&head->so_incomp);
TAILQ_REMOVE(&head->so_incomp, sp, so_list);
head->so_incqlen--;
sp->so_qstate &= ~SQ_INCOMP;
sp->so_head = NULL;
ACCEPT_UNLOCK();
soabort(sp);
ACCEPT_LOCK();
}
TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
so->so_qstate |= SQ_INCOMP;
head->so_incqlen++;
}
ACCEPT_UNLOCK();
if (connstatus) {
sorwakeup(head);
wakeup_one(&head->so_timeo);
}
return (so);
}
/*
Source: /src/sys/gnu/fs/xfs/FreeBSD/xfs_ioctl.c
*/
static __inline__ int
copy_to_user(void *dst, void *src, size_t len) {
memcpy(dst, src, len);
return 0;
}
static __inline__ int
copy_from_user(void *dst, void *src, size_t len) {
memcpy(dst, src, len);
return 0;
}
/*
References:
src/sys/dev/lmc/if_lmc.h:
src/sys/powerpc/powerpc/copyinout.c
src/sys/sys/systm.h
*/
# define copyin(u, k, len) copy_from_user(k, u, len)
/* References:
src/sys/powerpc/powerpc/copyinout.c
src/sys/sys/systm.h
*/
# define copyout(k, u, len) copy_to_user(u, k, len)
/* copyiniov definition copied/modified from src/sys/kern/kern_subr.c */
int
copyiniov(struct iovec *iovp, u_int iovcnt, struct iovec **iov, int error)
{
u_int iovlen;
*iov = NULL;
if (iovcnt > UIO_MAXIOV)
return (error);
iovlen = iovcnt * sizeof (struct iovec);
*iov = malloc(iovlen); /*, M_IOV, M_WAITOK); */
error = copyin(iovp, *iov, iovlen);
if (error) {
free(*iov); /*, M_IOV); */
*iov = NULL;
}
return (error);
}
/* (__Userspace__) version of uiomove */
int
uiomove(void *cp, int n, struct uio *uio)
{
struct iovec *iov;
size_t cnt;
int error = 0;
if ((uio->uio_rw != UIO_READ) &&
(uio->uio_rw != UIO_WRITE)) {
return (EINVAL);
}
while (n > 0 && uio->uio_resid) {
iov = uio->uio_iov;
cnt = iov->iov_len;
if (cnt == 0) {
uio->uio_iov++;
uio->uio_iovcnt--;
continue;
}
if (cnt > (size_t)n)
cnt = n;
switch (uio->uio_segflg) {
case UIO_USERSPACE:
if (uio->uio_rw == UIO_READ)
error = copyout(cp, iov->iov_base, cnt);
else
error = copyin(iov->iov_base, cp, cnt);
if (error)
goto out;
break;
case UIO_SYSSPACE:
if (uio->uio_rw == UIO_READ)
memcpy(iov->iov_base, cp, cnt);
else
memcpy(cp, iov->iov_base, cnt);
break;
}
iov->iov_base = (char *)iov->iov_base + cnt;
iov->iov_len -= cnt;
uio->uio_resid -= cnt;
uio->uio_offset += (off_t)cnt;
cp = (char *)cp + cnt;
n -= (int)cnt;
}
out:
return (error);
}
/* Source: src/sys/kern/uipc_syscalls.c */
int
getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
{
struct sockaddr *sa;
int error;
if (len > SOCK_MAXADDRLEN)
return (ENAMETOOLONG);
if (len < offsetof(struct sockaddr, sa_data))
return (EINVAL);
MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
error = copyin(uaddr, sa, len);
if (error) {
FREE(sa, M_SONAME);
} else {
#ifdef HAVE_SA_LEN
sa->sa_len = len;
#endif
*namp = sa;
}
return (error);
}
int
usrsctp_getsockopt(struct socket *so, int level, int option_name,
void *option_value, socklen_t *option_len);
sctp_assoc_t
usrsctp_getassocid(struct socket *sock, struct sockaddr *sa)
{
struct sctp_paddrinfo sp;
socklen_t siz;
#ifndef HAVE_SA_LEN
size_t sa_len;
#endif
/* First get the assoc id */
siz = sizeof(sp);
memset(&sp, 0, sizeof(sp));
#ifdef HAVE_SA_LEN
memcpy((caddr_t)&sp.spinfo_address, sa, sa->sa_len);
#else
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
sa_len = sizeof(struct sockaddr_in);
break;
#endif
#ifdef INET6
case AF_INET6:
sa_len = sizeof(struct sockaddr_in6);
break;
#endif
case AF_CONN:
sa_len = sizeof(struct sockaddr_conn);
break;
default:
sa_len = 0;
break;
}
memcpy((caddr_t)&sp.spinfo_address, sa, sa_len);
#endif
if (usrsctp_getsockopt(sock, IPPROTO_SCTP, SCTP_GET_PEER_ADDR_INFO, &sp, &siz) != 0) {
/* We depend on the fact that 0 can never be returned */
return ((sctp_assoc_t) 0);
}
return (sp.spinfo_assoc_id);
}
/* Taken from /src/lib/libc/net/sctp_sys_calls.c
* and modified for __Userspace__
* calling sctp_generic_sendmsg from this function
*/
ssize_t
userspace_sctp_sendmsg(struct socket *so,
const void *data,
size_t len,
struct sockaddr *to,
socklen_t tolen,
uint32_t ppid,
uint32_t flags,
uint16_t stream_no,
uint32_t timetolive,
uint32_t context)
{
struct sctp_sndrcvinfo sndrcvinfo, *sinfo = &sndrcvinfo;
struct uio auio;
struct iovec iov[1];
memset(sinfo, 0, sizeof(struct sctp_sndrcvinfo));
sinfo->sinfo_ppid = ppid;
sinfo->sinfo_flags = flags;
sinfo->sinfo_stream = stream_no;
sinfo->sinfo_timetolive = timetolive;
sinfo->sinfo_context = context;
sinfo->sinfo_assoc_id = 0;
/* Perform error checks on destination (to) */
if (tolen > SOCK_MAXADDRLEN) {
errno = ENAMETOOLONG;
return (-1);
}
if ((tolen > 0) &&
((to == NULL) || (tolen < (socklen_t)sizeof(struct sockaddr)))) {
errno = EINVAL;
return (-1);
}
if (data == NULL) {
errno = EFAULT;
return (-1);
}
/* Adding the following as part of defensive programming, in case the application
does not do it when preparing the destination address.*/
#ifdef HAVE_SA_LEN
if (to != NULL) {
to->sa_len = tolen;
}
#endif
iov[0].iov_base = (caddr_t)data;
iov[0].iov_len = len;
auio.uio_iov = iov;
auio.uio_iovcnt = 1;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_WRITE;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = len;
errno = sctp_lower_sosend(so, to, &auio, NULL, NULL, 0, sinfo);
if (errno == 0) {
return (len - auio.uio_resid);
} else {
return (-1);
}
}
ssize_t
usrsctp_sendv(struct socket *so,
const void *data,
size_t len,
struct sockaddr *to,
int addrcnt,
void *info,
socklen_t infolen,
unsigned int infotype,
int flags)
{
struct sctp_sndrcvinfo sinfo;
struct uio auio;
struct iovec iov[1];
int use_sinfo;
sctp_assoc_t *assoc_id;
if (so == NULL) {
errno = EBADF;
return (-1);
}
if (data == NULL) {
errno = EFAULT;
return (-1);
}
memset(&sinfo, 0, sizeof(struct sctp_sndrcvinfo));
assoc_id = NULL;
use_sinfo = 0;
switch (infotype) {
case SCTP_SENDV_NOINFO:
if ((infolen != 0) || (info != NULL)) {
errno = EINVAL;
return (-1);
}
break;
case SCTP_SENDV_SNDINFO:
if ((info == NULL) || (infolen != sizeof(struct sctp_sndinfo))) {
errno = EINVAL;
return (-1);
}
sinfo.sinfo_stream = ((struct sctp_sndinfo *)info)->snd_sid;
sinfo.sinfo_flags = ((struct sctp_sndinfo *)info)->snd_flags;
sinfo.sinfo_ppid = ((struct sctp_sndinfo *)info)->snd_ppid;
sinfo.sinfo_context = ((struct sctp_sndinfo *)info)->snd_context;
sinfo.sinfo_assoc_id = ((struct sctp_sndinfo *)info)->snd_assoc_id;
assoc_id = &(((struct sctp_sndinfo *)info)->snd_assoc_id);
use_sinfo = 1;
break;
case SCTP_SENDV_PRINFO:
if ((info == NULL) || (infolen != sizeof(struct sctp_prinfo))) {
errno = EINVAL;
return (-1);
}
sinfo.sinfo_stream = 0;
sinfo.sinfo_flags = PR_SCTP_POLICY(((struct sctp_prinfo *)info)->pr_policy);
sinfo.sinfo_timetolive = ((struct sctp_prinfo *)info)->pr_value;
use_sinfo = 1;
break;
case SCTP_SENDV_AUTHINFO:
errno = EINVAL;
return (-1);
case SCTP_SENDV_SPA:
if ((info == NULL) || (infolen != sizeof(struct sctp_sendv_spa))) {
errno = EINVAL;
return (-1);
}
if (((struct sctp_sendv_spa *)info)->sendv_flags & SCTP_SEND_SNDINFO_VALID) {
sinfo.sinfo_stream = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_sid;
sinfo.sinfo_flags = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_flags;
sinfo.sinfo_ppid = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_ppid;
sinfo.sinfo_context = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_context;
sinfo.sinfo_assoc_id = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_assoc_id;
assoc_id = &(((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_assoc_id);
} else {
sinfo.sinfo_flags = 0;
sinfo.sinfo_stream = 0;
}
if (((struct sctp_sendv_spa *)info)->sendv_flags & SCTP_SEND_PRINFO_VALID) {
sinfo.sinfo_flags |= PR_SCTP_POLICY(((struct sctp_sendv_spa *)info)->sendv_prinfo.pr_policy);
sinfo.sinfo_timetolive = ((struct sctp_sendv_spa *)info)->sendv_prinfo.pr_value;
}
if (((struct sctp_sendv_spa *)info)->sendv_flags & SCTP_SEND_AUTHINFO_VALID) {
errno = EINVAL;
return (-1);
}
use_sinfo = 1;
break;
default:
errno = EINVAL;
return (-1);
}
/* Perform error checks on destination (to) */
if (addrcnt > 1) {
errno = EINVAL;
return (-1);
}
iov[0].iov_base = (caddr_t)data;
iov[0].iov_len = len;
auio.uio_iov = iov;
auio.uio_iovcnt = 1;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_WRITE;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = len;
errno = sctp_lower_sosend(so, to, &auio, NULL, NULL, flags, use_sinfo ? &sinfo : NULL);
if (errno == 0) {
if ((to != NULL) && (assoc_id != NULL)) {
*assoc_id = usrsctp_getassocid(so, to);
}
return (len - auio.uio_resid);
} else {
return (-1);
}
}
ssize_t
userspace_sctp_sendmbuf(struct socket *so,
struct mbuf* mbufdata,
size_t len,
struct sockaddr *to,
socklen_t tolen,
uint32_t ppid,
uint32_t flags,
uint16_t stream_no,
uint32_t timetolive,
uint32_t context)
{
struct sctp_sndrcvinfo sndrcvinfo, *sinfo = &sndrcvinfo;
/* struct uio auio;
struct iovec iov[1]; */
int error = 0;
int uflags = 0;
ssize_t retval;
sinfo->sinfo_ppid = ppid;
sinfo->sinfo_flags = flags;
sinfo->sinfo_stream = stream_no;
sinfo->sinfo_timetolive = timetolive;
sinfo->sinfo_context = context;
sinfo->sinfo_assoc_id = 0;
/* Perform error checks on destination (to) */
if (tolen > SOCK_MAXADDRLEN){
error = (ENAMETOOLONG);
goto sendmsg_return;
}
if (tolen < (socklen_t)offsetof(struct sockaddr, sa_data)){
error = (EINVAL);
goto sendmsg_return;
}
/* Adding the following as part of defensive programming, in case the application
does not do it when preparing the destination address.*/
#ifdef HAVE_SA_LEN
to->sa_len = tolen;
#endif
error = sctp_lower_sosend(so, to, NULL/*uio*/,
(struct mbuf *)mbufdata, (struct mbuf *)NULL,
uflags, sinfo);
sendmsg_return:
/* TODO: Needs a condition for non-blocking when error is EWOULDBLOCK */
if (0 == error)
retval = len;
else if (error == EWOULDBLOCK) {
errno = EWOULDBLOCK;
retval = -1;
} else {
SCTP_PRINTF("%s: error = %d\n", __func__, error);
errno = error;
retval = -1;
}
return (retval);
}
/* taken from usr.lib/sctp_sys_calls.c and needed here */
#define SCTP_SMALL_IOVEC_SIZE 2
/* Taken from /src/lib/libc/net/sctp_sys_calls.c
* and modified for __Userspace__
* calling sctp_generic_recvmsg from this function
*/
ssize_t
userspace_sctp_recvmsg(struct socket *so,
void *dbuf,
size_t len,
struct sockaddr *from,
socklen_t *fromlenp,
struct sctp_sndrcvinfo *sinfo,
int *msg_flags)
{
struct uio auio;
struct iovec iov[SCTP_SMALL_IOVEC_SIZE];
struct iovec *tiov;
int iovlen = 1;
int error = 0;
ssize_t ulen;
int i;
socklen_t fromlen;
iov[0].iov_base = dbuf;
iov[0].iov_len = len;
auio.uio_iov = iov;
auio.uio_iovcnt = iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_READ;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
tiov = iov;
for (i = 0; i <iovlen; i++, tiov++) {
if ((auio.uio_resid += tiov->iov_len) < 0) {
error = EINVAL;
SCTP_PRINTF("%s: error = %d\n", __func__, error);
return (-1);
}
}
ulen = auio.uio_resid;
if (fromlenp != NULL) {
fromlen = *fromlenp;
} else {
fromlen = 0;
}
error = sctp_sorecvmsg(so, &auio, (struct mbuf **)NULL,
from, fromlen, msg_flags,
(struct sctp_sndrcvinfo *)sinfo, 1);
if (error) {
if ((auio.uio_resid != ulen) &&
(error == EINTR ||
#if !defined(__NetBSD__)
error == ERESTART ||
#endif
error == EWOULDBLOCK)) {
error = 0;
}
}
if ((fromlenp != NULL) && (fromlen > 0) && (from != NULL)) {
switch (from->sa_family) {
#if defined(INET)
case AF_INET:
*fromlenp = sizeof(struct sockaddr_in);
break;
#endif
#if defined(INET6)
case AF_INET6:
*fromlenp = sizeof(struct sockaddr_in6);
break;
#endif
case AF_CONN:
*fromlenp = sizeof(struct sockaddr_conn);
break;
default:
*fromlenp = 0;
break;
}
if (*fromlenp > fromlen) {
*fromlenp = fromlen;
}
}
if (error == 0) {
/* ready return value */
return (ulen - auio.uio_resid);
} else {
SCTP_PRINTF("%s: error = %d\n", __func__, error);
return (-1);
}
}
ssize_t
usrsctp_recvv(struct socket *so,
void *dbuf,
size_t len,
struct sockaddr *from,
socklen_t *fromlenp,
void *info,
socklen_t *infolen,
unsigned int *infotype,
int *msg_flags)
{
struct uio auio;
struct iovec iov[SCTP_SMALL_IOVEC_SIZE];
struct iovec *tiov;
int iovlen = 1;
ssize_t ulen;
int i;
socklen_t fromlen;
struct sctp_rcvinfo *rcv;
struct sctp_recvv_rn *rn;
struct sctp_extrcvinfo seinfo;
if (so == NULL) {
errno = EBADF;
return (-1);
}
iov[0].iov_base = dbuf;
iov[0].iov_len = len;
auio.uio_iov = iov;
auio.uio_iovcnt = iovlen;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_rw = UIO_READ;
auio.uio_offset = 0; /* XXX */
auio.uio_resid = 0;
tiov = iov;
for (i = 0; i <iovlen; i++, tiov++) {
if ((auio.uio_resid += tiov->iov_len) < 0) {
errno = EINVAL;
return (-1);
}
}
ulen = auio.uio_resid;
if (fromlenp != NULL) {
fromlen = *fromlenp;
} else {
fromlen = 0;
}
errno = sctp_sorecvmsg(so, &auio, (struct mbuf **)NULL,
from, fromlen, msg_flags,
(struct sctp_sndrcvinfo *)&seinfo, 1);
if (errno) {
if ((auio.uio_resid != ulen) &&
(errno == EINTR ||
#if !defined(__NetBSD__)
errno == ERESTART ||
#endif
errno == EWOULDBLOCK)) {
errno = 0;
}
}
if (errno != 0) {
goto out;
}
if ((*msg_flags & MSG_NOTIFICATION) == 0) {
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO) &&
sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO) &&
*infolen >= (socklen_t)sizeof(struct sctp_recvv_rn) &&
seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_AVAIL) {
rn = (struct sctp_recvv_rn *)info;
rn->recvv_rcvinfo.rcv_sid = seinfo.sinfo_stream;
rn->recvv_rcvinfo.rcv_ssn = seinfo.sinfo_ssn;
rn->recvv_rcvinfo.rcv_flags = seinfo.sinfo_flags;
rn->recvv_rcvinfo.rcv_ppid = seinfo.sinfo_ppid;
rn->recvv_rcvinfo.rcv_context = seinfo.sinfo_context;
rn->recvv_rcvinfo.rcv_tsn = seinfo.sinfo_tsn;
rn->recvv_rcvinfo.rcv_cumtsn = seinfo.sinfo_cumtsn;
rn->recvv_rcvinfo.rcv_assoc_id = seinfo.sinfo_assoc_id;
rn->recvv_nxtinfo.nxt_sid = seinfo.sreinfo_next_stream;
rn->recvv_nxtinfo.nxt_flags = 0;
if (seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_IS_UNORDERED) {
rn->recvv_nxtinfo.nxt_flags |= SCTP_UNORDERED;
}
if (seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_IS_NOTIFICATION) {
rn->recvv_nxtinfo.nxt_flags |= SCTP_NOTIFICATION;
}
if (seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_ISCOMPLETE) {
rn->recvv_nxtinfo.nxt_flags |= SCTP_COMPLETE;
}
rn->recvv_nxtinfo.nxt_ppid = seinfo.sreinfo_next_ppid;
rn->recvv_nxtinfo.nxt_length = seinfo.sreinfo_next_length;
rn->recvv_nxtinfo.nxt_assoc_id = seinfo.sreinfo_next_aid;
*infolen = (socklen_t)sizeof(struct sctp_recvv_rn);
*infotype = SCTP_RECVV_RN;
} else if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO) &&
*infolen >= (socklen_t)sizeof(struct sctp_rcvinfo)) {
rcv = (struct sctp_rcvinfo *)info;
rcv->rcv_sid = seinfo.sinfo_stream;
rcv->rcv_ssn = seinfo.sinfo_ssn;
rcv->rcv_flags = seinfo.sinfo_flags;
rcv->rcv_ppid = seinfo.sinfo_ppid;
rcv->rcv_context = seinfo.sinfo_context;
rcv->rcv_tsn = seinfo.sinfo_tsn;
rcv->rcv_cumtsn = seinfo.sinfo_cumtsn;
rcv->rcv_assoc_id = seinfo.sinfo_assoc_id;
*infolen = (socklen_t)sizeof(struct sctp_rcvinfo);
*infotype = SCTP_RECVV_RCVINFO;
} else {
*infotype = SCTP_RECVV_NOINFO;
*infolen = 0;
}
}
if ((fromlenp != NULL) &&
(fromlen > 0) &&
(from != NULL) &&
(ulen > auio.uio_resid)) {
switch (from->sa_family) {
#if defined(INET)
case AF_INET:
*fromlenp = sizeof(struct sockaddr_in);
break;
#endif
#if defined(INET6)
case AF_INET6:
*fromlenp = sizeof(struct sockaddr_in6);
break;
#endif
case AF_CONN:
*fromlenp = sizeof(struct sockaddr_conn);
break;
default:
*fromlenp = 0;
break;
}
if (*fromlenp > fromlen) {
*fromlenp = fromlen;
}
}
out:
if (errno == 0) {
/* ready return value */
return (ulen - auio.uio_resid);
} else {
return (-1);
}
}
/* Taken from /src/sys/kern/uipc_socket.c
* and modified for __Userspace__
* socreate returns a socket. The socket should be
* closed with soclose().
*/
int
socreate(int dom, struct socket **aso, int type, int proto)
{
struct socket *so;
int error;
if ((dom != AF_CONN) && (dom != AF_INET) && (dom != AF_INET6)) {
return (EINVAL);
}
if ((type != SOCK_STREAM) && (type != SOCK_SEQPACKET)) {
return (EINVAL);
}
if (proto != IPPROTO_SCTP) {
return (EINVAL);
}
so = soalloc();
if (so == NULL) {
return (ENOBUFS);
}
/*
* so_incomp represents a queue of connections that
* must be completed at protocol level before being
* returned. so_comp field heads a list of sockets
* that are ready to be returned to the listening process
*__Userspace__ These queues are being used at a number of places like accept etc.
*/
TAILQ_INIT(&so->so_incomp);
TAILQ_INIT(&so->so_comp);
so->so_type = type;
so->so_count = 1;
so->so_dom = dom;
/*
* Auto-sizing of socket buffers is managed by the protocols and
* the appropriate flags must be set in the pru_attach function.
* For __Userspace__ The pru_attach function in this case is sctp_attach.
*/
switch (dom) {
#if defined(INET)
case AF_INET:
error = sctp_attach(so, proto, SCTP_DEFAULT_VRFID);
break;
#endif
#if defined(INET6)
case AF_INET6:
error = sctp6_attach(so, proto, SCTP_DEFAULT_VRFID);
break;
#endif
case AF_CONN:
error = sctpconn_attach(so, proto, SCTP_DEFAULT_VRFID);
break;
default:
error = EAFNOSUPPORT;
break;
}
if (error) {
KASSERT(so->so_count == 1, ("socreate: so_count %d", so->so_count));
so->so_count = 0;
sodealloc(so);
return (error);
}
*aso = so;
return (0);
}
/* Taken from /src/sys/kern/uipc_syscalls.c
* and modified for __Userspace__
* Removing struct thread td.
*/
struct socket *
userspace_socket(int domain, int type, int protocol)
{
struct socket *so = NULL;
errno = socreate(domain, &so, type, protocol);
if (errno) {
return (NULL);
}
/*
* The original socket call returns the file descriptor fd.
* td->td_retval[0] = fd.
* We are returning struct socket *so.
*/
return (so);
}
struct socket *
usrsctp_socket(int domain, int type, int protocol,
int (*receive_cb)(struct socket *sock, union sctp_sockstore addr, void *data,
size_t datalen, struct sctp_rcvinfo, int flags, void *ulp_info),
int (*send_cb)(struct socket *sock, uint32_t sb_free),
uint32_t sb_threshold,
void *ulp_info)
{
struct socket *so;
if ((protocol == IPPROTO_SCTP) && (SCTP_BASE_VAR(sctp_pcb_initialized) == 0)) {
errno = EPROTONOSUPPORT;
return (NULL);
}
if ((receive_cb == NULL) &&
((send_cb != NULL) || (sb_threshold != 0) || (ulp_info != NULL))) {
errno = EINVAL;
return (NULL);
}
if ((domain == AF_CONN) && (SCTP_BASE_VAR(conn_output) == NULL)) {
errno = EAFNOSUPPORT;
return (NULL);
}
errno = socreate(domain, &so, type, protocol);
if (errno) {
return (NULL);
}
/*
* The original socket call returns the file descriptor fd.
* td->td_retval[0] = fd.
* We are returning struct socket *so.
*/
register_recv_cb(so, receive_cb);
register_send_cb(so, sb_threshold, send_cb);
register_ulp_info(so, ulp_info);
return (so);
}
u_long sb_max = SB_MAX;
u_long sb_max_adj =
SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
static u_long sb_efficiency = 8; /* parameter for sbreserve() */
/*
* Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
* become limiting if buffering efficiency is near the normal case.
*/
int
sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so)
{
SOCKBUF_LOCK_ASSERT(sb);
sb->sb_mbmax = (u_int)min(cc * sb_efficiency, sb_max);
sb->sb_hiwat = (u_int)cc;
if (sb->sb_lowat > (int)sb->sb_hiwat)
sb->sb_lowat = (int)sb->sb_hiwat;
return (1);
}
static int
sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
{
int error;
SOCKBUF_LOCK(sb);
error = sbreserve_locked(sb, cc, so);
SOCKBUF_UNLOCK(sb);
return (error);
}
int
soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
{
SOCKBUF_LOCK(&so->so_snd);
SOCKBUF_LOCK(&so->so_rcv);
so->so_snd.sb_hiwat = (uint32_t)sndcc;
so->so_rcv.sb_hiwat = (uint32_t)rcvcc;
if (sbreserve_locked(&so->so_snd, sndcc, so) == 0) {
goto bad;
}
if (sbreserve_locked(&so->so_rcv, rcvcc, so) == 0) {
goto bad;
}
if (so->so_rcv.sb_lowat == 0)
so->so_rcv.sb_lowat = 1;
if (so->so_snd.sb_lowat == 0)
so->so_snd.sb_lowat = MCLBYTES;
if (so->so_snd.sb_lowat > (int)so->so_snd.sb_hiwat)
so->so_snd.sb_lowat = (int)so->so_snd.sb_hiwat;
SOCKBUF_UNLOCK(&so->so_rcv);
SOCKBUF_UNLOCK(&so->so_snd);
return (0);
bad:
SOCKBUF_UNLOCK(&so->so_rcv);
SOCKBUF_UNLOCK(&so->so_snd);
return (ENOBUFS);
}
/* Taken from /src/sys/kern/uipc_sockbuf.c
* and modified for __Userspace__
*/
void
sowakeup(struct socket *so, struct sockbuf *sb)
{
SOCKBUF_LOCK_ASSERT(sb);
sb->sb_flags &= ~SB_SEL;
if (sb->sb_flags & SB_WAIT) {
sb->sb_flags &= ~SB_WAIT;
#if defined(_WIN32)
WakeAllConditionVariable(&(sb)->sb_cond);
#else
pthread_cond_broadcast(&(sb)->sb_cond);
#endif
}
SOCKBUF_UNLOCK(sb);
}
/* Taken from /src/sys/kern/uipc_socket.c
* and modified for __Userspace__
*/
int
sobind(struct socket *so, struct sockaddr *nam)
{
switch (nam->sa_family) {
#if defined(INET)
case AF_INET:
return (sctp_bind(so, nam));
#endif
#if defined(INET6)
case AF_INET6:
return (sctp6_bind(so, nam, NULL));
#endif
case AF_CONN:
return (sctpconn_bind(so, nam));
default:
return EAFNOSUPPORT;
}
}
/* Taken from /src/sys/kern/uipc_syscalls.c
* and modified for __Userspace__
*/
int
usrsctp_bind(struct socket *so, struct sockaddr *name, int namelen)
{
struct sockaddr *sa;
if (so == NULL) {
errno = EBADF;
return (-1);
}
if ((errno = getsockaddr(&sa, (caddr_t)name, namelen)) != 0)
return (-1);
errno = sobind(so, sa);
FREE(sa, M_SONAME);
if (errno) {
return (-1);
} else {
return (0);
}
}
int
userspace_bind(struct socket *so, struct sockaddr *name, int namelen)
{
return (usrsctp_bind(so, name, namelen));
}
/* Taken from /src/sys/kern/uipc_socket.c
* and modified for __Userspace__
*/
int
solisten(struct socket *so, int backlog)
{
if (so == NULL) {
return (EBADF);
} else {
return (sctp_listen(so, backlog, NULL));
}
}
int
solisten_proto_check(struct socket *so)
{
SOCK_LOCK_ASSERT(so);
if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
SS_ISDISCONNECTING))
return (EINVAL);
return (0);
}
static int somaxconn = SOMAXCONN;
void
solisten_proto(struct socket *so, int backlog)
{
SOCK_LOCK_ASSERT(so);
if (backlog < 0 || backlog > somaxconn)
backlog = somaxconn;
so->so_qlimit = backlog;
so->so_options |= SCTP_SO_ACCEPTCONN;
}
/* Taken from /src/sys/kern/uipc_syscalls.c
* and modified for __Userspace__
*/
int
usrsctp_listen(struct socket *so, int backlog)
{
errno = solisten(so, backlog);
if (errno) {
return (-1);
} else {
return (0);
}
}
int
userspace_listen(struct socket *so, int backlog)
{
return (usrsctp_listen(so, backlog));
}
/* Taken from /src/sys/kern/uipc_socket.c
* and modified for __Userspace__
*/
int
soaccept(struct socket *so, struct sockaddr **nam)
{
int error;
SOCK_LOCK(so);
KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
so->so_state &= ~SS_NOFDREF;
SOCK_UNLOCK(so);
error = sctp_accept(so, nam);
return (error);
}
/* Taken from /src/sys/kern/uipc_syscalls.c
* kern_accept modified for __Userspace__
*/
int
user_accept(struct socket *head, struct sockaddr **name, socklen_t *namelen, struct socket **ptr_accept_ret_sock)
{
struct sockaddr *sa = NULL;
int error;
struct socket *so = NULL;
if (name) {
*name = NULL;
}
if ((head->so_options & SCTP_SO_ACCEPTCONN) == 0) {
error = EINVAL;
goto done;
}
ACCEPT_LOCK();
if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) {
ACCEPT_UNLOCK();
error = EWOULDBLOCK;
goto noconnection;
}
while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) {
if (head->so_rcv.sb_state & SBS_CANTRCVMORE) {
head->so_error = ECONNABORTED;
break;
}
#if defined(_WIN32)
if (SleepConditionVariableCS(&accept_cond, &accept_mtx, INFINITE))
error = 0;
else
error = GetLastError();
#else
error = pthread_cond_wait(&accept_cond, &accept_mtx);
#endif
if (error) {
ACCEPT_UNLOCK();
goto noconnection;
}
}
if (head->so_error) {
error = head->so_error;
head->so_error = 0;
ACCEPT_UNLOCK();
goto noconnection;
}
so = TAILQ_FIRST(&head->so_comp);
KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP"));
KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP"));
/*
* Before changing the flags on the socket, we have to bump the
* reference count. Otherwise, if the protocol calls sofree(),
* the socket will be released due to a zero refcount.
*/
SOCK_LOCK(so); /* soref() and so_state update */
soref(so); /* file descriptor reference */
TAILQ_REMOVE(&head->so_comp, so, so_list);
head->so_qlen--;
so->so_state |= (head->so_state & SS_NBIO);
so->so_qstate &= ~SQ_COMP;
so->so_head = NULL;
SOCK_UNLOCK(so);
ACCEPT_UNLOCK();
/*
* The original accept returns fd value via td->td_retval[0] = fd;
* we will return the socket for accepted connection.
*/
error = soaccept(so, &sa);
if (error) {
/*
* return a namelen of zero for older code which might
* ignore the return value from accept.
*/
if (name)
*namelen = 0;
goto noconnection;
}
if (sa == NULL) {
if (name)
*namelen = 0;
goto done;
}
if (name) {
#ifdef HAVE_SA_LEN
/* check sa_len before it is destroyed */
if (*namelen > sa->sa_len) {
*namelen = sa->sa_len;
}
#else
socklen_t sa_len;
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
sa_len = sizeof(struct sockaddr_in);
break;
#endif
#ifdef INET6
case AF_INET6:
sa_len = sizeof(struct sockaddr_in6);
break;
#endif
case AF_CONN:
sa_len = sizeof(struct sockaddr_conn);
break;
default:
sa_len = 0;
break;
}
if (*namelen > sa_len) {
*namelen = sa_len;
}
#endif
*name = sa;
sa = NULL;
}
noconnection:
if (sa) {
FREE(sa, M_SONAME);
}
done:
*ptr_accept_ret_sock = so;
return (error);
}
/* Taken from /src/sys/kern/uipc_syscalls.c
* and modified for __Userspace__
*/
/*
* accept1()
*/
static int
accept1(struct socket *so, struct sockaddr *aname, socklen_t *anamelen, struct socket **ptr_accept_ret_sock)
{
struct sockaddr *name;
socklen_t namelen;
int error;
if (so == NULL) {
return (EBADF);
}
if (aname == NULL) {
return (user_accept(so, NULL, NULL, ptr_accept_ret_sock));
}
error = copyin(anamelen, &namelen, sizeof (namelen));
if (error)
return (error);
error = user_accept(so, &name, &namelen, ptr_accept_ret_sock);
/*
* return a namelen of zero for older code which might
* ignore the return value from accept.
*/
if (error) {
(void) copyout(&namelen,
anamelen, sizeof(*anamelen));
return (error);
}
if (error == 0 && name != NULL) {
error = copyout(name, aname, namelen);
}
if (error == 0) {
error = copyout(&namelen, anamelen, sizeof(namelen));
}
if (name) {
FREE(name, M_SONAME);
}
return (error);
}
struct socket *
usrsctp_accept(struct socket *so, struct sockaddr *aname, socklen_t *anamelen)
{
struct socket *accept_return_sock = NULL;
errno = accept1(so, aname, anamelen, &accept_return_sock);
if (errno) {
return (NULL);
} else {
return (accept_return_sock);
}
}
struct socket *
userspace_accept(struct socket *so, struct sockaddr *aname, socklen_t *anamelen)
{
return (usrsctp_accept(so, aname, anamelen));
}
struct socket *
usrsctp_peeloff(struct socket *head, sctp_assoc_t id)
{
struct socket *so;
if ((errno = sctp_can_peel_off(head, id)) != 0) {
return (NULL);
}
if ((so = sonewconn(head, SS_ISCONNECTED)) == NULL) {
return (NULL);
}
ACCEPT_LOCK();
SOCK_LOCK(so);
soref(so);
TAILQ_REMOVE(&head->so_comp, so, so_list);
head->so_qlen--;
so->so_state |= (head->so_state & SS_NBIO);
so->so_qstate &= ~SQ_COMP;
so->so_head = NULL;
SOCK_UNLOCK(so);
ACCEPT_UNLOCK();
if ((errno = sctp_do_peeloff(head, so, id)) != 0) {
so->so_count = 0;
sodealloc(so);
return (NULL);
}
return (so);
}
int
sodisconnect(struct socket *so)
{
int error;
if ((so->so_state & SS_ISCONNECTED) == 0)
return (ENOTCONN);
if (so->so_state & SS_ISDISCONNECTING)
return (EALREADY);
error = sctp_disconnect(so);
return (error);
}
int
usrsctp_set_non_blocking(struct socket *so, int onoff)
{
if (so == NULL) {
errno = EBADF;
return (-1);
}
SOCK_LOCK(so);
if (onoff != 0) {
so->so_state |= SS_NBIO;
} else {
so->so_state &= ~SS_NBIO;
}
SOCK_UNLOCK(so);
return (0);
}
int
usrsctp_get_non_blocking(struct socket *so)
{
int result;
if (so == NULL) {
errno = EBADF;
return (-1);
}
SOCK_LOCK(so);
if (so->so_state & SS_NBIO) {
result = 1;
} else {
result = 0;
}
SOCK_UNLOCK(so);
return (result);
}
int
soconnect(struct socket *so, struct sockaddr *nam)
{
int error;
if (so->so_options & SCTP_SO_ACCEPTCONN)
return (EOPNOTSUPP);
/*
* If protocol is connection-based, can only connect once.
* Otherwise, if connected, try to disconnect first. This allows
* user to disconnect by connecting to, e.g., a null address.
*/
if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && (error = sodisconnect(so))) {
error = EISCONN;
} else {
/*
* Prevent accumulated error from previous connection from
* biting us.
*/
so->so_error = 0;
switch (nam->sa_family) {
#if defined(INET)
case AF_INET:
error = sctp_connect(so, nam);
break;
#endif
#if defined(INET6)
case AF_INET6:
error = sctp6_connect(so, nam);
break;
#endif
case AF_CONN:
error = sctpconn_connect(so, nam);
break;
default:
error = EAFNOSUPPORT;
}
}
return (error);
}
int user_connect(struct socket *so, struct sockaddr *sa)
{
int error;
int interrupted = 0;
if (so == NULL) {
error = EBADF;
goto done1;
}
if (so->so_state & SS_ISCONNECTING) {
error = EALREADY;
goto done1;
}
error = soconnect(so, sa);
if (error) {
goto bad;
}
if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
error = EINPROGRESS;
goto done1;
}
SOCK_LOCK(so);
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
#if defined(_WIN32)
if (SleepConditionVariableCS(SOCK_COND(so), SOCK_MTX(so), INFINITE))
error = 0;
else
error = -1;
#else
error = pthread_cond_wait(SOCK_COND(so), SOCK_MTX(so));
#endif
if (error) {
#if defined(__NetBSD__)
if (error == EINTR) {
#else
if (error == EINTR || error == ERESTART) {
#endif
interrupted = 1;
}
break;
}
}
if (error == 0) {
error = so->so_error;
so->so_error = 0;
}
SOCK_UNLOCK(so);
bad:
if (!interrupted) {
so->so_state &= ~SS_ISCONNECTING;
}
#if !defined(__NetBSD__)
if (error == ERESTART) {
error = EINTR;
}
#endif
done1:
return (error);
}
int usrsctp_connect(struct socket *so, struct sockaddr *name, int namelen)
{
struct sockaddr *sa = NULL;
errno = getsockaddr(&sa, (caddr_t)name, namelen);
if (errno)
return (-1);
errno = user_connect(so, sa);
FREE(sa, M_SONAME);
if (errno) {
return (-1);
} else {
return (0);
}
}
int userspace_connect(struct socket *so, struct sockaddr *name, int namelen)
{
return (usrsctp_connect(so, name, namelen));
}
#define SCTP_STACK_BUF_SIZE 2048
void
usrsctp_close(struct socket *so) {
if (so != NULL) {
if (so->so_options & SCTP_SO_ACCEPTCONN) {
struct socket *sp;
ACCEPT_LOCK();
while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
TAILQ_REMOVE(&so->so_comp, sp, so_list);
so->so_qlen--;
sp->so_qstate &= ~SQ_COMP;
sp->so_head = NULL;
ACCEPT_UNLOCK();
soabort(sp);
ACCEPT_LOCK();
}
ACCEPT_UNLOCK();
}
ACCEPT_LOCK();
SOCK_LOCK(so);
sorele(so);
}
}
void
userspace_close(struct socket *so)
{
usrsctp_close(so);
}
int
usrsctp_shutdown(struct socket *so, int how)
{
if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) {
errno = EINVAL;
return (-1);
}
if (so == NULL) {
errno = EBADF;
return (-1);
}
sctp_flush(so, how);
if (how != SHUT_WR)
socantrcvmore(so);
if (how != SHUT_RD) {
errno = sctp_shutdown(so);
if (errno) {
return (-1);
} else {
return (0);
}
}
return (0);
}
int
userspace_shutdown(struct socket *so, int how)
{
return (usrsctp_shutdown(so, how));
}
int
usrsctp_finish(void)
{
if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) {
return (0);
}
if (SCTP_INP_INFO_TRYLOCK()) {
if (!LIST_EMPTY(&SCTP_BASE_INFO(listhead))) {
SCTP_INP_INFO_RUNLOCK();
return (-1);
}
SCTP_INP_INFO_RUNLOCK();
} else {
return (-1);
}
sctp_finish();
#if defined(_WIN32)
DeleteConditionVariable(&accept_cond);
DeleteCriticalSection(&accept_mtx);
#if defined(INET) || defined(INET6)
WSACleanup();
#endif
#else
pthread_cond_destroy(&accept_cond);
pthread_mutex_destroy(&accept_mtx);
#endif
return (0);
}
int
userspace_finish(void)
{
return (usrsctp_finish());
}
/* needed from sctp_usrreq.c */
int
sctp_setopt(struct socket *so, int optname, void *optval, size_t optsize, void *p);
int
usrsctp_setsockopt(struct socket *so, int level, int option_name,
const void *option_value, socklen_t option_len)
{
if (so == NULL) {
errno = EBADF;
return (-1);
}
switch (level) {
case SOL_SOCKET:
{
switch (option_name) {
case SO_RCVBUF:
if (option_len < (socklen_t)sizeof(int)) {
errno = EINVAL;
return (-1);
} else {
int *buf_size;
buf_size = (int *)option_value;
if (*buf_size < 1) {
errno = EINVAL;
return (-1);
}
sbreserve(&so->so_rcv, (u_long)*buf_size, so);
return (0);
}
break;
case SO_SNDBUF:
if (option_len < (socklen_t)sizeof(int)) {
errno = EINVAL;
return (-1);
} else {
int *buf_size;
buf_size = (int *)option_value;
if (*buf_size < 1) {
errno = EINVAL;
return (-1);
}
sbreserve(&so->so_snd, (u_long)*buf_size, so);
return (0);
}
break;
case SO_LINGER:
if (option_len < (socklen_t)sizeof(struct linger)) {
errno = EINVAL;
return (-1);
} else {
struct linger *l;
l = (struct linger *)option_value;
so->so_linger = l->l_linger;
if (l->l_onoff) {
so->so_options |= SCTP_SO_LINGER;
} else {
so->so_options &= ~SCTP_SO_LINGER;
}
return (0);
}
default:
errno = EINVAL;
return (-1);
}
}
case IPPROTO_SCTP:
errno = sctp_setopt(so, option_name, (void *) option_value, (size_t)option_len, NULL);
if (errno) {
return (-1);
} else {
return (0);
}
default:
errno = ENOPROTOOPT;
return (-1);
}
}
int
userspace_setsockopt(struct socket *so, int level, int option_name,
const void *option_value, socklen_t option_len)
{
return (usrsctp_setsockopt(so, level, option_name, option_value, option_len));
}
/* needed from sctp_usrreq.c */
int
sctp_getopt(struct socket *so, int optname, void *optval, size_t *optsize,
void *p);
int
usrsctp_getsockopt(struct socket *so, int level, int option_name,
void *option_value, socklen_t *option_len)
{
if (so == NULL) {
errno = EBADF;
return (-1);
}
if (option_len == NULL) {
errno = EFAULT;
return (-1);
}
switch (level) {
case SOL_SOCKET:
switch (option_name) {
case SO_RCVBUF:
if (*option_len < (socklen_t)sizeof(int)) {
errno = EINVAL;
return (-1);
} else {
int *buf_size;
buf_size = (int *)option_value;
*buf_size = so->so_rcv.sb_hiwat;;
*option_len = (socklen_t)sizeof(int);
return (0);
}
break;
case SO_SNDBUF:
if (*option_len < (socklen_t)sizeof(int)) {
errno = EINVAL;
return (-1);
} else {
int *buf_size;
buf_size = (int *)option_value;
*buf_size = so->so_snd.sb_hiwat;
*option_len = (socklen_t)sizeof(int);
return (0);
}
break;
case SO_LINGER:
if (*option_len < (socklen_t)sizeof(struct linger)) {
errno = EINVAL;
return (-1);
} else {
struct linger *l;
l = (struct linger *)option_value;
l->l_linger = so->so_linger;
if (so->so_options & SCTP_SO_LINGER) {
l->l_onoff = 1;
} else {
l->l_onoff = 0;
}
*option_len = (socklen_t)sizeof(struct linger);
return (0);
}
break;
case SO_ERROR:
if (*option_len < (socklen_t)sizeof(int)) {
errno = EINVAL;
return (-1);
} else {
int *intval;
intval = (int *)option_value;
*intval = so->so_error;
*option_len = (socklen_t)sizeof(int);
return (0);
}
break;
default:
errno = EINVAL;
return (-1);
}
case IPPROTO_SCTP:
{
size_t len;
len = (size_t)*option_len;
errno = sctp_getopt(so, option_name, option_value, &len, NULL);
*option_len = (socklen_t)len;
if (errno) {
return (-1);
} else {
return (0);
}
}
default:
errno = ENOPROTOOPT;
return (-1);
}
}
int
userspace_getsockopt(struct socket *so, int level, int option_name,
void *option_value, socklen_t *option_len)
{
return (usrsctp_getsockopt(so, level, option_name, option_value, option_len));
}
int
usrsctp_opt_info(struct socket *so, sctp_assoc_t id, int opt, void *arg, socklen_t *size)
{
if (arg == NULL) {
errno = EINVAL;
return (-1);
}
if ((id == SCTP_CURRENT_ASSOC) ||
(id == SCTP_ALL_ASSOC)) {
errno = EINVAL;
return (-1);
}
switch (opt) {
case SCTP_RTOINFO:
((struct sctp_rtoinfo *)arg)->srto_assoc_id = id;
break;
case SCTP_ASSOCINFO:
((struct sctp_assocparams *)arg)->sasoc_assoc_id = id;
break;
case SCTP_DEFAULT_SEND_PARAM:
((struct sctp_assocparams *)arg)->sasoc_assoc_id = id;
break;
case SCTP_PRIMARY_ADDR:
((struct sctp_setprim *)arg)->ssp_assoc_id = id;
break;
case SCTP_PEER_ADDR_PARAMS:
((struct sctp_paddrparams *)arg)->spp_assoc_id = id;
break;
case SCTP_MAXSEG:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_AUTH_KEY:
((struct sctp_authkey *)arg)->sca_assoc_id = id;
break;
case SCTP_AUTH_ACTIVE_KEY:
((struct sctp_authkeyid *)arg)->scact_assoc_id = id;
break;
case SCTP_DELAYED_SACK:
((struct sctp_sack_info *)arg)->sack_assoc_id = id;
break;
case SCTP_CONTEXT:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_STATUS:
((struct sctp_status *)arg)->sstat_assoc_id = id;
break;
case SCTP_GET_PEER_ADDR_INFO:
((struct sctp_paddrinfo *)arg)->spinfo_assoc_id = id;
break;
case SCTP_PEER_AUTH_CHUNKS:
((struct sctp_authchunks *)arg)->gauth_assoc_id = id;
break;
case SCTP_LOCAL_AUTH_CHUNKS:
((struct sctp_authchunks *)arg)->gauth_assoc_id = id;
break;
case SCTP_TIMEOUTS:
((struct sctp_timeouts *)arg)->stimo_assoc_id = id;
break;
case SCTP_EVENT:
((struct sctp_event *)arg)->se_assoc_id = id;
break;
case SCTP_DEFAULT_SNDINFO:
((struct sctp_sndinfo *)arg)->snd_assoc_id = id;
break;
case SCTP_DEFAULT_PRINFO:
((struct sctp_default_prinfo *)arg)->pr_assoc_id = id;
break;
case SCTP_PEER_ADDR_THLDS:
((struct sctp_paddrthlds *)arg)->spt_assoc_id = id;
break;
case SCTP_REMOTE_UDP_ENCAPS_PORT:
((struct sctp_udpencaps *)arg)->sue_assoc_id = id;
break;
case SCTP_ECN_SUPPORTED:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_PR_SUPPORTED:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_AUTH_SUPPORTED:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_ASCONF_SUPPORTED:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_RECONFIG_SUPPORTED:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_NRSACK_SUPPORTED:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_PKTDROP_SUPPORTED:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_MAX_BURST:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_ENABLE_STREAM_RESET:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
case SCTP_PR_STREAM_STATUS:
((struct sctp_prstatus *)arg)->sprstat_assoc_id = id;
break;
case SCTP_PR_ASSOC_STATUS:
((struct sctp_prstatus *)arg)->sprstat_assoc_id = id;
break;
case SCTP_MAX_CWND:
((struct sctp_assoc_value *)arg)->assoc_id = id;
break;
default:
break;
}
return (usrsctp_getsockopt(so, IPPROTO_SCTP, opt, arg, size));
}
int
usrsctp_set_ulpinfo(struct socket *so, void *ulp_info)
{
return (register_ulp_info(so, ulp_info));
}
int
usrsctp_get_ulpinfo(struct socket *so, void **pulp_info)
{
return (retrieve_ulp_info(so, pulp_info));
}
int
usrsctp_bindx(struct socket *so, struct sockaddr *addrs, int addrcnt, int flags)
{
struct sockaddr *sa;
#ifdef INET
struct sockaddr_in *sin;
#endif
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
int i;
#if defined(INET) || defined(INET6)
uint16_t sport;
bool fix_port;
#endif
/* validate the flags */
if ((flags != SCTP_BINDX_ADD_ADDR) &&
(flags != SCTP_BINDX_REM_ADDR)) {
errno = EFAULT;
return (-1);
}
/* validate the address count and list */
if ((addrcnt <= 0) || (addrs == NULL)) {
errno = EINVAL;
return (-1);
}
#if defined(INET) || defined(INET6)
sport = 0;
fix_port = false;
#endif
/* First pre-screen the addresses */
sa = addrs;
for (i = 0; i < addrcnt; i++) {
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
#ifdef HAVE_SA_LEN
if (sa->sa_len != sizeof(struct sockaddr_in)) {
errno = EINVAL;
return (-1);
}
#endif
sin = (struct sockaddr_in *)sa;
if (sin->sin_port) {
/* non-zero port, check or save */
if (sport) {
/* Check against our port */
if (sport != sin->sin_port) {
errno = EINVAL;
return (-1);
}
} else {
/* save off the port */
sport = sin->sin_port;
fix_port = (i > 0);
}
}
#ifndef HAVE_SA_LEN
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in));
#endif
break;
#endif
#ifdef INET6
case AF_INET6:
#ifdef HAVE_SA_LEN
if (sa->sa_len != sizeof(struct sockaddr_in6)) {
errno = EINVAL;
return (-1);
}
#endif
sin6 = (struct sockaddr_in6 *)sa;
if (sin6->sin6_port) {
/* non-zero port, check or save */
if (sport) {
/* Check against our port */
if (sport != sin6->sin6_port) {
errno = EINVAL;
return (-1);
}
} else {
/* save off the port */
sport = sin6->sin6_port;
fix_port = (i > 0);
}
}
#ifndef HAVE_SA_LEN
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6));
#endif
break;
#endif
default:
/* Invalid address family specified. */
errno = EAFNOSUPPORT;
return (-1);
}
#ifdef HAVE_SA_LEN
sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len);
#endif
}
sa = addrs;
for (i = 0; i < addrcnt; i++) {
#ifndef HAVE_SA_LEN
size_t sa_len;
#endif
#ifdef HAVE_SA_LEN
#if defined(INET) || defined(INET6)
if (fix_port) {
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
((struct sockaddr_in *)sa)->sin_port = sport;
break;
#endif
#ifdef INET6
case AF_INET6:
((struct sockaddr_in6 *)sa)->sin6_port = sport;
break;
#endif
}
}
#endif
if (usrsctp_setsockopt(so, IPPROTO_SCTP, flags, sa, sa->sa_len) != 0) {
return (-1);
}
sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len);
#else
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
sa_len = sizeof(struct sockaddr_in);
break;
#endif
#ifdef INET6
case AF_INET6:
sa_len = sizeof(struct sockaddr_in6);
break;
#endif
default:
sa_len = 0;
break;
}
/*
* Now, if there was a port mentioned, assure that the
* first address has that port to make sure it fails or
* succeeds correctly.
*/
#if defined(INET) || defined(INET6)
if (fix_port) {
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
((struct sockaddr_in *)sa)->sin_port = sport;
break;
#endif
#ifdef INET6
case AF_INET6:
((struct sockaddr_in6 *)sa)->sin6_port = sport;
break;
#endif
}
}
#endif
if (usrsctp_setsockopt(so, IPPROTO_SCTP, flags, sa, (socklen_t)sa_len) != 0) {
return (-1);
}
sa = (struct sockaddr *)((caddr_t)sa + sa_len);
#endif
}
return (0);
}
int
usrsctp_connectx(struct socket *so,
const struct sockaddr *addrs, int addrcnt,
sctp_assoc_t *id)
{
#if defined(INET) || defined(INET6)
char buf[SCTP_STACK_BUF_SIZE];
int i, ret, cnt, *aa;
char *cpto;
const struct sockaddr *at;
sctp_assoc_t *p_id;
size_t len = sizeof(int);
/* validate the address count and list */
if ((addrs == NULL) || (addrcnt <= 0)) {
errno = EINVAL;
return (-1);
}
at = addrs;
cnt = 0;
cpto = ((caddr_t)buf + sizeof(int));
/* validate all the addresses and get the size */
for (i = 0; i < addrcnt; i++) {
switch (at->sa_family) {
#ifdef INET
case AF_INET:
#ifdef HAVE_SA_LEN
if (at->sa_len != sizeof(struct sockaddr_in)) {
errno = EINVAL;
return (-1);
}
#endif
len += sizeof(struct sockaddr_in);
if (len > SCTP_STACK_BUF_SIZE) {
errno = ENOMEM;
return (-1);
}
memcpy(cpto, at, sizeof(struct sockaddr_in));
cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in));
at = (struct sockaddr *)((caddr_t)at + sizeof(struct sockaddr_in));
break;
#endif
#ifdef INET6
case AF_INET6:
#ifdef HAVE_SA_LEN
if (at->sa_len != sizeof(struct sockaddr_in6)) {
errno = EINVAL;
return (-1);
}
#endif
#ifdef INET
if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)at)->sin6_addr)) {
len += sizeof(struct sockaddr_in);
if (len > SCTP_STACK_BUF_SIZE) {
errno = ENOMEM;
return (-1);
}
in6_sin6_2_sin((struct sockaddr_in *)cpto, (struct sockaddr_in6 *)at);
cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in));
} else {
len += sizeof(struct sockaddr_in6);
if (len > SCTP_STACK_BUF_SIZE) {
errno = ENOMEM;
return (-1);
}
memcpy(cpto, at, sizeof(struct sockaddr_in6));
cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in6));
}
#else
len += sizeof(struct sockaddr_in6);
if (len > SCTP_STACK_BUF_SIZE) {
errno = ENOMEM;
return (-1);
}
memcpy(cpto, at, sizeof(struct sockaddr_in6));
cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in6));
#endif
at = (struct sockaddr *)((caddr_t)at + sizeof(struct sockaddr_in6));
break;
#endif
default:
errno = EINVAL;
return (-1);
}
cnt++;
}
aa = (int *)buf;
*aa = cnt;
ret = usrsctp_setsockopt(so, IPPROTO_SCTP, SCTP_CONNECT_X, (void *)buf, (socklen_t)len);
if ((ret == 0) && id) {
p_id = (sctp_assoc_t *)buf;
*id = *p_id;
}
return (ret);
#else
errno = EINVAL;
return (-1);
#endif
}
int
usrsctp_getpaddrs(struct socket *so, sctp_assoc_t id, struct sockaddr **raddrs)
{
struct sctp_getaddresses *addrs;
struct sockaddr *sa;
sctp_assoc_t asoc;
caddr_t lim;
socklen_t opt_len;
int cnt;
if (raddrs == NULL) {
errno = EFAULT;
return (-1);
}
asoc = id;
opt_len = (socklen_t)sizeof(sctp_assoc_t);
if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_REMOTE_ADDR_SIZE, &asoc, &opt_len) != 0) {
return (-1);
}
/* size required is returned in 'asoc' */
opt_len = (socklen_t)((size_t)asoc + sizeof(struct sctp_getaddresses));
addrs = calloc(1, (size_t)opt_len);
if (addrs == NULL) {
errno = ENOMEM;
return (-1);
}
addrs->sget_assoc_id = id;
/* Now lets get the array of addresses */
if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_PEER_ADDRESSES, addrs, &opt_len) != 0) {
free(addrs);
return (-1);
}
*raddrs = &addrs->addr[0].sa;
cnt = 0;
sa = &addrs->addr[0].sa;
lim = (caddr_t)addrs + opt_len;
#ifdef HAVE_SA_LEN
while (((caddr_t)sa < lim) && (sa->sa_len > 0)) {
sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len);
#else
while ((caddr_t)sa < lim) {
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in));
break;
#endif
#ifdef INET6
case AF_INET6:
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6));
break;
#endif
case AF_CONN:
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_conn));
break;
default:
return (cnt);
break;
}
#endif
cnt++;
}
return (cnt);
}
void
usrsctp_freepaddrs(struct sockaddr *addrs)
{
/* Take away the hidden association id */
void *fr_addr;
fr_addr = (void *)((caddr_t)addrs - offsetof(struct sctp_getaddresses, addr));
/* Now free it */
free(fr_addr);
}
int
usrsctp_getladdrs(struct socket *so, sctp_assoc_t id, struct sockaddr **raddrs)
{
struct sctp_getaddresses *addrs;
caddr_t lim;
struct sockaddr *sa;
size_t size_of_addresses;
socklen_t opt_len;
int cnt;
if (raddrs == NULL) {
errno = EFAULT;
return (-1);
}
size_of_addresses = 0;
opt_len = (socklen_t)sizeof(int);
if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_LOCAL_ADDR_SIZE, &size_of_addresses, &opt_len) != 0) {
errno = ENOMEM;
return (-1);
}
if (size_of_addresses == 0) {
errno = ENOTCONN;
return (-1);
}
opt_len = (socklen_t)(size_of_addresses + sizeof(struct sctp_getaddresses));
addrs = calloc(1, (size_t)opt_len);
if (addrs == NULL) {
errno = ENOMEM;
return (-1);
}
addrs->sget_assoc_id = id;
/* Now lets get the array of addresses */
if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_LOCAL_ADDRESSES, addrs, &opt_len) != 0) {
free(addrs);
errno = ENOMEM;
return (-1);
}
*raddrs = &addrs->addr[0].sa;
cnt = 0;
sa = &addrs->addr[0].sa;
lim = (caddr_t)addrs + opt_len;
#ifdef HAVE_SA_LEN
while (((caddr_t)sa < lim) && (sa->sa_len > 0)) {
sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len);
#else
while ((caddr_t)sa < lim) {
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in));
break;
#endif
#ifdef INET6
case AF_INET6:
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6));
break;
#endif
case AF_CONN:
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_conn));
break;
default:
return (cnt);
break;
}
#endif
cnt++;
}
return (cnt);
}
void
usrsctp_freeladdrs(struct sockaddr *addrs)
{
/* Take away the hidden association id */
void *fr_addr;
fr_addr = (void *)((caddr_t)addrs - offsetof(struct sctp_getaddresses, addr));
/* Now free it */
free(fr_addr);
}
#ifdef INET
void
sctp_userspace_ip_output(int *result, struct mbuf *o_pak,
sctp_route_t *ro, void *stcb,
uint32_t vrf_id)
{
struct mbuf *m;
struct mbuf *m_orig;
int iovcnt;
int len;
int send_count;
struct ip *ip;
struct udphdr *udp;
struct sockaddr_in dst;
#if defined(_WIN32)
WSAMSG win_msg_hdr;
DWORD win_sent_len;
WSABUF send_iovec[MAXLEN_MBUF_CHAIN];
WSABUF winbuf;
#else
struct iovec send_iovec[MAXLEN_MBUF_CHAIN];
struct msghdr msg_hdr;
#endif
int use_udp_tunneling;
*result = 0;
m = SCTP_HEADER_TO_CHAIN(o_pak);
m_orig = m;
len = sizeof(struct ip);
if (SCTP_BUF_LEN(m) < len) {
if ((m = m_pullup(m, len)) == 0) {
SCTP_PRINTF("Can not get the IP header in the first mbuf.\n");
return;
}
}
ip = mtod(m, struct ip *);
use_udp_tunneling = (ip->ip_p == IPPROTO_UDP);
if (use_udp_tunneling) {
len = sizeof(struct ip) + sizeof(struct udphdr);
if (SCTP_BUF_LEN(m) < len) {
if ((m = m_pullup(m, len)) == 0) {
SCTP_PRINTF("Can not get the UDP/IP header in the first mbuf.\n");
return;
}
ip = mtod(m, struct ip *);
}
udp = (struct udphdr *)(ip + 1);
} else {
udp = NULL;
}
if (!use_udp_tunneling) {
if (ip->ip_src.s_addr == INADDR_ANY) {
/* TODO get addr of outgoing interface */
SCTP_PRINTF("Why did the SCTP implementation did not choose a source address?\n");
}
/* TODO need to worry about ro->ro_dst as in ip_output? */
#if defined(__linux__) || defined(_WIN32) || (defined(__FreeBSD__) && (__FreeBSD_version >= 1100030))
/* need to put certain fields into network order for Linux */
ip->ip_len = htons(ip->ip_len);
#endif
}
memset((void *)&dst, 0, sizeof(struct sockaddr_in));
dst.sin_family = AF_INET;
dst.sin_addr.s_addr = ip->ip_dst.s_addr;
#ifdef HAVE_SIN_LEN
dst.sin_len = sizeof(struct sockaddr_in);
#endif
if (use_udp_tunneling) {
dst.sin_port = udp->uh_dport;
} else {
dst.sin_port = 0;
}
/* tweak the mbuf chain */
if (use_udp_tunneling) {
m_adj(m, sizeof(struct ip) + sizeof(struct udphdr));
}
send_count = 0;
for (iovcnt = 0; m != NULL && iovcnt < MAXLEN_MBUF_CHAIN; m = m->m_next, iovcnt++) {
#if !defined(_WIN32)
send_iovec[iovcnt].iov_base = (caddr_t)m->m_data;
send_iovec[iovcnt].iov_len = SCTP_BUF_LEN(m);
send_count += send_iovec[iovcnt].iov_len;
#else
send_iovec[iovcnt].buf = (caddr_t)m->m_data;
send_iovec[iovcnt].len = SCTP_BUF_LEN(m);
send_count += send_iovec[iovcnt].len;
#endif
}
if (m != NULL) {
SCTP_PRINTF("mbuf chain couldn't be copied completely\n");
goto free_mbuf;
}
#if !defined(_WIN32)
msg_hdr.msg_name = (struct sockaddr *) &dst;
msg_hdr.msg_namelen = sizeof(struct sockaddr_in);
msg_hdr.msg_iov = send_iovec;
msg_hdr.msg_iovlen = iovcnt;
msg_hdr.msg_control = NULL;
msg_hdr.msg_controllen = 0;
msg_hdr.msg_flags = 0;
if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp) != -1)) {
if (sendmsg(SCTP_BASE_VAR(userspace_rawsctp), &msg_hdr, MSG_DONTWAIT) < 0) {
*result = errno;
}
}
if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp) != -1)) {
if (sendmsg(SCTP_BASE_VAR(userspace_udpsctp), &msg_hdr, MSG_DONTWAIT) < 0) {
*result = errno;
}
}
#else
win_msg_hdr.name = (struct sockaddr *) &dst;
win_msg_hdr.namelen = sizeof(struct sockaddr_in);
win_msg_hdr.lpBuffers = (LPWSABUF)send_iovec;
win_msg_hdr.dwBufferCount = iovcnt;
winbuf.len = 0;
winbuf.buf = NULL;
win_msg_hdr.Control = winbuf;
win_msg_hdr.dwFlags = 0;
if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp) != -1)) {
if (WSASendTo(SCTP_BASE_VAR(userspace_rawsctp), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) {
*result = WSAGetLastError();
}
}
if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp) != -1)) {
if (WSASendTo(SCTP_BASE_VAR(userspace_udpsctp), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) {
*result = WSAGetLastError();
}
}
#endif
free_mbuf:
sctp_m_freem(m_orig);
}
#endif
#if defined(INET6)
void sctp_userspace_ip6_output(int *result, struct mbuf *o_pak,
struct route_in6 *ro, void *stcb,
uint32_t vrf_id)
{
struct mbuf *m;
struct mbuf *m_orig;
int iovcnt;
int len;
int send_count;
struct ip6_hdr *ip6;
struct udphdr *udp;
struct sockaddr_in6 dst;
#if defined(_WIN32)
WSAMSG win_msg_hdr;
DWORD win_sent_len;
WSABUF send_iovec[MAXLEN_MBUF_CHAIN];
WSABUF winbuf;
#else
struct iovec send_iovec[MAXLEN_MBUF_CHAIN];
struct msghdr msg_hdr;
#endif
int use_udp_tunneling;
*result = 0;
m = SCTP_HEADER_TO_CHAIN(o_pak);
m_orig = m;
len = sizeof(struct ip6_hdr);
if (SCTP_BUF_LEN(m) < len) {
if ((m = m_pullup(m, len)) == 0) {
SCTP_PRINTF("Can not get the IP header in the first mbuf.\n");
return;
}
}
ip6 = mtod(m, struct ip6_hdr *);
use_udp_tunneling = (ip6->ip6_nxt == IPPROTO_UDP);
if (use_udp_tunneling) {
len = sizeof(struct ip6_hdr) + sizeof(struct udphdr);
if (SCTP_BUF_LEN(m) < len) {
if ((m = m_pullup(m, len)) == 0) {
SCTP_PRINTF("Can not get the UDP/IP header in the first mbuf.\n");
return;
}
ip6 = mtod(m, struct ip6_hdr *);
}
udp = (struct udphdr *)(ip6 + 1);
} else {
udp = NULL;
}
if (!use_udp_tunneling) {
if (ip6->ip6_src.s6_addr == in6addr_any.s6_addr) {
/* TODO get addr of outgoing interface */
SCTP_PRINTF("Why did the SCTP implementation did not choose a source address?\n");
}
/* TODO need to worry about ro->ro_dst as in ip_output? */
}
memset((void *)&dst, 0, sizeof(struct sockaddr_in6));
dst.sin6_family = AF_INET6;
dst.sin6_addr = ip6->ip6_dst;
#ifdef HAVE_SIN6_LEN
dst.sin6_len = sizeof(struct sockaddr_in6);
#endif
if (use_udp_tunneling) {
dst.sin6_port = udp->uh_dport;
} else {
dst.sin6_port = 0;
}
/* tweak the mbuf chain */
if (use_udp_tunneling) {
m_adj(m, sizeof(struct ip6_hdr) + sizeof(struct udphdr));
} else {
m_adj(m, sizeof(struct ip6_hdr));
}
send_count = 0;
for (iovcnt = 0; m != NULL && iovcnt < MAXLEN_MBUF_CHAIN; m = m->m_next, iovcnt++) {
#if !defined(_WIN32)
send_iovec[iovcnt].iov_base = (caddr_t)m->m_data;
send_iovec[iovcnt].iov_len = SCTP_BUF_LEN(m);
send_count += send_iovec[iovcnt].iov_len;
#else
send_iovec[iovcnt].buf = (caddr_t)m->m_data;
send_iovec[iovcnt].len = SCTP_BUF_LEN(m);
send_count += send_iovec[iovcnt].len;
#endif
}
if (m != NULL) {
SCTP_PRINTF("mbuf chain couldn't be copied completely\n");
goto free_mbuf;
}
#if !defined(_WIN32)
msg_hdr.msg_name = (struct sockaddr *) &dst;
msg_hdr.msg_namelen = sizeof(struct sockaddr_in6);
msg_hdr.msg_iov = send_iovec;
msg_hdr.msg_iovlen = iovcnt;
msg_hdr.msg_control = NULL;
msg_hdr.msg_controllen = 0;
msg_hdr.msg_flags = 0;
if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp6) != -1)) {
if (sendmsg(SCTP_BASE_VAR(userspace_rawsctp6), &msg_hdr, MSG_DONTWAIT)< 0) {
*result = errno;
}
}
if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp6) != -1)) {
if (sendmsg(SCTP_BASE_VAR(userspace_udpsctp6), &msg_hdr, MSG_DONTWAIT) < 0) {
*result = errno;
}
}
#else
win_msg_hdr.name = (struct sockaddr *) &dst;
win_msg_hdr.namelen = sizeof(struct sockaddr_in6);
win_msg_hdr.lpBuffers = (LPWSABUF)send_iovec;
win_msg_hdr.dwBufferCount = iovcnt;
winbuf.len = 0;
winbuf.buf = NULL;
win_msg_hdr.Control = winbuf;
win_msg_hdr.dwFlags = 0;
if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp6) != -1)) {
if (WSASendTo(SCTP_BASE_VAR(userspace_rawsctp6), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) {
*result = WSAGetLastError();
}
}
if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp6) != -1)) {
if (WSASendTo(SCTP_BASE_VAR(userspace_udpsctp6), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) {
*result = WSAGetLastError();
}
}
#endif
free_mbuf:
sctp_m_freem(m_orig);
}
#endif
void
usrsctp_register_address(void *addr)
{
struct sockaddr_conn sconn;
memset(&sconn, 0, sizeof(struct sockaddr_conn));
sconn.sconn_family = AF_CONN;
#ifdef HAVE_SCONN_LEN
sconn.sconn_len = sizeof(struct sockaddr_conn);
#endif
sconn.sconn_port = 0;
sconn.sconn_addr = addr;
sctp_add_addr_to_vrf(SCTP_DEFAULT_VRFID,
NULL,
0xffffffff,
0,
"conn",
NULL,
(struct sockaddr *)&sconn,
0,
0);
}
void
usrsctp_deregister_address(void *addr)
{
struct sockaddr_conn sconn;
memset(&sconn, 0, sizeof(struct sockaddr_conn));
sconn.sconn_family = AF_CONN;
#ifdef HAVE_SCONN_LEN
sconn.sconn_len = sizeof(struct sockaddr_conn);
#endif
sconn.sconn_port = 0;
sconn.sconn_addr = addr;
sctp_del_addr_from_vrf(SCTP_DEFAULT_VRFID,
(struct sockaddr *)&sconn,
0xffffffff,
"conn");
}
#define PREAMBLE_FORMAT "\n%c %02d:%02d:%02d.%06ld "
#define PREAMBLE_LENGTH 19
#define HEADER "0000 "
#define TRAILER "# SCTP_PACKET\n"
char *
usrsctp_dumppacket(const void *buf, size_t len, int outbound)
{
size_t i, pos;
char *dump_buf, *packet;
struct tm t;
#ifdef _WIN32
struct timeb tb;
#else
struct timeval tv;
time_t sec;
#endif
if ((len == 0) || (buf == NULL)) {
return (NULL);
}
if ((dump_buf = malloc(PREAMBLE_LENGTH + strlen(HEADER) + 3 * len + strlen(TRAILER) + 1)) == NULL) {
return (NULL);
}
pos = 0;
#ifdef _WIN32
ftime(&tb);
localtime_s(&t, &tb.time);
#if defined(__MINGW32__)
if (snprintf(dump_buf, PREAMBLE_LENGTH + 1, PREAMBLE_FORMAT,
outbound ? 'O' : 'I',
t.tm_hour, t.tm_min, t.tm_sec, (long)(1000 * tb.millitm)) < 0) {
free(dump_buf);
return (NULL);
}
#else
if (_snprintf_s(dump_buf, PREAMBLE_LENGTH + 1, PREAMBLE_LENGTH, PREAMBLE_FORMAT,
outbound ? 'O' : 'I',
t.tm_hour, t.tm_min, t.tm_sec, (long)(1000 * tb.millitm)) < 0) {
free(dump_buf);
return (NULL);
}
#endif
#else
gettimeofday(&tv, NULL);
sec = (time_t)tv.tv_sec;
localtime_r((const time_t *)&sec, &t);
if (snprintf(dump_buf, PREAMBLE_LENGTH + 1, PREAMBLE_FORMAT,
outbound ? 'O' : 'I',
t.tm_hour, t.tm_min, t.tm_sec, (long)tv.tv_usec) < 0) {
free(dump_buf);
return (NULL);
}
#endif
pos += PREAMBLE_LENGTH;
#if defined(_WIN32) && !defined(__MINGW32__)
strncpy_s(dump_buf + pos, strlen(HEADER) + 1, HEADER, strlen(HEADER));
#else
strcpy(dump_buf + pos, HEADER);
#endif
pos += strlen(HEADER);
packet = (char *)buf;
for (i = 0; i < len; i++) {
uint8_t byte, low, high;
byte = (uint8_t)packet[i];
high = byte / 16;
low = byte % 16;
dump_buf[pos++] = high < 10 ? '0' + high : 'a' + (high - 10);
dump_buf[pos++] = low < 10 ? '0' + low : 'a' + (low - 10);
dump_buf[pos++] = ' ';
}
#if defined(_WIN32) && !defined(__MINGW32__)
strncpy_s(dump_buf + pos, strlen(TRAILER) + 1, TRAILER, strlen(TRAILER));
#else
strcpy(dump_buf + pos, TRAILER);
#endif
pos += strlen(TRAILER);
dump_buf[pos++] = '\0';
return (dump_buf);
}
void
usrsctp_freedumpbuffer(char *buf)
{
free(buf);
}
void
usrsctp_enable_crc32c_offload(void)
{
SCTP_BASE_VAR(crc32c_offloaded) = 1;
}
void
usrsctp_disable_crc32c_offload(void)
{
SCTP_BASE_VAR(crc32c_offloaded) = 0;
}
/* Compute the CRC32C in network byte order */
uint32_t
usrsctp_crc32c(void *buffer, size_t length)
{
uint32_t base = 0xffffffff;
base = calculate_crc32c(0xffffffff, (unsigned char *)buffer, (unsigned int) length);
base = sctp_finalize_crc32c(base);
return (base);
}
void
usrsctp_conninput(void *addr, const void *buffer, size_t length, uint8_t ecn_bits)
{
struct sockaddr_conn src, dst;
struct mbuf *m, *mm;
struct sctphdr *sh;
struct sctp_chunkhdr *ch;
int remaining;
SCTP_STAT_INCR(sctps_recvpackets);
SCTP_STAT_INCR_COUNTER64(sctps_inpackets);
memset(&src, 0, sizeof(struct sockaddr_conn));
src.sconn_family = AF_CONN;
#ifdef HAVE_SCONN_LEN
src.sconn_len = sizeof(struct sockaddr_conn);
#endif
src.sconn_addr = addr;
memset(&dst, 0, sizeof(struct sockaddr_conn));
dst.sconn_family = AF_CONN;
#ifdef HAVE_SCONN_LEN
dst.sconn_len = sizeof(struct sockaddr_conn);
#endif
dst.sconn_addr = addr;
if ((m = sctp_get_mbuf_for_msg((unsigned int)length, 1, M_NOWAIT, 0, MT_DATA)) == NULL) {
return;
}
/* Set the lengths fields of the mbuf chain.
* This is expected by m_copyback().
*/
remaining = (int)length;
for (mm = m; mm != NULL; mm = mm->m_next) {
mm->m_len = min((int)M_SIZE(mm), remaining);
m->m_pkthdr.len += mm->m_len;
remaining -= mm->m_len;
}
KASSERT(remaining == 0, ("usrsctp_conninput: %zu bytes left", remaining));
m_copyback(m, 0, (int)length, (caddr_t)buffer);
if (SCTP_BUF_LEN(m) < (int)(sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr))) {
if ((m = m_pullup(m, sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr))) == NULL) {
SCTP_STAT_INCR(sctps_hdrops);
return;
}
}
sh = mtod(m, struct sctphdr *);;
ch = (struct sctp_chunkhdr *)((caddr_t)sh + sizeof(struct sctphdr));
src.sconn_port = sh->src_port;
dst.sconn_port = sh->dest_port;
sctp_common_input_processing(&m, 0, sizeof(struct sctphdr), (int)length,
(struct sockaddr *)&src,
(struct sockaddr *)&dst,
sh, ch,
SCTP_BASE_VAR(crc32c_offloaded) == 1 ? 0 : 1,
ecn_bits,
SCTP_DEFAULT_VRFID, 0);
if (m) {
sctp_m_freem(m);
}
return;
}
void usrsctp_handle_timers(uint32_t elapsed_milliseconds)
{
sctp_handle_tick(sctp_msecs_to_ticks(elapsed_milliseconds));
}
int
usrsctp_get_events(struct socket *so)
{
int events = 0;
if (so == NULL) {
errno = EBADF;
return -1;
}
SOCK_LOCK(so);
if (soreadable(so)) {
events |= SCTP_EVENT_READ;
}
if (sowriteable(so)) {
events |= SCTP_EVENT_WRITE;
}
if (so->so_error) {
events |= SCTP_EVENT_ERROR;
}
SOCK_UNLOCK(so);
return events;
}
int
usrsctp_set_upcall(struct socket *so, void (*upcall)(struct socket *, void *, int), void *arg)
{
if (so == NULL) {
errno = EBADF;
return (-1);
}
SOCK_LOCK(so);
so->so_upcall = upcall;
so->so_upcallarg = arg;
so->so_snd.sb_flags |= SB_UPCALL;
so->so_rcv.sb_flags |= SB_UPCALL;
SOCK_UNLOCK(so);
return (0);
}
#define USRSCTP_TUNABLE_SET_DEF(__field, __prefix) \
int usrsctp_tunable_set_ ## __field(uint32_t value) \
{ \
if ((value < __prefix##_MIN) || \
(value > __prefix##_MAX)) { \
errno = EINVAL; \
return (-1); \
} else { \
SCTP_BASE_SYSCTL(__field) = value; \
return (0); \
} \
}
USRSCTP_TUNABLE_SET_DEF(sctp_hashtblsize, SCTPCTL_TCBHASHSIZE)
USRSCTP_TUNABLE_SET_DEF(sctp_pcbtblsize, SCTPCTL_PCBHASHSIZE)
USRSCTP_TUNABLE_SET_DEF(sctp_chunkscale, SCTPCTL_CHUNKSCALE)
#define USRSCTP_SYSCTL_SET_DEF(__field, __prefix) \
int usrsctp_sysctl_set_ ## __field(uint32_t value) \
{ \
if ((value < __prefix##_MIN) || \
(value > __prefix##_MAX)) { \
errno = EINVAL; \
return (-1); \
} else { \
SCTP_BASE_SYSCTL(__field) = value; \
return (0); \
} \
}
#if __GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtype-limits"
#endif
USRSCTP_SYSCTL_SET_DEF(sctp_sendspace, SCTPCTL_MAXDGRAM)
USRSCTP_SYSCTL_SET_DEF(sctp_recvspace, SCTPCTL_RECVSPACE)
USRSCTP_SYSCTL_SET_DEF(sctp_auto_asconf, SCTPCTL_AUTOASCONF)
USRSCTP_SYSCTL_SET_DEF(sctp_ecn_enable, SCTPCTL_ECN_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_pr_enable, SCTPCTL_PR_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_auth_enable, SCTPCTL_AUTH_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_asconf_enable, SCTPCTL_ASCONF_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_reconfig_enable, SCTPCTL_RECONFIG_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_nrsack_enable, SCTPCTL_NRSACK_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_pktdrop_enable, SCTPCTL_PKTDROP_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_no_csum_on_loopback, SCTPCTL_LOOPBACK_NOCSUM)
USRSCTP_SYSCTL_SET_DEF(sctp_peer_chunk_oh, SCTPCTL_PEER_CHKOH)
USRSCTP_SYSCTL_SET_DEF(sctp_max_burst_default, SCTPCTL_MAXBURST)
USRSCTP_SYSCTL_SET_DEF(sctp_max_chunks_on_queue, SCTPCTL_MAXCHUNKS)
USRSCTP_SYSCTL_SET_DEF(sctp_min_split_point, SCTPCTL_MIN_SPLIT_POINT)
USRSCTP_SYSCTL_SET_DEF(sctp_delayed_sack_time_default, SCTPCTL_DELAYED_SACK_TIME)
USRSCTP_SYSCTL_SET_DEF(sctp_sack_freq_default, SCTPCTL_SACK_FREQ)
USRSCTP_SYSCTL_SET_DEF(sctp_system_free_resc_limit, SCTPCTL_SYS_RESOURCE)
USRSCTP_SYSCTL_SET_DEF(sctp_asoc_free_resc_limit, SCTPCTL_ASOC_RESOURCE)
USRSCTP_SYSCTL_SET_DEF(sctp_heartbeat_interval_default, SCTPCTL_HEARTBEAT_INTERVAL)
USRSCTP_SYSCTL_SET_DEF(sctp_pmtu_raise_time_default, SCTPCTL_PMTU_RAISE_TIME)
USRSCTP_SYSCTL_SET_DEF(sctp_shutdown_guard_time_default, SCTPCTL_SHUTDOWN_GUARD_TIME)
USRSCTP_SYSCTL_SET_DEF(sctp_secret_lifetime_default, SCTPCTL_SECRET_LIFETIME)
USRSCTP_SYSCTL_SET_DEF(sctp_rto_max_default, SCTPCTL_RTO_MAX)
USRSCTP_SYSCTL_SET_DEF(sctp_rto_min_default, SCTPCTL_RTO_MIN)
USRSCTP_SYSCTL_SET_DEF(sctp_rto_initial_default, SCTPCTL_RTO_INITIAL)
USRSCTP_SYSCTL_SET_DEF(sctp_init_rto_max_default, SCTPCTL_INIT_RTO_MAX)
USRSCTP_SYSCTL_SET_DEF(sctp_valid_cookie_life_default, SCTPCTL_VALID_COOKIE_LIFE)
USRSCTP_SYSCTL_SET_DEF(sctp_init_rtx_max_default, SCTPCTL_INIT_RTX_MAX)
USRSCTP_SYSCTL_SET_DEF(sctp_assoc_rtx_max_default, SCTPCTL_ASSOC_RTX_MAX)
USRSCTP_SYSCTL_SET_DEF(sctp_path_rtx_max_default, SCTPCTL_PATH_RTX_MAX)
USRSCTP_SYSCTL_SET_DEF(sctp_add_more_threshold, SCTPCTL_ADD_MORE_ON_OUTPUT)
USRSCTP_SYSCTL_SET_DEF(sctp_nr_incoming_streams_default, SCTPCTL_INCOMING_STREAMS)
USRSCTP_SYSCTL_SET_DEF(sctp_nr_outgoing_streams_default, SCTPCTL_OUTGOING_STREAMS)
USRSCTP_SYSCTL_SET_DEF(sctp_cmt_on_off, SCTPCTL_CMT_ON_OFF)
USRSCTP_SYSCTL_SET_DEF(sctp_cmt_use_dac, SCTPCTL_CMT_USE_DAC)
USRSCTP_SYSCTL_SET_DEF(sctp_use_cwnd_based_maxburst, SCTPCTL_CWND_MAXBURST)
USRSCTP_SYSCTL_SET_DEF(sctp_nat_friendly, SCTPCTL_NAT_FRIENDLY)
USRSCTP_SYSCTL_SET_DEF(sctp_L2_abc_variable, SCTPCTL_ABC_L_VAR)
USRSCTP_SYSCTL_SET_DEF(sctp_mbuf_threshold_count, SCTPCTL_MAX_CHAINED_MBUFS)
USRSCTP_SYSCTL_SET_DEF(sctp_do_drain, SCTPCTL_DO_SCTP_DRAIN)
USRSCTP_SYSCTL_SET_DEF(sctp_hb_maxburst, SCTPCTL_HB_MAX_BURST)
USRSCTP_SYSCTL_SET_DEF(sctp_abort_if_one_2_one_hits_limit, SCTPCTL_ABORT_AT_LIMIT)
USRSCTP_SYSCTL_SET_DEF(sctp_min_residual, SCTPCTL_MIN_RESIDUAL)
USRSCTP_SYSCTL_SET_DEF(sctp_max_retran_chunk, SCTPCTL_MAX_RETRAN_CHUNK)
USRSCTP_SYSCTL_SET_DEF(sctp_logging_level, SCTPCTL_LOGGING_LEVEL)
USRSCTP_SYSCTL_SET_DEF(sctp_default_cc_module, SCTPCTL_DEFAULT_CC_MODULE)
USRSCTP_SYSCTL_SET_DEF(sctp_default_frag_interleave, SCTPCTL_DEFAULT_FRAG_INTERLEAVE)
USRSCTP_SYSCTL_SET_DEF(sctp_mobility_base, SCTPCTL_MOBILITY_BASE)
USRSCTP_SYSCTL_SET_DEF(sctp_mobility_fasthandoff, SCTPCTL_MOBILITY_FASTHANDOFF)
USRSCTP_SYSCTL_SET_DEF(sctp_inits_include_nat_friendly, SCTPCTL_NAT_FRIENDLY_INITS)
USRSCTP_SYSCTL_SET_DEF(sctp_udp_tunneling_port, SCTPCTL_UDP_TUNNELING_PORT)
USRSCTP_SYSCTL_SET_DEF(sctp_enable_sack_immediately, SCTPCTL_SACK_IMMEDIATELY_ENABLE)
USRSCTP_SYSCTL_SET_DEF(sctp_vtag_time_wait, SCTPCTL_TIME_WAIT)
USRSCTP_SYSCTL_SET_DEF(sctp_blackhole, SCTPCTL_BLACKHOLE)
USRSCTP_SYSCTL_SET_DEF(sctp_diag_info_code, SCTPCTL_DIAG_INFO_CODE)
USRSCTP_SYSCTL_SET_DEF(sctp_fr_max_burst_default, SCTPCTL_FRMAXBURST)
USRSCTP_SYSCTL_SET_DEF(sctp_path_pf_threshold, SCTPCTL_PATH_PF_THRESHOLD)
USRSCTP_SYSCTL_SET_DEF(sctp_default_ss_module, SCTPCTL_DEFAULT_SS_MODULE)
USRSCTP_SYSCTL_SET_DEF(sctp_rttvar_bw, SCTPCTL_RTTVAR_BW)
USRSCTP_SYSCTL_SET_DEF(sctp_rttvar_rtt, SCTPCTL_RTTVAR_RTT)
USRSCTP_SYSCTL_SET_DEF(sctp_rttvar_eqret, SCTPCTL_RTTVAR_EQRET)
USRSCTP_SYSCTL_SET_DEF(sctp_steady_step, SCTPCTL_RTTVAR_STEADYS)
USRSCTP_SYSCTL_SET_DEF(sctp_use_dccc_ecn, SCTPCTL_RTTVAR_DCCCECN)
USRSCTP_SYSCTL_SET_DEF(sctp_buffer_splitting, SCTPCTL_BUFFER_SPLITTING)
USRSCTP_SYSCTL_SET_DEF(sctp_initial_cwnd, SCTPCTL_INITIAL_CWND)
#ifdef SCTP_DEBUG
USRSCTP_SYSCTL_SET_DEF(sctp_debug_on, SCTPCTL_DEBUG)
#endif
#if __GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
#define USRSCTP_SYSCTL_GET_DEF(__field) \
uint32_t usrsctp_sysctl_get_ ## __field(void) { \
return SCTP_BASE_SYSCTL(__field); \
}
USRSCTP_SYSCTL_GET_DEF(sctp_sendspace)
USRSCTP_SYSCTL_GET_DEF(sctp_recvspace)
USRSCTP_SYSCTL_GET_DEF(sctp_auto_asconf)
USRSCTP_SYSCTL_GET_DEF(sctp_multiple_asconfs)
USRSCTP_SYSCTL_GET_DEF(sctp_ecn_enable)
USRSCTP_SYSCTL_GET_DEF(sctp_pr_enable)
USRSCTP_SYSCTL_GET_DEF(sctp_auth_enable)
USRSCTP_SYSCTL_GET_DEF(sctp_asconf_enable)
USRSCTP_SYSCTL_GET_DEF(sctp_reconfig_enable)
USRSCTP_SYSCTL_GET_DEF(sctp_nrsack_enable)
USRSCTP_SYSCTL_GET_DEF(sctp_pktdrop_enable)
USRSCTP_SYSCTL_GET_DEF(sctp_no_csum_on_loopback)
USRSCTP_SYSCTL_GET_DEF(sctp_peer_chunk_oh)
USRSCTP_SYSCTL_GET_DEF(sctp_max_burst_default)
USRSCTP_SYSCTL_GET_DEF(sctp_max_chunks_on_queue)
USRSCTP_SYSCTL_GET_DEF(sctp_hashtblsize)
USRSCTP_SYSCTL_GET_DEF(sctp_pcbtblsize)
USRSCTP_SYSCTL_GET_DEF(sctp_min_split_point)
USRSCTP_SYSCTL_GET_DEF(sctp_chunkscale)
USRSCTP_SYSCTL_GET_DEF(sctp_delayed_sack_time_default)
USRSCTP_SYSCTL_GET_DEF(sctp_sack_freq_default)
USRSCTP_SYSCTL_GET_DEF(sctp_system_free_resc_limit)
USRSCTP_SYSCTL_GET_DEF(sctp_asoc_free_resc_limit)
USRSCTP_SYSCTL_GET_DEF(sctp_heartbeat_interval_default)
USRSCTP_SYSCTL_GET_DEF(sctp_pmtu_raise_time_default)
USRSCTP_SYSCTL_GET_DEF(sctp_shutdown_guard_time_default)
USRSCTP_SYSCTL_GET_DEF(sctp_secret_lifetime_default)
USRSCTP_SYSCTL_GET_DEF(sctp_rto_max_default)
USRSCTP_SYSCTL_GET_DEF(sctp_rto_min_default)
USRSCTP_SYSCTL_GET_DEF(sctp_rto_initial_default)
USRSCTP_SYSCTL_GET_DEF(sctp_init_rto_max_default)
USRSCTP_SYSCTL_GET_DEF(sctp_valid_cookie_life_default)
USRSCTP_SYSCTL_GET_DEF(sctp_init_rtx_max_default)
USRSCTP_SYSCTL_GET_DEF(sctp_assoc_rtx_max_default)
USRSCTP_SYSCTL_GET_DEF(sctp_path_rtx_max_default)
USRSCTP_SYSCTL_GET_DEF(sctp_add_more_threshold)
USRSCTP_SYSCTL_GET_DEF(sctp_nr_incoming_streams_default)
USRSCTP_SYSCTL_GET_DEF(sctp_nr_outgoing_streams_default)
USRSCTP_SYSCTL_GET_DEF(sctp_cmt_on_off)
USRSCTP_SYSCTL_GET_DEF(sctp_cmt_use_dac)
USRSCTP_SYSCTL_GET_DEF(sctp_use_cwnd_based_maxburst)
USRSCTP_SYSCTL_GET_DEF(sctp_nat_friendly)
USRSCTP_SYSCTL_GET_DEF(sctp_L2_abc_variable)
USRSCTP_SYSCTL_GET_DEF(sctp_mbuf_threshold_count)
USRSCTP_SYSCTL_GET_DEF(sctp_do_drain)
USRSCTP_SYSCTL_GET_DEF(sctp_hb_maxburst)
USRSCTP_SYSCTL_GET_DEF(sctp_abort_if_one_2_one_hits_limit)
USRSCTP_SYSCTL_GET_DEF(sctp_min_residual)
USRSCTP_SYSCTL_GET_DEF(sctp_max_retran_chunk)
USRSCTP_SYSCTL_GET_DEF(sctp_logging_level)
USRSCTP_SYSCTL_GET_DEF(sctp_default_cc_module)
USRSCTP_SYSCTL_GET_DEF(sctp_default_frag_interleave)
USRSCTP_SYSCTL_GET_DEF(sctp_mobility_base)
USRSCTP_SYSCTL_GET_DEF(sctp_mobility_fasthandoff)
USRSCTP_SYSCTL_GET_DEF(sctp_inits_include_nat_friendly)
USRSCTP_SYSCTL_GET_DEF(sctp_udp_tunneling_port)
USRSCTP_SYSCTL_GET_DEF(sctp_enable_sack_immediately)
USRSCTP_SYSCTL_GET_DEF(sctp_vtag_time_wait)
USRSCTP_SYSCTL_GET_DEF(sctp_blackhole)
USRSCTP_SYSCTL_GET_DEF(sctp_diag_info_code)
USRSCTP_SYSCTL_GET_DEF(sctp_fr_max_burst_default)
USRSCTP_SYSCTL_GET_DEF(sctp_path_pf_threshold)
USRSCTP_SYSCTL_GET_DEF(sctp_default_ss_module)
USRSCTP_SYSCTL_GET_DEF(sctp_rttvar_bw)
USRSCTP_SYSCTL_GET_DEF(sctp_rttvar_rtt)
USRSCTP_SYSCTL_GET_DEF(sctp_rttvar_eqret)
USRSCTP_SYSCTL_GET_DEF(sctp_steady_step)
USRSCTP_SYSCTL_GET_DEF(sctp_use_dccc_ecn)
USRSCTP_SYSCTL_GET_DEF(sctp_buffer_splitting)
USRSCTP_SYSCTL_GET_DEF(sctp_initial_cwnd)
#ifdef SCTP_DEBUG
USRSCTP_SYSCTL_GET_DEF(sctp_debug_on)
#endif
void usrsctp_get_stat(struct sctpstat *stat)
{
*stat = SCTP_BASE_STATS;
}