mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-11 18:05:37 +00:00
001bbb7002
Original commit message from CVS: Added general IDCT library. Added IEEE testbed. Update to the windows codec loader. fixes in the riff parser/encoder. cleanup in the getbits/putbits API.
783 lines
28 KiB
C
783 lines
28 KiB
C
/*
|
|
* idctmmx32.cpp
|
|
*
|
|
* Copyright (C) Alberto Vigata - January 2000 - ultraflask@yahoo.com
|
|
*
|
|
* This file is part of FlasKMPEG, a free MPEG to MPEG/AVI converter
|
|
*
|
|
* FlasKMPEG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* FlasKMPEG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU Make; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*/
|
|
|
|
|
|
// MMX32 iDCT algorithm (IEEE-1180 compliant) :: idct_mmx32()
|
|
//
|
|
// MPEG2AVI
|
|
// --------
|
|
// v0.16B33 initial release
|
|
//
|
|
// This was one of the harder pieces of work to code.
|
|
// Intel's app-note focuses on the numerical issues of the algorithm, but
|
|
// assumes the programmer is familiar with IDCT mathematics, leaving the
|
|
// form of the complete function up to the programmer's imagination.
|
|
//
|
|
// ALGORITHM OVERVIEW
|
|
// ------------------
|
|
// I played around with the code for quite a few hours. I came up
|
|
// with *A* working IDCT algorithm, however I'm not sure whether my routine
|
|
// is "the correct one." But rest assured, my code passes all six IEEE
|
|
// accuracy tests with plenty of margin.
|
|
//
|
|
// My IDCT algorithm consists of 4 steps:
|
|
//
|
|
// 1) IDCT-row transformation (using the IDCT-row function) on all 8 rows
|
|
// This yields an intermediate 8x8 matrix.
|
|
//
|
|
// 2) intermediate matrix transpose (mandatory)
|
|
//
|
|
// 3) IDCT-row transformation (2nd time) on all 8 rows of the intermediate
|
|
// matrix. The output is the final-result, in transposed form.
|
|
//
|
|
// 4) post-transformation matrix transpose
|
|
// (not necessary if the input-data is already transposed, this could
|
|
// be done during the MPEG "zig-zag" scan, but since my algorithm
|
|
// requires at least one transpose operation, why not re-use the
|
|
// transpose-code.)
|
|
//
|
|
// Although the (1st) and (3rd) steps use the SAME row-transform operation,
|
|
// the (3rd) step uses different shift&round constants (explained later.)
|
|
//
|
|
// Also note that the intermediate transpose (2) would not be neccessary,
|
|
// if the subsequent operation were a iDCT-column transformation. Since
|
|
// we only have the iDCT-row transform, we transpose the intermediate
|
|
// matrix and use the iDCT-row transform a 2nd time.
|
|
//
|
|
// I had to change some constants/variables for my method to work :
|
|
//
|
|
// As given by Intel, the #defines for SHIFT_INV_COL and RND_INV_COL are
|
|
// wrong. Not surprising since I'm not using a true column-transform
|
|
// operation, but the row-transform operation (as mentioned earlier.)
|
|
// round_inv_col[], which is given as "4 short" values, should have the
|
|
// same dimensions as round_inv_row[]. The corrected variables are
|
|
// shown.
|
|
//
|
|
// Intel's code defines a different table for each each row operation.
|
|
// The tables given are 0/4, 1/7, 2/6, and 5/3. My code only uses row#0.
|
|
// Using the other rows messes up the overall transform.
|
|
//
|
|
// IMPLEMENTATION DETAILs
|
|
// ----------------------
|
|
//
|
|
// I divided the algorithm's work into two subroutines,
|
|
// 1) idct_mmx32_rows() - transforms 8 rows, then transpose
|
|
// 2) idct_mmx32_cols() - transforms 8 rows, then transpose
|
|
// yields final result ("drop-in" direct replacement for INT32 IDCT)
|
|
//
|
|
// The 2nd function is a clone of the 1st, with changes made only to the
|
|
// shift&rounding instructions.
|
|
//
|
|
// In the 1st function (rows), the shift & round instructions use
|
|
// SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[])
|
|
//
|
|
// In the 2nd function (cols)-> r_inv_col[], and
|
|
// SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[])
|
|
//
|
|
// Each function contains an integrated transpose-operator, which comes
|
|
// AFTER the primary transformation operation. In the future, I'll optimize
|
|
// the code to do more of the transpose-work "in-place". Right now, I've
|
|
// left the code as two subroutines and a main calling function, so other
|
|
// people can read the code more easily.
|
|
//
|
|
// liaor@umcc.ais.org http://members.tripod.com/~liaor
|
|
//
|
|
|
|
|
|
//;=============================================================================
|
|
//;
|
|
//; AP-922 http://developer.intel.com/vtune/cbts/strmsimd
|
|
//; These examples contain code fragments for first stage iDCT 8x8
|
|
//; (for rows) and first stage DCT 8x8 (for columns)
|
|
//;
|
|
//;=============================================================================
|
|
/*
|
|
mword typedef qword
|
|
qword ptr equ mword ptr */
|
|
|
|
#include <mmx.h>
|
|
|
|
#define BITS_INV_ACC 4 //; 4 or 5 for IEEE
|
|
// 5 yields higher accuracy, but lessens dynamic range on the input matrix
|
|
#define SHIFT_INV_ROW (16 - BITS_INV_ACC)
|
|
#define SHIFT_INV_COL (1 + BITS_INV_ACC +14 ) // changed from Intel's val)
|
|
//#define SHIFT_INV_COL (1 + BITS_INV_ACC )
|
|
|
|
#define RND_INV_ROW (1 << (SHIFT_INV_ROW-1))
|
|
#define RND_INV_COL (1 << (SHIFT_INV_COL-1))
|
|
#define RND_INV_CORR (RND_INV_COL - 1) //; correction -1.0 and round
|
|
//#define RND_INV_ROW (1024 * (6 - BITS_INV_ACC)) //; 1 << (SHIFT_INV_ROW-1)
|
|
//#define RND_INV_COL (16 * (BITS_INV_ACC - 3)) //; 1 << (SHIFT_INV_COL-1)
|
|
|
|
|
|
//.data
|
|
//Align 16
|
|
const static long r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW};
|
|
const static long r_inv_col[2] = {RND_INV_COL, RND_INV_COL};
|
|
const static long r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR };
|
|
|
|
//const static short r_inv_col[4] =
|
|
// {RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL};
|
|
//const static short r_inv_corr[4] =
|
|
// {RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR};
|
|
|
|
/* constants for the forward DCT
|
|
|
|
//#define BITS_FRW_ACC 3 //; 2 or 3 for accuracy
|
|
//#define SHIFT_FRW_COL BITS_FRW_ACC
|
|
//#define SHIFT_FRW_ROW (BITS_FRW_ACC + 17)
|
|
//#define RND_FRW_ROW (262144 * (BITS_FRW_ACC - 1)) //; 1 << (SHIFT_FRW_ROW-1)
|
|
|
|
const static __int64 one_corr = 0x0001000100010001;
|
|
const static long r_frw_row[2] = {RND_FRW_ROW, RND_FRW_ROW };
|
|
|
|
//const static short tg_1_16[4] = {13036, 13036, 13036, 13036 }; //tg * (2<<16) + 0.5
|
|
//const static short tg_2_16[4] = {27146, 27146, 27146, 27146 }; //tg * (2<<16) + 0.5
|
|
//const static short tg_3_16[4] = {-21746, -21746, -21746, -21746 }; //tg * (2<<16) + 0.5
|
|
//const static short cos_4_16[4] = {-19195, -19195, -19195, -19195 }; //cos * (2<<16) + 0.5
|
|
//const static short ocos_4_16[4] = {23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5
|
|
|
|
//concatenated table, for forward DCT transformation
|
|
const static short tg_all_16[] = {
|
|
13036, 13036, 13036, 13036, // tg * (2<<16) + 0.5
|
|
27146, 27146, 27146, 27146, //tg * (2<<16) + 0.5
|
|
-21746, -21746, -21746, -21746, // tg * (2<<16) + 0.5
|
|
-19195, -19195, -19195, -19195, //cos * (2<<16) + 0.5
|
|
23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5
|
|
|
|
#define tg_1_16 (tg_all_16 + 0)
|
|
#define tg_2_16 (tg_all_16 + 8)
|
|
#define tg_3_16 (tg_all_16 + 16)
|
|
#define cos_4_16 (tg_all_16 + 24)
|
|
#define ocos_4_16 (tg_all_16 + 32)
|
|
*/
|
|
/*
|
|
;=============================================================================
|
|
;
|
|
; The first stage iDCT 8x8 - inverse DCTs of rows
|
|
;
|
|
;-----------------------------------------------------------------------------
|
|
; The 8-point inverse DCT direct algorithm
|
|
;-----------------------------------------------------------------------------
|
|
;
|
|
; static const short w[32] = {
|
|
; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16),
|
|
; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16),
|
|
; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16),
|
|
; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16),
|
|
; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16),
|
|
; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16),
|
|
; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16),
|
|
; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) };
|
|
;
|
|
; #define DCT_8_INV_ROW(x, y)
|
|
|
|
;{
|
|
; int a0, a1, a2, a3, b0, b1, b2, b3;
|
|
;
|
|
; a0 =x[0]*w[0]+x[2]*w[1]+x[4]*w[2]+x[6]*w[3];
|
|
; a1 =x[0]*w[4]+x[2]*w[5]+x[4]*w[6]+x[6]*w[7];
|
|
; a2 = x[0] * w[ 8] + x[2] * w[ 9] + x[4] * w[10] + x[6] * w[11];
|
|
; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15];
|
|
; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19];
|
|
; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23];
|
|
; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27];
|
|
; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31];
|
|
;
|
|
; y[0] = SHIFT_ROUND ( a0 + b0 );
|
|
; y[1] = SHIFT_ROUND ( a1 + b1 );
|
|
; y[2] = SHIFT_ROUND ( a2 + b2 );
|
|
; y[3] = SHIFT_ROUND ( a3 + b3 );
|
|
; y[4] = SHIFT_ROUND ( a3 - b3 );
|
|
; y[5] = SHIFT_ROUND ( a2 - b2 );
|
|
; y[6] = SHIFT_ROUND ( a1 - b1 );
|
|
; y[7] = SHIFT_ROUND ( a0 - b0 );
|
|
;}
|
|
;
|
|
;-----------------------------------------------------------------------------
|
|
;
|
|
; In this implementation the outputs of the iDCT-1D are multiplied
|
|
; for rows 0,4 - by cos_4_16,
|
|
; for rows 1,7 - by cos_1_16,
|
|
; for rows 2,6 - by cos_2_16,
|
|
; for rows 3,5 - by cos_3_16
|
|
; and are shifted to the left for better accuracy
|
|
;
|
|
; For the constants used,
|
|
; FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
|
|
;
|
|
;=============================================================================
|
|
;=============================================================================
|
|
IF _MMX ; MMX code
|
|
;=============================================================================
|
|
|
|
//; Table for rows 0,4 - constants are multiplied by cos_4_16
|
|
const short tab_i_04[] = {
|
|
16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
|
|
21407, 8867, 8867, -21407, // w07 w05 w03 w01
|
|
16384, -16384, 16384, 16384, //; w14 w12 w10 w08
|
|
-8867, 21407, -21407, -8867, //; w15 w13 w11 w09
|
|
22725, 12873, 19266, -22725, //; w22 w20 w18 w16
|
|
19266, 4520, -4520, -12873, //; w23 w21 w19 w17
|
|
12873, 4520, 4520, 19266, //; w30 w28 w26 w24
|
|
-22725, 19266, -12873, -22725 };//w31 w29 w27 w25
|
|
|
|
//; Table for rows 1,7 - constants are multiplied by cos_1_16
|
|
const short tab_i_17[] = {
|
|
22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
|
|
29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
|
|
22725, -22725, 22725, 22725, //; w14 w12 w10 w08
|
|
-12299, 29692, -29692, -12299, //; w15 w13 w11 w09
|
|
31521, 17855, 26722, -31521, //; w22 w20 w18 w16
|
|
26722, 6270, -6270, -17855, //; w23 w21 w19 w17
|
|
17855, 6270, 6270, 26722, //; w30 w28 w26 w24
|
|
-31521, 26722, -17855, -31521}; // w31 w29 w27 w25
|
|
|
|
//; Table for rows 2,6 - constants are multiplied by cos_2_16
|
|
const short tab_i_26[] = {
|
|
21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
|
|
27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
|
|
21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
|
|
-11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
|
|
29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
|
|
25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
|
|
16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
|
|
-29692, 25172, -16819, -29692}; // ;w31 w29 w27 w25
|
|
|
|
|
|
//; Table for rows 3,5 - constants are multiplied by cos_3_16
|
|
const short tab_i_35[] = {
|
|
19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
|
|
25172, 10426, 10426, -25172, //; w07 w05 w03 w01
|
|
19266, -19266, 19266, 19266, //; w14 w12 w10 w08
|
|
-10426, 25172, -25172, -10426, //; w15 w13 w11 w09
|
|
26722, 15137, 22654, -26722, //; w22 w20 w18 w16
|
|
22654, 5315, -5315, -15137, //; w23 w21 w19 w17
|
|
15137, 5315, 5315, 22654, //; w30 w28 w26 w24
|
|
-26722, 22654, -15137, -26722}; //; w31 w29 w27 w25
|
|
*/
|
|
|
|
// CONCATENATED TABLE, rows 0,1,2,3,4,5,6,7 (in order )
|
|
//
|
|
// In our implementation, however, we only use row0 !
|
|
//
|
|
static const short tab_i_01234567[] = {
|
|
//row0, this row is required
|
|
16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
|
|
21407, 8867, 8867, -21407, // w07 w05 w03 w01
|
|
16384, -16384, 16384, 16384, //; w14 w12 w10 w08
|
|
-8867, 21407, -21407, -8867, //; w15 w13 w11 w09
|
|
22725, 12873, 19266, -22725, //; w22 w20 w18 w16
|
|
19266, 4520, -4520, -12873, //; w23 w21 w19 w17
|
|
12873, 4520, 4520, 19266, //; w30 w28 w26 w24
|
|
-22725, 19266, -12873, -22725, //w31 w29 w27 w25
|
|
|
|
// the rest of these rows (1-7), aren't used !
|
|
|
|
//row1
|
|
22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
|
|
29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
|
|
22725, -22725, 22725, 22725, //; w14 w12 w10 w08
|
|
-12299, 29692, -29692, -12299, //; w15 w13 w11 w09
|
|
31521, 17855, 26722, -31521, //; w22 w20 w18 w16
|
|
26722, 6270, -6270, -17855, //; w23 w21 w19 w17
|
|
17855, 6270, 6270, 26722, //; w30 w28 w26 w24
|
|
-31521, 26722, -17855, -31521, // w31 w29 w27 w25
|
|
|
|
//row2
|
|
21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
|
|
27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
|
|
21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
|
|
-11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
|
|
29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
|
|
25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
|
|
16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
|
|
-29692, 25172, -16819, -29692, // ;w31 w29 w27 w25
|
|
|
|
//row3
|
|
19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
|
|
25172, 10426, 10426, -25172, //; w07 w05 w03 w01
|
|
19266, -19266, 19266, 19266, //; w14 w12 w10 w08
|
|
-10426, 25172, -25172, -10426, //; w15 w13 w11 w09
|
|
26722, 15137, 22654, -26722, //; w22 w20 w18 w16
|
|
22654, 5315, -5315, -15137, //; w23 w21 w19 w17
|
|
15137, 5315, 5315, 22654, //; w30 w28 w26 w24
|
|
-26722, 22654, -15137, -26722, //; w31 w29 w27 w25
|
|
|
|
//row4
|
|
16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
|
|
21407, 8867, 8867, -21407, // w07 w05 w03 w01
|
|
16384, -16384, 16384, 16384, //; w14 w12 w10 w08
|
|
-8867, 21407, -21407, -8867, //; w15 w13 w11 w09
|
|
22725, 12873, 19266, -22725, //; w22 w20 w18 w16
|
|
19266, 4520, -4520, -12873, //; w23 w21 w19 w17
|
|
12873, 4520, 4520, 19266, //; w30 w28 w26 w24
|
|
-22725, 19266, -12873, -22725, //w31 w29 w27 w25
|
|
|
|
//row5
|
|
19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
|
|
25172, 10426, 10426, -25172, //; w07 w05 w03 w01
|
|
19266, -19266, 19266, 19266, //; w14 w12 w10 w08
|
|
-10426, 25172, -25172, -10426, //; w15 w13 w11 w09
|
|
26722, 15137, 22654, -26722, //; w22 w20 w18 w16
|
|
22654, 5315, -5315, -15137, //; w23 w21 w19 w17
|
|
15137, 5315, 5315, 22654, //; w30 w28 w26 w24
|
|
-26722, 22654, -15137, -26722, //; w31 w29 w27 w25
|
|
|
|
//row6
|
|
21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
|
|
27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
|
|
21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
|
|
-11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
|
|
29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
|
|
25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
|
|
16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
|
|
-29692, 25172, -16819, -29692, // ;w31 w29 w27 w25
|
|
|
|
//row7
|
|
22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
|
|
29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
|
|
22725, -22725, 22725, 22725, //; w14 w12 w10 w08
|
|
-12299, 29692, -29692, -12299, //; w15 w13 w11 w09
|
|
31521, 17855, 26722, -31521, //; w22 w20 w18 w16
|
|
26722, 6270, -6270, -17855, //; w23 w21 w19 w17
|
|
17855, 6270, 6270, 26722, //; w30 w28 w26 w24
|
|
-31521, 26722, -17855, -31521}; // w31 w29 w27 w25
|
|
|
|
|
|
#define INP eax // pointer to (short *blk)
|
|
#define OUT ecx // pointer to output (temporary store space qwTemp[])
|
|
#define TABLE ebx // pointer to tab_i_01234567[]
|
|
#define round_inv_row edx
|
|
#define round_inv_col edx
|
|
|
|
#define ROW_STRIDE 8 // for 8x8 matrix transposer
|
|
|
|
// private variables and functions
|
|
|
|
//temporary storage space, 8x8 of shorts
|
|
|
|
__inline static void idct_mmx32_rows( short *blk ); // transform rows
|
|
__inline static void idct_mmx32_cols( short *blk ); // transform "columns"
|
|
// the "column" transform actually transforms rows, it is
|
|
// identical to the row-transform except for the ROUNDING
|
|
// and SHIFTING coefficients.
|
|
|
|
|
|
static void
|
|
idct_mmx32_rows( short *blk ) // transform all 8 rows of 8x8 iDCT block
|
|
{
|
|
int x;
|
|
short qwTemp[64];
|
|
short *out = &qwTemp[0];
|
|
short *inptr = blk;
|
|
// this subroutine performs two operations
|
|
// 1) iDCT row transform
|
|
// for( i = 0; i < 8; ++ i)
|
|
// DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
|
|
//
|
|
// 2) transpose the matrix (which was stored in qwTemp[])
|
|
// qwTemp[] -> [8x8 matrix transpose] -> blk[]
|
|
|
|
for (x=0; x<8; x++) { // transform one row per iteration
|
|
movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0
|
|
|
|
movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4
|
|
movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0
|
|
|
|
movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00
|
|
punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0
|
|
|
|
// ----------
|
|
movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0
|
|
punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0
|
|
|
|
movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01
|
|
punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2
|
|
|
|
pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00
|
|
movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2
|
|
|
|
movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
|
|
punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2
|
|
|
|
pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01
|
|
punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
|
|
punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3
|
|
|
|
movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
|
|
pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16
|
|
|
|
paddd_m2r(*(r_inv_row), mm3);// +rounder
|
|
pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
|
|
paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0)
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
|
|
movq_r2r(mm3, mm4); // 4 ; a1 a0
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
|
|
paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0)
|
|
|
|
paddd_m2r(*(r_inv_row), mm0);// +rounder
|
|
psubd_r2r(mm1, mm3); // a1-b1 a0-b0
|
|
|
|
psrad_i2r(SHIFT_INV_ROW, mm3); // y6=a1-b1 y7=a0-b0
|
|
paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0
|
|
|
|
paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2)
|
|
psrad_i2r(SHIFT_INV_ROW, mm1); // y1=a1+b1 y0=a0+b0
|
|
|
|
paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2)
|
|
movq_r2r(mm0, mm4); // 4 ; a3 a2
|
|
|
|
paddd_r2r(mm5, mm0); // a3+b3 a2+b2
|
|
psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2
|
|
|
|
psrad_i2r(SHIFT_INV_ROW, mm4); // y4=a3-b3 y5=a2-b2
|
|
psrad_i2r(SHIFT_INV_ROW, mm0); // y3=a3+b3 y2=a2+b2
|
|
|
|
packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5
|
|
|
|
packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0
|
|
movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5
|
|
|
|
psrld_i2r(16, mm4); // 0 y6 0 y4
|
|
|
|
movq_r2m(mm1, *(out)); // 1 ; save y3 y2 y1 y0
|
|
pslld_i2r(16, mm7); // y7 0 y5 0
|
|
|
|
por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4
|
|
|
|
// begin processing row 1
|
|
movq_r2m(mm7, *(out+4)); // 7 ; save y7 y6 y5 y4
|
|
|
|
inptr += 8;
|
|
out += 8;
|
|
}
|
|
|
|
|
|
// done with the iDCT row-transformation
|
|
|
|
// now we have to transpose the output 8x8 matrix
|
|
// 8x8 (OUT) -> 8x8't' (IN)
|
|
// the transposition is implemented as 4 sub-operations.
|
|
// 1) transpose upper-left quad
|
|
// 2) transpose lower-right quad
|
|
// 3) transpose lower-left quad
|
|
// 4) transpose upper-right quad
|
|
|
|
|
|
// mm0 = 1st row [ A B C D ] row1
|
|
// mm1 = 2nd row [ E F G H ] 2
|
|
// mm2 = 3rd row [ I J K L ] 3
|
|
// mm3 = 4th row [ M N O P ] 4
|
|
|
|
// 1) transpose upper-left quad
|
|
out = &qwTemp[0];
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 0), mm0);
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 1), mm1);
|
|
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 2), mm2);
|
|
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 3), mm3);
|
|
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
|
|
|
|
movq_r2r(mm2, mm6);
|
|
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
|
|
|
|
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
|
|
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
|
|
|
|
inptr = blk;
|
|
|
|
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
|
|
|
|
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
|
|
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
|
|
|
|
movq_r2m(mm0, *(inptr + ROW_STRIDE * 0)); // store row 1
|
|
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
|
|
|
|
// begin reading next quadrant (lower-right)
|
|
movq_m2r(*(out + ROW_STRIDE*4 + 4), mm0);
|
|
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
|
|
|
|
movq_r2m(mm4, *(inptr + ROW_STRIDE * 2)); // store row 3
|
|
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
|
|
|
|
movq_r2m(mm1, *(inptr + ROW_STRIDE * 1)); // store row 2
|
|
|
|
movq_m2r(*(out + ROW_STRIDE*5 + 4), mm1);
|
|
|
|
movq_r2m(mm3, *(inptr + ROW_STRIDE * 3)); // store row 4
|
|
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
|
|
|
|
// 2) transpose lower-right quadrant
|
|
|
|
// movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
|
|
|
|
// movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
|
|
// movq mm4, mm0; // mm4 = copy of row1[A B C D]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE*6 + 4), mm2);
|
|
// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
|
|
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE*7 + 4), mm3);
|
|
movq_r2r(mm2, mm6);
|
|
|
|
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
|
|
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
|
|
|
|
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
|
|
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
|
|
|
|
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
|
|
|
|
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
|
|
; // slot
|
|
|
|
movq_r2m(mm0, *(inptr + ROW_STRIDE*4 + 4)); // store row 1
|
|
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 4 ), mm0);
|
|
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
|
|
|
|
movq_r2m(mm4, *(inptr + ROW_STRIDE*6 + 4)); // store row 3
|
|
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
|
|
|
|
movq_r2m(mm1, *(inptr + ROW_STRIDE*5 + 4)); // store row 2
|
|
; // slot
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 5 ), mm1);
|
|
; // slot
|
|
|
|
movq_r2m(mm3, *(inptr + ROW_STRIDE*7 + 4)); // store row 4
|
|
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
|
|
|
|
// 3) transpose lower-left
|
|
// movq mm0, qword ptr [OUT + ROW_STRIDE * 4 ]
|
|
|
|
// movq mm1, qword ptr [OUT + ROW_STRIDE * 5 ]
|
|
// movq mm4, mm0; // mm4 = copy of row1[A B C D]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 6 ), mm2);
|
|
// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
|
|
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE * 7 ), mm3);
|
|
movq_r2r(mm2, mm6);
|
|
|
|
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
|
|
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
|
|
|
|
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
|
|
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
|
|
|
|
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
|
|
|
|
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
|
|
;//slot
|
|
|
|
movq_r2m(mm0, *(inptr + ROW_STRIDE * 0 + 4 )); // store row 1
|
|
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
|
|
|
|
// begin reading next quadrant (upper-right)
|
|
movq_m2r(*(out + ROW_STRIDE*0 + 4), mm0);
|
|
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
|
|
|
|
movq_r2m(mm4, *(inptr + ROW_STRIDE * 2 + 4)); // store row 3
|
|
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
|
|
|
|
movq_r2m(mm1, *(inptr + ROW_STRIDE * 1 + 4)); // store row 2
|
|
movq_m2r(*(out + ROW_STRIDE*1 + 4), mm1);
|
|
|
|
movq_r2m(mm3, *(inptr + ROW_STRIDE * 3 + 4)); // store row 4
|
|
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
|
|
|
|
|
|
// 2) transpose lower-right quadrant
|
|
|
|
// movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
|
|
|
|
// movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
|
|
// movq mm4, mm0; // mm4 = copy of row1[A B C D]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE*2 + 4), mm2);
|
|
// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
|
|
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
|
|
|
|
movq_m2r(*(out + ROW_STRIDE*3 + 4), mm3);
|
|
movq_r2r(mm2, mm6);
|
|
|
|
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
|
|
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
|
|
|
|
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
|
|
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
|
|
|
|
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
|
|
|
|
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
|
|
; // slot
|
|
|
|
movq_r2m(mm0, *(inptr + ROW_STRIDE*4)); // store row 1
|
|
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
|
|
|
|
movq_r2m(mm1, *(inptr + ROW_STRIDE*5)); // store row 2
|
|
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
|
|
|
|
movq_r2m(mm4, *(inptr + ROW_STRIDE*6)); // store row 3
|
|
; // slot
|
|
|
|
movq_r2m(mm3, *(inptr + ROW_STRIDE*7)); // store row 4
|
|
; // slot
|
|
|
|
}
|
|
|
|
|
|
static void
|
|
idct_mmx32_cols( short *blk ) // transform all 8 cols of 8x8 iDCT block
|
|
{
|
|
int x;
|
|
short *inptr = blk;
|
|
|
|
// Despite the function's name, the matrix is transformed
|
|
// row by row. This function is identical to idct_mmx32_rows(),
|
|
// except for the SHIFT amount and ROUND_INV amount.
|
|
|
|
// this subroutine performs two operations
|
|
// 1) iDCT row transform
|
|
// for( i = 0; i < 8; ++ i)
|
|
// DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
|
|
//
|
|
// 2) transpose the matrix (which was stored in qwTemp[])
|
|
// qwTemp[] -> [8x8 matrix transpose] -> blk[]
|
|
|
|
|
|
for (x=0; x<8; x++) { // transform one row per iteration
|
|
|
|
movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0
|
|
|
|
movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4
|
|
movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0
|
|
|
|
movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00
|
|
punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0
|
|
|
|
// ----------
|
|
movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0
|
|
punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0
|
|
|
|
movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01
|
|
punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2
|
|
|
|
pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00
|
|
movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2
|
|
|
|
movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
|
|
punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2
|
|
|
|
pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01
|
|
punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
|
|
punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3
|
|
|
|
movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
|
|
pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16
|
|
|
|
paddd_m2r(*(r_inv_col), mm3);// +rounder
|
|
pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
|
|
paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0)
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
|
|
movq_r2r(mm3, mm4); // 4 ; a1 a0
|
|
|
|
pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
|
|
paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0)
|
|
|
|
paddd_m2r(*(r_inv_col), mm0);// +rounder
|
|
psubd_r2r(mm1, mm3); // a1-b1 a0-b0
|
|
|
|
psrad_i2r(SHIFT_INV_COL, mm3); // y6=a1-b1 y7=a0-b0
|
|
paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0
|
|
|
|
paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2)
|
|
psrad_i2r(SHIFT_INV_COL, mm1); // y1=a1+b1 y0=a0+b0
|
|
|
|
paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2)
|
|
movq_r2r(mm0, mm4); // 4 ; a3 a2
|
|
|
|
paddd_r2r(mm5, mm0); // a3+b3 a2+b2
|
|
psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2
|
|
|
|
|
|
psrad_i2r(SHIFT_INV_COL, mm4); // y4=a3-b3 y5=a2-b2
|
|
psrad_i2r(SHIFT_INV_COL, mm0); // y3=a3+b3 y2=a2+b2
|
|
|
|
packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5
|
|
|
|
packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0
|
|
movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5
|
|
|
|
psrld_i2r(16, mm4); // 0 y6 0 y4
|
|
|
|
movq_r2m(mm1, *(inptr)); // 1 ; save y3 y2 y1 y0
|
|
pslld_i2r(16, mm7); // y7 0 y5 0
|
|
|
|
por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4
|
|
|
|
// begin processing row 1
|
|
movq_r2m(mm7, *(inptr+4)); // 7 ; save y7 y6 y5 y4
|
|
|
|
inptr += 8;
|
|
}
|
|
// done with the iDCT column-transformation
|
|
}
|
|
|
|
//
|
|
// public interface to MMX32 IDCT 8x8 operation
|
|
//
|
|
void
|
|
gst_idct_mmx32_idct( short *blk )
|
|
{
|
|
// 1) iDCT row transformation
|
|
idct_mmx32_rows( blk ); // 1) transform iDCT row, and transpose
|
|
|
|
// 2) iDCT column transformation
|
|
idct_mmx32_cols( blk ); // 2) transform iDCT row, and transpose
|
|
|
|
emms(); // restore processor state
|
|
// all done
|
|
}
|