GStreamer multimedia framework
Find a file
Seungha Yang 88437a9c9b codecs: Use GST_VIDEO_DECODER_ERROR() only for decoding error case
The GST_VIDEO_DECODER_ERROR() should be used only for robust/error-resilient
decoding purpose. Any other error codes such as not-negotiated or flushing
should be returned without modified for upstream to be able to handle
it immediately. (for example, application might want to try other
decoder element on not-negotiated)

Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/1070>
2021-10-07 06:48:46 +00:00
.gitlab/issue_templates gitlab: add a gitlab issue template for bug 2021-07-20 09:48:23 +02:00
ci trigger_cerbero_pipeline.py: Do not hardcode gitlab instance 2021-10-06 09:04:30 +00:00
data Cleanup root directory from misc files 2021-09-24 16:21:18 -03:00
scripts ci: Fix gst-indent path 2021-10-05 23:44:03 +03:00
subprojects codecs: Use GST_VIDEO_DECODER_ERROR() only for decoding error case 2021-10-07 06:48:46 +00:00
tests gst-full: add way to test features presence 2020-12-11 12:50:16 +00:00
.editorconfig Add .editorconfig used by some IDE like vscode 2021-09-29 20:11:55 +00:00
.gitignore Fix gitignore 2021-09-29 20:11:55 +00:00
.gitlab-ci.yml validate:launcher: Sync asset only when passing --sync 2021-10-06 17:00:54 +00:00
.gitmodules Add gst-integration-testsuites files as a submodule 2021-09-24 16:36:50 -03:00
.indentignore ci: Wait for cerbero pipeline to finish 2021-09-28 10:58:25 -03:00
gst-env.py ci: Fix gst-indent path 2021-10-05 23:44:03 +03:00
gst-uninstalled.py Add support for wine+mingw environments 2019-10-01 09:20:25 -03:00
LICENSE Initial commit 2016-08-25 15:26:28 -03:00
meson.build Back to development 2021-09-26 01:07:02 +01:00
meson_options.txt Cleanup root directory from misc files 2021-09-24 16:21:18 -03:00
README.md core: remove outdated mention to gst-build 2021-09-30 12:24:38 +00:00

GStreamer

This is GStreamer, a framework for streaming media.

Where to start

We have a website at

https://gstreamer.freedesktop.org

Our documentation, including tutorials, API reference and FAQ can be found at

https://gstreamer.freedesktop.org/documentation/

You can subscribe to our mailing lists:

https://lists.freedesktop.org/mailman/listinfo/gstreamer-announce

https://lists.freedesktop.org/mailman/listinfo/gstreamer-devel

We track bugs, feature requests and merge requests (patches) in GitLab at

https://gitlab.freedesktop.org/gstreamer/

You can join us on IRC - #gstreamer on irc.oftc.net

This repository contains all official modules supported by the GStreamer community which can be found in the subprojects/ directory.

Getting started

Install git and python 3.5+

If you're on Linux, you probably already have these. On macOS, you can use the official Python installer.

You can find instructions for Windows below.

Install meson and ninja

Meson 0.52 or newer is required.

For cross-compilation Meson 0.54 or newer is required.

On Linux and macOS you can get meson through your package manager or using:

$ pip3 install --user meson

This will install meson into ~/.local/bin which may or may not be included automatically in your PATH by default.

You should get ninja using your package manager or download the official release and put the ninja binary in your PATH.

You can find instructions for Windows below.

Build GStreamer and its modules

You can get all GStreamer built running:

meson builddir
ninja -C builddir

This will automatically create the build directory and build everything inside it.

NOTE: On Windows, you must run this from inside the Visual Studio command prompt of the appropriate architecture and version.

External dependencies

All mandatory dependencies of GStreamer are included as meson subprojects: libintl, zlib, libffi, glib. Some optional dependencies are also included as subprojects, such as ffmpeg, x264, json-glib, graphene, openh264, orc, etc.

Mandatory dependencies will be automatically built if meson cannot find them on your system using pkg-config. The same is true for optional dependencies that are included as subprojects. You can find a full list by looking at the subprojects directory.

Plugins that need optional dependencies that aren't included can only be built if they are provided by the system. Instructions on how to build some common ones such as Qt5/QML are listed below. If you do not know how to provide an optional dependency needed by a plugin, you should use Cerbero which handles this for you automatically.

Plugins will be automatically enabled if possible, but you can ensure that a particular plugin (especially if it has external dependencies) is built by enabling the gstreamer repository that ships it and the plugin inside it. For example, to enable the Qt5 plugin in the gst-plugins-good repository, you need to run meson as follows:

meson -Dgood=enabled -Dgst-plugins-good:qt5=enabled builddir

This will cause Meson to error out if the plugin could not be enabled. You can also flip the default and disable all plugins except those explicitly enabled like so:

meson -Dauto_features=disabled -Dgstreamer:tools=enabled -Dbad=enabled -Dgst-plugins-bad:openh264=enabled

This will disable all optional features and then enable the openh264 plugin and the tools that ship with the core gstreamer repository: gst-inspect-1.0, gst-launch-1.0, etc. As usual, you can change these values on a builddir that has already been setup with meson configure -Doption=value.

Building the Qt5 QML plugin

If qmake is not in PATH and pkgconfig files are not available, you can point the QMAKE env var to the Qt5 installation of your choosing before running meson as shown above.

The plugin will be automatically enabled if possible, but you can ensure that it is built by passing -Dgood=enabled -Dgst-plugins-good:qt5=enabled to meson.

Building the Intel MSDK plugin

On Linux, you need to have development files for libmfx installed. On Windows, if you have the Intel Media SDK, it will set the INTELMEDIASDKROOT environment variable, which will be used by the build files to find libmfx.

The plugin will be automatically enabled if possible, but you can ensure it by passing -Dbad=enabled -Dgst-plugins-bad:msdk=enabled to meson.

Static build

Since 1.18.0 when doing a static build using --default-library=static, a shared library gstreamer-full-1.0 will be produced and includes all enabled GStreamer plugins and libraries. A list of libraries that needs to be exposed in gstreamer-full-1.0 ABI can be set using gst-full-libraries option. glib-2.0, gobject-2.0 and gstreamer-1.0 are always included.

meson --default-library=static -Dgst-full-libraries=app,video builddir

GStreamer 1.18 requires applications using gstreamer-full-1.0 to initialize static plugins by calling gst_init_static_plugins() after gst_init(). That function is defined in gst/gstinitstaticplugins.h header file.

Since 1.20.0 gst_init_static_plugins() is called automatically by gst_init() and applications must not call it manually any more. The header file has been removed from public API.

One can use the gst-full-version-script option to pass a version script to the linker. This can be used to control the exact symbols that are exported by the gstreamer-full library, allowing the linker to garbage collect unused code and so reduce the total library size. A default script gstreamer-full-default.map declares only glib/gstreamer symbols as public.

One can use the gst-full-plugins option to pass a list of plugins to be registered in the gstreamer-full library. The default value is '*' which means that all the plugins selected during the build process will be registered statically. An empty value will prevent any plugins to be registered.

One can select a specific set of features with gst-full-elements, gst-full-typefind-functions, gst-full-device-providers or gst-full-dynamic-types to select specific feature from a plugin. When a feature has been listed in one of those options, the other features from its plugin will no longer be automatically included, even if the plugin is listed in gst-full-plugins.

The user must insure that all selected plugins and features (element, typefind, etc.) have been enabled during the build configuration.

To register features, the syntax is the following: plugins are separated by ';' and features from a plugin starts after ':' and are ',' separated.

As an example:

  • -Dgst-full-plugins=coreelements;playback;typefindfunctions;alsa;pbtypes: enable only coreelements, playback, typefindfunctions, alsa, pbtypes plugins.
  • -Dgst-full-elements=coreelements:filesrc,fakesink,identity;alsa:alsasrc: enable only filesrc, identity and fakesink elements from coreelements and alsasrc element from alsa plugin.
  • -Dgst-full-typefind-functions=typefindfunctions:wav,flv: enable only typefind func wav and flv from typefindfunctions
  • -Dgst-full-device-providers=alsa:alsadeviceprovider: enable alsadeviceprovider from alsa.
  • -Dgst-full-dynamic-types=pbtypes:video_multiview_flagset: enable video_multiview_flagset from `pbtypes

All features from the playback plugin will be enabled and the other plugins will be restricted to the specific features requested.

All the selected features will be registered into a dedicated NULL plugin name.

This will cause the features/plugins that are not registered to not be included in the final gstreamer-full library.

This is an experimental feature, backward uncompatible changes could still be made in the future.

Development environment

Development environment target

GStreamer also contains a special devenv target that lets you enter an development environment where you will be able to work on GStreamer easily. You can get into that environment running:

ninja -C builddir devenv

If your operating system handles symlinks, built modules source code will be available at the root for example GStreamer core will be in gstreamer/. Otherwise they will be present in subprojects/. You can simply hack in there and to rebuild you just need to rerun ninja -C builddir.

NOTE: In the development environment, a fully usable prefix is also configured in gstreamer/prefix where you can install any extra dependency/project.

An external script can be run in development environment with:

./gst-env.py external_script.sh

Custom subprojects

We also added a meson option, custom_subprojects, that allows the user to provide a comma-separated list of subprojects that should be built alongside the default ones.

To use it:

cd subprojects
git clone my_subproject
cd ../build
rm -rf * && meson .. -Dcustom_subprojects=my_subproject
ninja

Run tests

You can easily run the test of all the components:

meson test -C build

To list all available tests:

meson test -C builddir --list

To run all the tests of a specific component:

meson test -C builddir --suite gst-plugins-base

Or to run a specific test file:

meson test -C builddir --suite gstreamer gst_gstbuffer

Run a specific test from a specific test file:

GST_CHECKS=test_subbuffer meson test -C builddir --suite gstreamer gst_gstbuffer

Optional Installation

You can also install everything that is built into a predetermined prefix like so:

meson --prefix=/path/to/install/prefix builddir
ninja -C builddir
meson install -C builddir

Note that the installed files have RPATH stripped, so you will need to set LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, or PATH as appropriate for your platform for things to work.

Add information about GStreamer development environment in your prompt line

Bash prompt

We automatically handle bash and set $PS1 accordingly.

If the automatic $PS1 override is not desired (maybe you have a fancy custom prompt), set the $GST_BUILD_DISABLE_PS1_OVERRIDE environment variable to TRUE and use $GST_ENV when setting the custom prompt, for example with a snippet like the following:

...
if [[ -n "${GST_ENV-}" ]];
then
  PS1+="[ ${GST_ENV} ]"
fi
...

Using powerline

In your powerline theme configuration file (by default in {POWERLINE INSTALLATION DIR}/config_files/themes/shell/default.json) you should add a new environment segment as follow:

{
  "function": "powerline.segments.common.env.environment",
  "args": { "variable": "GST_ENV" },
  "priority": 50
},

Windows Prerequisites Setup

On Windows, some of the components may require special care.

Git for Windows

Use the Git for Windows installer. It will install a bash prompt with basic shell utils and up-to-date git binaries.

During installation, when prompted about PATH, you should select the following option:

Select "Git from the command line and also from 3rd-party software"

Python 3.5+ on Windows

Use the official Python installer. You must ensure that Python is installed into PATH:

Enable Add Python to PATH, then click Customize Installation

You may also want to customize the installation and install it into a system-wide location such as C:\PythonXY, but this is not required.

Ninja on Windows

The easiest way to install Ninja on Windows is with pip3, which will download the compiled binary and place it into the Scripts directory inside your Python installation:

pip3 install ninja

You can also download the official release and place it into PATH.

Meson on Windows

IMPORTANT: Do not use the Meson MSI installer since it is experimental and known to not work with GStreamer.

You can use pip3 to install Meson, same as Ninja above:

pip3 install meson

Note that Meson is written entirely in Python, so you can also run it as-is from the git repository if you want to use the latest master branch for some reason.

ARM64 native only: You might need native upstream ARM64 support fix which is expected to be a part of Meson 0.55.1. If your Meson package version which was installed via pip3 is lower than 0.55.1, then you need to use the latest master branch.

Running Meson on Windows

At present, to build with Visual Studio, you need to run Meson from inside the VS 2019 command prompt. Press Start, and search for VS 2019, and click on x64 Native Tools Command Prompt for VS 2019, or a prompt named similar to that:

x64 Native Tools Command Prompt for VS 2019

ARM64 native only: Since Visual Studio might not install dedicated command prompt for native ARM64 build, you might need to run vcvarsx86_arm64.bat on CMD. Please refer to this document

Setup a mingw/wine based development environment on linux

Install wine and mingw

On fedora x64
sudo dnf install mingw64-gcc mingw64-gcc-c++ mingw64-pkg-config mingw64-winpthreads wine

FIXME: Figure out what needs to be installed on other distros

Get meson from git

This simplifies the process and allows us to use the cross files defined in meson itself.

git clone https://github.com/mesonbuild/meson.git

Build and install

BUILDDIR=$PWD/winebuild/
export WINEPREFIX=$BUILDDIR/wine-prefix/ && mkdir -p $WINEPREFIX
# Setting the prefix is mandatory as it is used to setup symlinks during uninstalled development
meson/meson.py $BUILDDIR --cross-file meson/cross/linux-mingw-w64-64bit.txt -Dgst-plugins-bad:vulkan=disabled -Dorc:gtk_doc=disabled --prefix=$BUILDDIR/wininstall/ -Djson-glib:gtk_doc=disabled
meson/meson.py install -C $BUILDDIR/

NOTE: You should use meson install -C $BUILDDIR each time you make a change instead of the usual ninja -C build as the environment is not uninstalled.

The development environment

You can get into the development environment the usual way:

ninja -C $BUILDDIR/ devenv

Alternatively, if you'd rather not start a shell in your workflow, you can mutate the current environment into a suitable state like so:

gst-env.py --only-environment

This will print output suitable for an sh-compatible eval function, just like ssh-agent -s.

After setting up binfmt to use wine for windows binaries, you can run GStreamer tools under wine by running:

gst-launch-1.0.exe videotestsrc ! glimagesink