gstreamer/libs/gst/controller/gstlfocontrolsource.c
Sebastien Moutte e332c34902 libs/gst/controller/: Use gst_guint64_to_gdouble() when converting from a uint64 or
Original commit message from CVS:
Patch by: Sebastien Moutte <sebastien at moutte dot net>
* libs/gst/controller/gstinterpolation.c:
* libs/gst/controller/gstlfocontrolsource.c:
Use gst_guint64_to_gdouble() when converting from a uint64 or
GstClockTime to double to fix the build on win32. Fixes .
2007-09-13 09:08:23 +00:00

1082 lines
35 KiB
C

/* GStreamer
*
* Copyright (C) 2007 Sebastian Dröge <slomo@circular-chaos.org>
*
* gstlfocontrolsource.c: Control source that provides some periodic waveforms
* as control values.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/**
* SECTION:gstlfocontrolsource
* @short_description: LFO control source
*
* #GstLFOControlSource is a #GstControlSource, that provides several periodic waveforms
* as control values. It supports all fundamental, numeric GValue types as property.
*
* To use #GstLFOControlSource get a new instance by calling gst_lfo_control_source_new(),
* bind it to a #GParamSpec and set the relevant properties or use
* gst_lfo_control_source_set_waveform.
*
* All functions are MT-safe.
*
*/
#include <glib-object.h>
#include <gst/gst.h>
#include "gstcontrolsource.h"
#include "gstlfocontrolsource.h"
#include "gstlfocontrolsourceprivate.h"
#include "math.h"
#define EMPTY(x) (x)
/* FIXME: as % in C is not the modulo operator we need here for
* negative numbers implement our own. Are there better ways? */
static inline GstClockTime
_calculate_pos (GstClockTime timestamp, GstClockTime timeshift,
GstClockTime period)
{
while (timestamp < timeshift)
timestamp += period;
timestamp -= timeshift;
return timestamp % period;
}
#define DEFINE_SINE(type,round,convert) \
\
static inline g##type \
_sine_get_##type (GstLFOControlSource *self, GstClockTime timestamp) \
{ \
gdouble ret; \
g##type max = g_value_get_##type (&self->priv->maximum_value); \
g##type min = g_value_get_##type (&self->priv->minimum_value); \
gdouble amp = convert (g_value_get_##type (&self->priv->amplitude)); \
gdouble off = convert (g_value_get_##type (&self->priv->offset)); \
GstClockTime pos = _calculate_pos (timestamp, self->priv->timeshift, self->priv->period); \
\
ret = sin (2.0 * M_PI * (self->priv->frequency / GST_SECOND) * gst_util_guint64_to_gdouble (pos)); \
ret *= amp; \
ret += off; \
\
if (round) \
ret += 0.5; \
\
return (g##type) CLAMP (ret, convert (min), convert (max)); \
} \
\
static gboolean \
waveform_sine_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \
GValue *value) \
{ \
g##type ret; \
g_mutex_lock (self->lock); \
ret = _sine_get_##type (self, timestamp); \
g_value_set_##type (value, ret); \
g_mutex_unlock (self->lock); \
return TRUE; \
} \
\
static gboolean \
waveform_sine_get_##type##_value_array (GstLFOControlSource *self, \
GstClockTime timestamp, GstValueArray * value_array) \
{ \
gint i; \
GstClockTime ts = timestamp; \
g##type *values = (g##type *) value_array->values; \
\
g_mutex_lock (self->lock); \
for(i = 0; i < value_array->nbsamples; i++) { \
*values = _sine_get_##type (self, ts); \
ts += value_array->sample_interval; \
values++; \
} \
g_mutex_unlock (self->lock); \
return TRUE; \
}
DEFINE_SINE (int, TRUE, EMPTY);
DEFINE_SINE (uint, TRUE, EMPTY);
DEFINE_SINE (long, TRUE, EMPTY);
DEFINE_SINE (ulong, TRUE, EMPTY);
DEFINE_SINE (int64, TRUE, EMPTY);
DEFINE_SINE (uint64, TRUE, gst_util_guint64_to_gdouble);
DEFINE_SINE (float, FALSE, EMPTY);
DEFINE_SINE (double, FALSE, EMPTY);
static GstWaveformImplementation waveform_sine = {
(GstControlSourceGetValue) waveform_sine_get_int,
(GstControlSourceGetValueArray) waveform_sine_get_int_value_array,
(GstControlSourceGetValue) waveform_sine_get_uint,
(GstControlSourceGetValueArray) waveform_sine_get_uint_value_array,
(GstControlSourceGetValue) waveform_sine_get_long,
(GstControlSourceGetValueArray) waveform_sine_get_long_value_array,
(GstControlSourceGetValue) waveform_sine_get_ulong,
(GstControlSourceGetValueArray) waveform_sine_get_ulong_value_array,
(GstControlSourceGetValue) waveform_sine_get_int64,
(GstControlSourceGetValueArray) waveform_sine_get_int64_value_array,
(GstControlSourceGetValue) waveform_sine_get_uint64,
(GstControlSourceGetValueArray) waveform_sine_get_uint64_value_array,
(GstControlSourceGetValue) waveform_sine_get_float,
(GstControlSourceGetValueArray) waveform_sine_get_float_value_array,
(GstControlSourceGetValue) waveform_sine_get_double,
(GstControlSourceGetValueArray) waveform_sine_get_double_value_array
};
#define DEFINE_SQUARE(type,round, convert) \
\
static inline g##type \
_square_get_##type (GstLFOControlSource *self, GstClockTime timestamp) \
{ \
g##type max = g_value_get_##type (&self->priv->maximum_value); \
g##type min = g_value_get_##type (&self->priv->minimum_value); \
gdouble amp = convert (g_value_get_##type (&self->priv->amplitude)); \
gdouble off = convert (g_value_get_##type (&self->priv->offset)); \
GstClockTime period = self->priv->period; \
GstClockTime pos = _calculate_pos (timestamp, self->priv->timeshift, period); \
gdouble ret; \
\
if (pos >= period / 2) \
ret = amp; \
else \
ret = - amp; \
\
ret += off; \
\
if (round) \
ret += 0.5; \
\
return (g##type) CLAMP (ret, convert (min), convert (max)); \
} \
\
static gboolean \
waveform_square_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \
GValue *value) \
{ \
g##type ret; \
g_mutex_lock (self->lock); \
ret = _square_get_##type (self, timestamp); \
g_value_set_##type (value, ret); \
g_mutex_unlock (self->lock); \
return TRUE; \
} \
\
static gboolean \
waveform_square_get_##type##_value_array (GstLFOControlSource *self, \
GstClockTime timestamp, GstValueArray * value_array) \
{ \
gint i; \
GstClockTime ts = timestamp; \
g##type *values = (g##type *) value_array->values; \
\
g_mutex_lock (self->lock); \
for(i = 0; i < value_array->nbsamples; i++) { \
*values = _square_get_##type (self, ts); \
ts += value_array->sample_interval; \
values++; \
} \
g_mutex_unlock (self->lock); \
return TRUE; \
}
DEFINE_SQUARE (int, TRUE, EMPTY);
DEFINE_SQUARE (uint, TRUE, EMPTY);
DEFINE_SQUARE (long, TRUE, EMPTY);
DEFINE_SQUARE (ulong, TRUE, EMPTY);
DEFINE_SQUARE (int64, TRUE, EMPTY);
DEFINE_SQUARE (uint64, TRUE, gst_util_guint64_to_gdouble);
DEFINE_SQUARE (float, FALSE, EMPTY);
DEFINE_SQUARE (double, FALSE, EMPTY);
static GstWaveformImplementation waveform_square = {
(GstControlSourceGetValue) waveform_square_get_int,
(GstControlSourceGetValueArray) waveform_square_get_int_value_array,
(GstControlSourceGetValue) waveform_square_get_uint,
(GstControlSourceGetValueArray) waveform_square_get_uint_value_array,
(GstControlSourceGetValue) waveform_square_get_long,
(GstControlSourceGetValueArray) waveform_square_get_long_value_array,
(GstControlSourceGetValue) waveform_square_get_ulong,
(GstControlSourceGetValueArray) waveform_square_get_ulong_value_array,
(GstControlSourceGetValue) waveform_square_get_int64,
(GstControlSourceGetValueArray) waveform_square_get_int64_value_array,
(GstControlSourceGetValue) waveform_square_get_uint64,
(GstControlSourceGetValueArray) waveform_square_get_uint64_value_array,
(GstControlSourceGetValue) waveform_square_get_float,
(GstControlSourceGetValueArray) waveform_square_get_float_value_array,
(GstControlSourceGetValue) waveform_square_get_double,
(GstControlSourceGetValueArray) waveform_square_get_double_value_array
};
#define DEFINE_SAW(type,round,convert) \
\
static inline g##type \
_saw_get_##type (GstLFOControlSource *self, GstClockTime timestamp) \
{ \
g##type max = g_value_get_##type (&self->priv->maximum_value); \
g##type min = g_value_get_##type (&self->priv->minimum_value); \
gdouble amp = convert (g_value_get_##type (&self->priv->amplitude)); \
gdouble off = convert (g_value_get_##type (&self->priv->offset)); \
GstClockTime period = self->priv->period; \
GstClockTime pos = _calculate_pos (timestamp, self->priv->timeshift, period); \
gdouble ret; \
\
ret = - ((gst_util_guint64_to_gdouble (pos) - gst_util_guint64_to_gdouble (period) / 2.0) * ((2.0 * amp) / gst_util_guint64_to_gdouble (period)));\
\
ret += off; \
\
if (round) \
ret += 0.5; \
\
return (g##type) CLAMP (ret, convert (min), convert (max)); \
} \
\
static gboolean \
waveform_saw_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \
GValue *value) \
{ \
g##type ret; \
g_mutex_lock (self->lock); \
ret = _saw_get_##type (self, timestamp); \
g_value_set_##type (value, ret); \
g_mutex_unlock (self->lock); \
return TRUE; \
} \
\
static gboolean \
waveform_saw_get_##type##_value_array (GstLFOControlSource *self, \
GstClockTime timestamp, GstValueArray * value_array) \
{ \
gint i; \
GstClockTime ts = timestamp; \
g##type *values = (g##type *) value_array->values; \
\
g_mutex_lock (self->lock); \
for(i = 0; i < value_array->nbsamples; i++) { \
*values = _saw_get_##type (self, ts); \
ts += value_array->sample_interval; \
values++; \
} \
g_mutex_unlock (self->lock); \
return TRUE; \
}
DEFINE_SAW (int, TRUE, EMPTY);
DEFINE_SAW (uint, TRUE, EMPTY);
DEFINE_SAW (long, TRUE, EMPTY);
DEFINE_SAW (ulong, TRUE, EMPTY);
DEFINE_SAW (int64, TRUE, EMPTY);
DEFINE_SAW (uint64, TRUE, gst_util_guint64_to_gdouble);
DEFINE_SAW (float, FALSE, EMPTY);
DEFINE_SAW (double, FALSE, EMPTY);
static GstWaveformImplementation waveform_saw = {
(GstControlSourceGetValue) waveform_saw_get_int,
(GstControlSourceGetValueArray) waveform_saw_get_int_value_array,
(GstControlSourceGetValue) waveform_saw_get_uint,
(GstControlSourceGetValueArray) waveform_saw_get_uint_value_array,
(GstControlSourceGetValue) waveform_saw_get_long,
(GstControlSourceGetValueArray) waveform_saw_get_long_value_array,
(GstControlSourceGetValue) waveform_saw_get_ulong,
(GstControlSourceGetValueArray) waveform_saw_get_ulong_value_array,
(GstControlSourceGetValue) waveform_saw_get_int64,
(GstControlSourceGetValueArray) waveform_saw_get_int64_value_array,
(GstControlSourceGetValue) waveform_saw_get_uint64,
(GstControlSourceGetValueArray) waveform_saw_get_uint64_value_array,
(GstControlSourceGetValue) waveform_saw_get_float,
(GstControlSourceGetValueArray) waveform_saw_get_float_value_array,
(GstControlSourceGetValue) waveform_saw_get_double,
(GstControlSourceGetValueArray) waveform_saw_get_double_value_array
};
#define DEFINE_RSAW(type,round,convert) \
\
static inline g##type \
_rsaw_get_##type (GstLFOControlSource *self, GstClockTime timestamp) \
{ \
g##type max = g_value_get_##type (&self->priv->maximum_value); \
g##type min = g_value_get_##type (&self->priv->minimum_value); \
gdouble amp = convert (g_value_get_##type (&self->priv->amplitude)); \
gdouble off = convert (g_value_get_##type (&self->priv->offset)); \
GstClockTime period = self->priv->period; \
GstClockTime pos = _calculate_pos (timestamp, self->priv->timeshift, period); \
gdouble ret; \
\
ret = ((gst_util_guint64_to_gdouble (pos) - gst_util_guint64_to_gdouble (period) / 2.0) * ((2.0 * amp) / gst_util_guint64_to_gdouble (period)));\
\
ret += off; \
\
if (round) \
ret += 0.5; \
\
return (g##type) CLAMP (ret, convert (min), convert (max)); \
} \
\
static gboolean \
waveform_rsaw_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \
GValue *value) \
{ \
g##type ret; \
g_mutex_lock (self->lock); \
ret = _rsaw_get_##type (self, timestamp); \
g_value_set_##type (value, ret); \
g_mutex_unlock (self->lock); \
return TRUE; \
} \
\
static gboolean \
waveform_rsaw_get_##type##_value_array (GstLFOControlSource *self, \
GstClockTime timestamp, GstValueArray * value_array) \
{ \
gint i; \
GstClockTime ts = timestamp; \
g##type *values = (g##type *) value_array->values; \
\
g_mutex_lock (self->lock); \
for(i = 0; i < value_array->nbsamples; i++) { \
*values = _rsaw_get_##type (self, ts); \
ts += value_array->sample_interval; \
values++; \
} \
g_mutex_unlock (self->lock); \
return TRUE; \
}
DEFINE_RSAW (int, TRUE, EMPTY);
DEFINE_RSAW (uint, TRUE, EMPTY);
DEFINE_RSAW (long, TRUE, EMPTY);
DEFINE_RSAW (ulong, TRUE, EMPTY);
DEFINE_RSAW (int64, TRUE, EMPTY);
DEFINE_RSAW (uint64, TRUE, gst_util_guint64_to_gdouble);
DEFINE_RSAW (float, FALSE, EMPTY);
DEFINE_RSAW (double, FALSE, EMPTY);
static GstWaveformImplementation waveform_rsaw = {
(GstControlSourceGetValue) waveform_rsaw_get_int,
(GstControlSourceGetValueArray) waveform_rsaw_get_int_value_array,
(GstControlSourceGetValue) waveform_rsaw_get_uint,
(GstControlSourceGetValueArray) waveform_rsaw_get_uint_value_array,
(GstControlSourceGetValue) waveform_rsaw_get_long,
(GstControlSourceGetValueArray) waveform_rsaw_get_long_value_array,
(GstControlSourceGetValue) waveform_rsaw_get_ulong,
(GstControlSourceGetValueArray) waveform_rsaw_get_ulong_value_array,
(GstControlSourceGetValue) waveform_rsaw_get_int64,
(GstControlSourceGetValueArray) waveform_rsaw_get_int64_value_array,
(GstControlSourceGetValue) waveform_rsaw_get_uint64,
(GstControlSourceGetValueArray) waveform_rsaw_get_uint64_value_array,
(GstControlSourceGetValue) waveform_rsaw_get_float,
(GstControlSourceGetValueArray) waveform_rsaw_get_float_value_array,
(GstControlSourceGetValue) waveform_rsaw_get_double,
(GstControlSourceGetValueArray) waveform_rsaw_get_double_value_array
};
#define DEFINE_TRIANGLE(type,round,convert) \
\
static inline g##type \
_triangle_get_##type (GstLFOControlSource *self, GstClockTime timestamp) \
{ \
g##type max = g_value_get_##type (&self->priv->maximum_value); \
g##type min = g_value_get_##type (&self->priv->minimum_value); \
gdouble amp = convert (g_value_get_##type (&self->priv->amplitude)); \
gdouble off = convert (g_value_get_##type (&self->priv->offset)); \
GstClockTime period = self->priv->period; \
GstClockTime pos = _calculate_pos (timestamp, self->priv->timeshift, period); \
gdouble ret; \
\
if (gst_util_guint64_to_gdouble (pos) <= gst_util_guint64_to_gdouble (period) / 4.0) \
ret = gst_util_guint64_to_gdouble (pos) * ((4.0 * amp) / gst_util_guint64_to_gdouble (period)); \
else if (gst_util_guint64_to_gdouble (pos) <= (3.0 * gst_util_guint64_to_gdouble (period)) / 4.0) \
ret = -(gst_util_guint64_to_gdouble (pos) - gst_util_guint64_to_gdouble (period) / 2.0) * ((4.0 * amp) / gst_util_guint64_to_gdouble (period)); \
else \
ret = gst_util_guint64_to_gdouble (period) - gst_util_guint64_to_gdouble (pos) * ((4.0 * amp) / gst_util_guint64_to_gdouble (period)); \
\
ret += off; \
\
if (round) \
ret += 0.5; \
\
return (g##type) CLAMP (ret, convert (min), convert (max)); \
} \
\
static gboolean \
waveform_triangle_get_##type (GstLFOControlSource *self, GstClockTime timestamp, \
GValue *value) \
{ \
g##type ret; \
g_mutex_lock (self->lock); \
ret = _triangle_get_##type (self, timestamp); \
g_value_set_##type (value, ret); \
g_mutex_unlock (self->lock); \
return TRUE; \
} \
\
static gboolean \
waveform_triangle_get_##type##_value_array (GstLFOControlSource *self, \
GstClockTime timestamp, GstValueArray * value_array) \
{ \
gint i; \
GstClockTime ts = timestamp; \
g##type *values = (g##type *) value_array->values; \
\
g_mutex_lock (self->lock); \
for(i = 0; i < value_array->nbsamples; i++) { \
*values = _triangle_get_##type (self, ts); \
ts += value_array->sample_interval; \
values++; \
} \
g_mutex_unlock (self->lock); \
return TRUE; \
}
DEFINE_TRIANGLE (int, TRUE, EMPTY);
DEFINE_TRIANGLE (uint, TRUE, EMPTY);
DEFINE_TRIANGLE (long, TRUE, EMPTY);
DEFINE_TRIANGLE (ulong, TRUE, EMPTY);
DEFINE_TRIANGLE (int64, TRUE, EMPTY);
DEFINE_TRIANGLE (uint64, TRUE, gst_util_guint64_to_gdouble);
DEFINE_TRIANGLE (float, FALSE, EMPTY);
DEFINE_TRIANGLE (double, FALSE, EMPTY);
static GstWaveformImplementation waveform_triangle = {
(GstControlSourceGetValue) waveform_triangle_get_int,
(GstControlSourceGetValueArray) waveform_triangle_get_int_value_array,
(GstControlSourceGetValue) waveform_triangle_get_uint,
(GstControlSourceGetValueArray) waveform_triangle_get_uint_value_array,
(GstControlSourceGetValue) waveform_triangle_get_long,
(GstControlSourceGetValueArray) waveform_triangle_get_long_value_array,
(GstControlSourceGetValue) waveform_triangle_get_ulong,
(GstControlSourceGetValueArray) waveform_triangle_get_ulong_value_array,
(GstControlSourceGetValue) waveform_triangle_get_int64,
(GstControlSourceGetValueArray) waveform_triangle_get_int64_value_array,
(GstControlSourceGetValue) waveform_triangle_get_uint64,
(GstControlSourceGetValueArray) waveform_triangle_get_uint64_value_array,
(GstControlSourceGetValue) waveform_triangle_get_float,
(GstControlSourceGetValueArray) waveform_triangle_get_float_value_array,
(GstControlSourceGetValue) waveform_triangle_get_double,
(GstControlSourceGetValueArray) waveform_triangle_get_double_value_array
};
static GstWaveformImplementation *waveforms[] = {
&waveform_sine,
&waveform_square,
&waveform_saw,
&waveform_rsaw,
&waveform_triangle
};
static guint num_waveforms = G_N_ELEMENTS (waveforms);
enum
{
PROP_WAVEFORM = 1,
PROP_FREQUENCY,
PROP_TIMESHIFT,
PROP_AMPLITUDE,
PROP_OFFSET
};
GType
gst_lfo_waveform_get_type (void)
{
static GType gtype = 0;
if (gtype == 0) {
static const GEnumValue values[] = {
{GST_LFO_WAVEFORM_SINE, "Sine waveform (default)",
"sine"},
{GST_LFO_WAVEFORM_SQUARE, "Square waveform",
"square"},
{GST_LFO_WAVEFORM_SAW, "Saw waveform",
"saw"},
{GST_LFO_WAVEFORM_REVERSE_SAW, "Reverse saw waveform",
"reverse-saw"},
{GST_LFO_WAVEFORM_TRIANGLE, "Triangle waveform",
"triangle"},
{0, NULL, NULL}
};
gtype = g_enum_register_static ("GstLFOWaveform", values);
}
return gtype;
}
static void gst_lfo_control_source_init (GstLFOControlSource * self);
static void
gst_lfo_control_source_class_init (GstLFOControlSourceClass * klass);
G_DEFINE_TYPE (GstLFOControlSource, gst_lfo_control_source,
GST_TYPE_CONTROL_SOURCE);
static GObjectClass *parent_class = NULL;
static void
gst_lfo_control_source_reset (GstLFOControlSource * self)
{
GstControlSource *csource = GST_CONTROL_SOURCE (self);
csource->get_value = NULL;
csource->get_value_array = NULL;
self->priv->type = self->priv->base = G_TYPE_INVALID;
if (G_IS_VALUE (&self->priv->minimum_value))
g_value_unset (&self->priv->minimum_value);
if (G_IS_VALUE (&self->priv->maximum_value))
g_value_unset (&self->priv->maximum_value);
if (G_IS_VALUE (&self->priv->amplitude))
g_value_unset (&self->priv->amplitude);
if (G_IS_VALUE (&self->priv->offset))
g_value_unset (&self->priv->offset);
}
/**
* gst_lfo_control_source_new:
*
* This returns a new, unbound #GstLFOControlSource.
*
* Returns: a new, unbound #GstLFOControlSource.
*/
GstLFOControlSource *
gst_lfo_control_source_new ()
{
return g_object_new (GST_TYPE_LFO_CONTROL_SOURCE, NULL);
}
static gboolean
gst_lfo_control_source_set_waveform (GstLFOControlSource * self,
GstLFOWaveform waveform)
{
GstControlSource *csource = GST_CONTROL_SOURCE (self);
gboolean ret = TRUE;
if (waveform >= num_waveforms || waveform < 0) {
GST_WARNING ("waveform %d invalid or not implemented yet", waveform);
return FALSE;
}
if (self->priv->base == G_TYPE_INVALID) {
GST_WARNING ("not bound to a property yet");
return FALSE;
}
switch (self->priv->base) {
case G_TYPE_INT:
csource->get_value = waveforms[waveform]->get_int;
csource->get_value_array = waveforms[waveform]->get_int_value_array;
break;
case G_TYPE_UINT:{
csource->get_value = waveforms[waveform]->get_uint;
csource->get_value_array = waveforms[waveform]->get_uint_value_array;
break;
}
case G_TYPE_LONG:{
csource->get_value = waveforms[waveform]->get_long;
csource->get_value_array = waveforms[waveform]->get_long_value_array;
break;
}
case G_TYPE_ULONG:{
csource->get_value = waveforms[waveform]->get_ulong;
csource->get_value_array = waveforms[waveform]->get_ulong_value_array;
break;
}
case G_TYPE_INT64:{
csource->get_value = waveforms[waveform]->get_int64;
csource->get_value_array = waveforms[waveform]->get_int64_value_array;
break;
}
case G_TYPE_UINT64:{
csource->get_value = waveforms[waveform]->get_uint64;
csource->get_value_array = waveforms[waveform]->get_uint64_value_array;
break;
}
case G_TYPE_FLOAT:{
csource->get_value = waveforms[waveform]->get_float;
csource->get_value_array = waveforms[waveform]->get_float_value_array;
break;
}
case G_TYPE_DOUBLE:{
csource->get_value = waveforms[waveform]->get_double;
csource->get_value_array = waveforms[waveform]->get_double_value_array;
break;
}
default:
ret = FALSE;
break;
}
if (ret)
self->priv->waveform = waveform;
else
GST_WARNING ("incomplete implementation for type '%s'",
GST_STR_NULL (g_type_name (self->priv->type)));
return ret;
}
static gboolean
gst_lfo_control_source_bind (GstControlSource * source, GParamSpec * pspec)
{
GType type, base;
GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (source);
gboolean ret = TRUE;
/* get the fundamental base type */
self->priv->type = base = type = G_PARAM_SPEC_VALUE_TYPE (pspec);
while ((type = g_type_parent (type)))
base = type;
self->priv->base = base;
/* restore type */
type = self->priv->type;
switch (base) {
case G_TYPE_INT:{
GParamSpecInt *tpspec = G_PARAM_SPEC_INT (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_int (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_int (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_int (&self->priv->amplitude, 0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_int (&self->priv->offset, tpspec->default_value);
}
break;
}
case G_TYPE_UINT:{
GParamSpecUInt *tpspec = G_PARAM_SPEC_UINT (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_uint (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_uint (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_uint (&self->priv->amplitude, 0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_uint (&self->priv->offset, tpspec->default_value);
}
break;
}
case G_TYPE_LONG:{
GParamSpecLong *tpspec = G_PARAM_SPEC_LONG (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_long (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_long (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_long (&self->priv->amplitude, 0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_long (&self->priv->offset, tpspec->default_value);
}
break;
}
case G_TYPE_ULONG:{
GParamSpecULong *tpspec = G_PARAM_SPEC_ULONG (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_ulong (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_ulong (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_ulong (&self->priv->amplitude, 0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_ulong (&self->priv->offset, tpspec->default_value);
}
break;
}
case G_TYPE_INT64:{
GParamSpecInt64 *tpspec = G_PARAM_SPEC_INT64 (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_int64 (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_int64 (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_int64 (&self->priv->amplitude, 0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_int64 (&self->priv->offset, tpspec->default_value);
}
break;
}
case G_TYPE_UINT64:{
GParamSpecUInt64 *tpspec = G_PARAM_SPEC_UINT64 (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_uint64 (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_uint64 (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_uint64 (&self->priv->amplitude, 0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_uint64 (&self->priv->offset, tpspec->default_value);
}
break;
}
case G_TYPE_FLOAT:{
GParamSpecFloat *tpspec = G_PARAM_SPEC_FLOAT (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_float (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_float (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_float (&self->priv->amplitude, 0.0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_float (&self->priv->offset, tpspec->default_value);
}
break;
}
case G_TYPE_DOUBLE:{
GParamSpecDouble *tpspec = G_PARAM_SPEC_DOUBLE (pspec);
g_value_init (&self->priv->minimum_value, type);
g_value_set_double (&self->priv->minimum_value, tpspec->minimum);
g_value_init (&self->priv->maximum_value, type);
g_value_set_double (&self->priv->maximum_value, tpspec->maximum);
if (!G_IS_VALUE (&self->priv->amplitude)) {
g_value_init (&self->priv->amplitude, type);
g_value_set_float (&self->priv->amplitude, 0.0);
}
if (!G_IS_VALUE (&self->priv->offset)) {
g_value_init (&self->priv->offset, type);
g_value_set_float (&self->priv->offset, tpspec->default_value);
}
break;
}
default:
GST_WARNING ("incomplete implementation for paramspec type '%s'",
G_PARAM_SPEC_TYPE_NAME (pspec));
ret = FALSE;
break;
}
if (ret) {
GValue amp = { 0, }
, off = {
0,};
/* This should never fail unless the user already set amplitude or offset
* with an incompatible type before _bind () */
if (!g_value_type_transformable (G_VALUE_TYPE (&self->priv->amplitude),
base)
|| !g_value_type_transformable (G_VALUE_TYPE (&self->priv->offset),
base)) {
GST_WARNING ("incompatible types for amplitude or offset");
gst_lfo_control_source_reset (self);
return FALSE;
}
/* Generate copies and transform to the correct type */
g_value_init (&amp, base);
g_value_transform (&self->priv->amplitude, &amp);
g_value_init (&off, base);
g_value_transform (&self->priv->offset, &off);
ret = gst_lfo_control_source_set_waveform (self, self->priv->waveform);
g_value_unset (&self->priv->amplitude);
g_value_init (&self->priv->amplitude, self->priv->base);
g_value_transform (&amp, &self->priv->amplitude);
g_value_unset (&self->priv->offset);
g_value_init (&self->priv->offset, self->priv->base);
g_value_transform (&off, &self->priv->offset);
g_value_unset (&amp);
g_value_unset (&off);
}
if (!ret)
gst_lfo_control_source_reset (self);
return ret;
}
static void
gst_lfo_control_source_init (GstLFOControlSource * self)
{
self->priv =
G_TYPE_INSTANCE_GET_PRIVATE (self, GST_TYPE_LFO_CONTROL_SOURCE,
GstLFOControlSourcePrivate);
self->priv->waveform = GST_LFO_WAVEFORM_SINE;
self->priv->frequency = 1.0;
self->priv->period = GST_SECOND / self->priv->frequency;
self->priv->timeshift = 0;
self->lock = g_mutex_new ();
}
static void
gst_lfo_control_source_finalize (GObject * obj)
{
GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (obj);
gst_lfo_control_source_reset (self);
if (self->lock) {
g_mutex_free (self->lock);
self->lock = NULL;
}
G_OBJECT_CLASS (parent_class)->finalize (obj);
}
static void
gst_lfo_control_source_dispose (GObject * obj)
{
G_OBJECT_CLASS (parent_class)->dispose (obj);
}
static void
gst_lfo_control_source_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (object);
switch (prop_id) {
case PROP_WAVEFORM:
g_mutex_lock (self->lock);
gst_lfo_control_source_set_waveform (self, g_value_get_enum (value));
g_mutex_unlock (self->lock);
break;
case PROP_FREQUENCY:{
gdouble frequency = g_value_get_double (value);
g_return_if_fail (frequency > 0
|| ((GstClockTime) (GST_SECOND / frequency)) != 0);
g_mutex_lock (self->lock);
self->priv->frequency = frequency;
self->priv->period = GST_SECOND / frequency;
g_mutex_unlock (self->lock);
break;
}
case PROP_TIMESHIFT:
g_mutex_lock (self->lock);
self->priv->timeshift = g_value_get_uint64 (value);
g_mutex_unlock (self->lock);
break;
case PROP_AMPLITUDE:{
GValue *val = g_value_get_boxed (value);
if (self->priv->type != G_TYPE_INVALID) {
g_return_if_fail (g_value_type_transformable (self->priv->type,
G_VALUE_TYPE (val)));
g_mutex_lock (self->lock);
if (G_IS_VALUE (&self->priv->amplitude))
g_value_unset (&self->priv->amplitude);
g_value_init (&self->priv->amplitude, self->priv->type);
g_value_transform (val, &self->priv->amplitude);
g_mutex_unlock (self->lock);
} else {
g_mutex_lock (self->lock);
if (G_IS_VALUE (&self->priv->amplitude))
g_value_unset (&self->priv->amplitude);
g_value_init (&self->priv->amplitude, G_VALUE_TYPE (val));
g_value_copy (val, &self->priv->amplitude);
g_mutex_unlock (self->lock);
}
break;
}
case PROP_OFFSET:{
GValue *val = g_value_get_boxed (value);
if (self->priv->type != G_TYPE_INVALID) {
g_return_if_fail (g_value_type_transformable (self->priv->type,
G_VALUE_TYPE (val)));
g_mutex_lock (self->lock);
if (G_IS_VALUE (&self->priv->offset))
g_value_unset (&self->priv->offset);
g_value_init (&self->priv->offset, self->priv->type);
g_value_transform (val, &self->priv->offset);
g_mutex_unlock (self->lock);
} else {
g_mutex_lock (self->lock);
if (G_IS_VALUE (&self->priv->offset))
g_value_unset (&self->priv->offset);
g_value_init (&self->priv->offset, G_VALUE_TYPE (val));
g_value_copy (val, &self->priv->offset);
g_mutex_unlock (self->lock);
}
break;
}
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_lfo_control_source_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec)
{
GstLFOControlSource *self = GST_LFO_CONTROL_SOURCE (object);
switch (prop_id) {
case PROP_WAVEFORM:
g_value_set_enum (value, self->priv->waveform);
break;
case PROP_FREQUENCY:
g_value_set_double (value, self->priv->frequency);
break;
case PROP_TIMESHIFT:
g_value_set_uint64 (value, self->priv->timeshift);
break;
case PROP_AMPLITUDE:
g_value_set_boxed (value, &self->priv->amplitude);
break;
case PROP_OFFSET:
g_value_set_boxed (value, &self->priv->offset);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_lfo_control_source_class_init (GstLFOControlSourceClass * klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GstControlSourceClass *csource_class = GST_CONTROL_SOURCE_CLASS (klass);
parent_class = g_type_class_peek_parent (klass);
g_type_class_add_private (klass, sizeof (GstLFOControlSourcePrivate));
gobject_class->finalize = gst_lfo_control_source_finalize;
gobject_class->dispose = gst_lfo_control_source_dispose;
gobject_class->set_property = gst_lfo_control_source_set_property;
gobject_class->get_property = gst_lfo_control_source_get_property;
csource_class->bind = gst_lfo_control_source_bind;
/**
* GstLFOControlSource:waveform
*
* Specifies the waveform that should be used for this #GstLFOControlSource.
*
**/
g_object_class_install_property (gobject_class, PROP_WAVEFORM,
g_param_spec_enum ("waveform", "Waveform", "Waveform",
GST_TYPE_LFO_WAVEFORM, GST_LFO_WAVEFORM_SINE, G_PARAM_READWRITE));
/**
* GstLFOControlSource:frequency
*
* Specifies the frequency that should be used for the waveform
* of this #GstLFOControlSource. It should be large enough
* so that the period is longer than one nanosecond.
*
**/
g_object_class_install_property (gobject_class, PROP_FREQUENCY,
g_param_spec_double ("frequency", "Frequency",
"Frequency of the waveform", 0.0, G_MAXDOUBLE, 1.0,
G_PARAM_READWRITE));
/**
* GstLFOControlSource:timeshift
*
* Specifies the timeshift to the right that should be used for the waveform
* of this #GstLFOControlSource in nanoseconds.
*
* To get a n nanosecond shift to the left use
* "(GST_SECOND / frequency) - n".
*
**/
g_object_class_install_property (gobject_class, PROP_TIMESHIFT,
g_param_spec_uint64 ("timeshift", "Timeshift",
"Timeshift of the waveform to the right", 0, G_MAXUINT64, 0,
G_PARAM_READWRITE));
/**
* GstLFOControlSource:amplitude
*
* Specifies the amplitude for the waveform of this #GstLFOControlSource.
*
* It should be given as a #GValue with a type that can be transformed
* to the type of the bound property.
**/
g_object_class_install_property (gobject_class, PROP_AMPLITUDE,
g_param_spec_boxed ("amplitude", "Amplitude", "Amplitude of the waveform",
G_TYPE_VALUE, G_PARAM_READWRITE));
/**
* GstLFOControlSource:offset
*
* Specifies the offset for the waveform of this #GstLFOControlSource.
*
* It should be given as a #GValue with a type that can be transformed
* to the type of the bound property.
**/
g_object_class_install_property (gobject_class, PROP_OFFSET,
g_param_spec_boxed ("offset", "Offset", "Offset of the waveform",
G_TYPE_VALUE, G_PARAM_READWRITE));
}