gstreamer/libs/gst/controller/gstinterpolationcontrolsource.c
Tim-Philipp Müller 57c8e0146f libs: figure out right export define in configure
Add new GST_API_EXPORT in config.h and use that for GST_*_API
decorators instead of GST_EXPORT.

The right export define depends on the toolchain and whether
we're using -fvisibility=hidden or not, so it's better to set it
to the right thing directly than hard-coding a compiler whitelist
in the public header.

We put the export define into config.h instead of passing it via the
command line to the compiler because it might contain spaces and brackets
and in the autotools scenario we'd have to pass that through multiple
layers of plumbing and Makefile/shell escaping and we're just not going
to be *that* lucky.

The export define is only used if we're compiling our lib, not by external
users of the lib headers, so it's not a problem to put it into config.h

Also, this means all .c files of libs need to include config.h
to get the export marker defined, so fix up a few that didn't
include config.h.

This commit depends on a common submodule commit that makes gst-glib-gen.mak
add an #include "config.h" to generated enum/marshal .c files for the
autotools build.

https://bugzilla.gnome.org/show_bug.cgi?id=797185
2018-09-24 08:39:37 +01:00

741 lines
20 KiB
C

/* GStreamer
*
* Copyright (C) 2007,2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
*
* gstinterpolationcontrolsource.c: Control source that provides several
* interpolation methods
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/**
* SECTION:gstinterpolationcontrolsource
* @title: GstInterpolationControlSource
* @short_description: interpolation control source
*
* #GstInterpolationControlSource is a #GstControlSource, that interpolates values between user-given
* control points. It supports several interpolation modes and property types.
*
* To use #GstInterpolationControlSource get a new instance by calling
* gst_interpolation_control_source_new(), bind it to a #GParamSpec and set some
* control points by calling gst_timed_value_control_source_set().
*
* All functions are MT-safe.
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <glib-object.h>
#include <gst/gst.h>
#include "gstinterpolationcontrolsource.h"
#include "gst/glib-compat-private.h"
#include "gst/math-compat.h"
#define GST_CAT_DEFAULT controller_debug
GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT);
/* helper functions */
static inline gboolean
_get_nearest_control_points (GstTimedValueControlSource * self,
GstClockTime ts, GstControlPoint ** cp1, GstControlPoint ** cp2)
{
GSequenceIter *iter;
iter = gst_timed_value_control_source_find_control_point_iter (self, ts);
if (iter) {
*cp1 = g_sequence_get (iter);
iter = g_sequence_iter_next (iter);
if (iter && !g_sequence_iter_is_end (iter)) {
*cp2 = g_sequence_get (iter);
} else {
*cp2 = NULL;
}
return TRUE;
}
return FALSE;
}
static inline void
_get_nearest_control_points2 (GstTimedValueControlSource * self,
GstClockTime ts, GstControlPoint ** cp1, GstControlPoint ** cp2,
GstClockTime * next_ts)
{
GSequenceIter *iter1, *iter2 = NULL;
*cp1 = *cp2 = NULL;
iter1 = gst_timed_value_control_source_find_control_point_iter (self, ts);
if (iter1) {
*cp1 = g_sequence_get (iter1);
iter2 = g_sequence_iter_next (iter1);
} else {
if (G_LIKELY (self->values)) {
/* all values in the control point list come after the given timestamp */
iter2 = g_sequence_get_begin_iter (self->values);
/* why this? if !cp1 we don't interpolate anyway
* if we can eliminate this, we can also use _get_nearest_control_points()
* here, is this just to set next_ts? */
} else {
/* no values */
iter2 = NULL;
}
}
if (iter2 && !g_sequence_iter_is_end (iter2)) {
*cp2 = g_sequence_get (iter2);
*next_ts = (*cp2)->timestamp;
} else {
*next_ts = GST_CLOCK_TIME_NONE;
}
}
/* steps-like (no-)interpolation, default */
/* just returns the value for the most recent key-frame */
static inline gdouble
_interpolate_none (GstTimedValueControlSource * self, GstControlPoint * cp)
{
return cp->value;
}
static gboolean
interpolate_none_get (GstTimedValueControlSource * self, GstClockTime timestamp,
gdouble * value)
{
gboolean ret = FALSE;
GSequenceIter *iter;
GstControlPoint *cp;
g_mutex_lock (&self->lock);
iter =
gst_timed_value_control_source_find_control_point_iter (self, timestamp);
if (iter) {
cp = g_sequence_get (iter);
*value = _interpolate_none (self, cp);
ret = TRUE;
}
g_mutex_unlock (&self->lock);
return ret;
}
static gboolean
interpolate_none_get_value_array (GstTimedValueControlSource * self,
GstClockTime timestamp, GstClockTime interval, guint n_values,
gdouble * values)
{
gboolean ret = FALSE;
guint i;
GstClockTime ts = timestamp;
GstClockTime next_ts = 0;
GstControlPoint *cp1 = NULL, *cp2 = NULL;
g_mutex_lock (&self->lock);
for (i = 0; i < n_values; i++) {
GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT,
i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts));
if (ts >= next_ts) {
_get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts);
}
if (cp1) {
*values = _interpolate_none (self, cp1);
ret = TRUE;
GST_LOG ("values[%3d]=%lf", i, *values);
} else {
*values = NAN;
GST_LOG ("values[%3d]=-", i);
}
ts += interval;
values++;
}
g_mutex_unlock (&self->lock);
return ret;
}
/* linear interpolation */
/* smoothes in between values */
static inline gdouble
_interpolate_linear (GstClockTime timestamp1, gdouble value1,
GstClockTime timestamp2, gdouble value2, GstClockTime timestamp)
{
if (GST_CLOCK_TIME_IS_VALID (timestamp2)) {
gdouble slope;
slope =
(value2 - value1) / gst_guint64_to_gdouble (timestamp2 - timestamp1);
return value1 + (gst_guint64_to_gdouble (timestamp - timestamp1) * slope);
} else {
return value1;
}
}
static gboolean
interpolate_linear_get (GstTimedValueControlSource * self,
GstClockTime timestamp, gdouble * value)
{
gboolean ret = FALSE;
GstControlPoint *cp1, *cp2;
g_mutex_lock (&self->lock);
if (_get_nearest_control_points (self, timestamp, &cp1, &cp2)) {
*value = _interpolate_linear (cp1->timestamp, cp1->value,
(cp2 ? cp2->timestamp : GST_CLOCK_TIME_NONE),
(cp2 ? cp2->value : 0.0), timestamp);
ret = TRUE;
}
g_mutex_unlock (&self->lock);
return ret;
}
static gboolean
interpolate_linear_get_value_array (GstTimedValueControlSource * self,
GstClockTime timestamp, GstClockTime interval, guint n_values,
gdouble * values)
{
gboolean ret = FALSE;
guint i;
GstClockTime ts = timestamp;
GstClockTime next_ts = 0;
GstControlPoint *cp1 = NULL, *cp2 = NULL;
g_mutex_lock (&self->lock);
for (i = 0; i < n_values; i++) {
GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT,
i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts));
if (ts >= next_ts) {
_get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts);
}
if (cp1) {
*values = _interpolate_linear (cp1->timestamp, cp1->value,
(cp2 ? cp2->timestamp : GST_CLOCK_TIME_NONE),
(cp2 ? cp2->value : 0.0), ts);
ret = TRUE;
GST_LOG ("values[%3d]=%lf", i, *values);
} else {
*values = NAN;
GST_LOG ("values[%3d]=-", i);
}
ts += interval;
values++;
}
g_mutex_unlock (&self->lock);
return ret;
}
/* cubic interpolation */
/* The following functions implement a natural cubic spline interpolator.
* For details look at http://en.wikipedia.org/wiki/Spline_interpolation
*
* Instead of using a real matrix with n^2 elements for the linear system
* of equations we use three arrays o, p, q to hold the tridiagonal matrix
* as following to save memory:
*
* p[0] q[0] 0 0 0
* o[1] p[1] q[1] 0 0
* 0 o[2] p[2] q[2] .
* . . . . .
*/
static void
_interpolate_cubic_update_cache (GstTimedValueControlSource * self)
{
gint i, n = self->nvalues;
gdouble *o = g_new0 (gdouble, n);
gdouble *p = g_new0 (gdouble, n);
gdouble *q = g_new0 (gdouble, n);
gdouble *h = g_new0 (gdouble, n);
gdouble *b = g_new0 (gdouble, n);
gdouble *z = g_new0 (gdouble, n);
GSequenceIter *iter;
GstControlPoint *cp;
GstClockTime x, x_next;
gdouble y_prev, y, y_next;
/* Fill linear system of equations */
iter = g_sequence_get_begin_iter (self->values);
cp = g_sequence_get (iter);
x = cp->timestamp;
y = cp->value;
p[0] = 1.0;
iter = g_sequence_iter_next (iter);
cp = g_sequence_get (iter);
x_next = cp->timestamp;
y_next = cp->value;
h[0] = gst_guint64_to_gdouble (x_next - x);
for (i = 1; i < n - 1; i++) {
/* Shuffle x and y values */
y_prev = y;
x = x_next;
y = y_next;
iter = g_sequence_iter_next (iter);
cp = g_sequence_get (iter);
x_next = cp->timestamp;
y_next = cp->value;
h[i] = gst_guint64_to_gdouble (x_next - x);
o[i] = h[i - 1];
p[i] = 2.0 * (h[i - 1] + h[i]);
q[i] = h[i];
b[i] = (y_next - y) / h[i] - (y - y_prev) / h[i - 1];
}
p[n - 1] = 1.0;
/* Use Gauss elimination to set everything below the diagonal to zero */
for (i = 1; i < n - 1; i++) {
gdouble a = o[i] / p[i - 1];
p[i] -= a * q[i - 1];
b[i] -= a * b[i - 1];
}
/* Solve everything else from bottom to top */
for (i = n - 2; i > 0; i--)
z[i] = (b[i] - q[i] * z[i + 1]) / p[i];
/* Save cache next in the GstControlPoint */
iter = g_sequence_get_begin_iter (self->values);
for (i = 0; i < n; i++) {
cp = g_sequence_get (iter);
cp->cache.cubic.h = h[i];
cp->cache.cubic.z = z[i];
iter = g_sequence_iter_next (iter);
}
/* Free our temporary arrays */
g_free (o);
g_free (p);
g_free (q);
g_free (h);
g_free (b);
g_free (z);
}
static inline gdouble
_interpolate_cubic (GstTimedValueControlSource * self, GstControlPoint * cp1,
gdouble value1, GstControlPoint * cp2, gdouble value2,
GstClockTime timestamp)
{
if (!self->valid_cache) {
_interpolate_cubic_update_cache (self);
self->valid_cache = TRUE;
}
if (cp2) {
gdouble diff1, diff2;
gdouble out;
diff1 = gst_guint64_to_gdouble (timestamp - cp1->timestamp);
diff2 = gst_guint64_to_gdouble (cp2->timestamp - timestamp);
out =
(cp2->cache.cubic.z * diff1 * diff1 * diff1 +
cp1->cache.cubic.z * diff2 * diff2 * diff2) / cp1->cache.cubic.h;
out +=
(value2 / cp1->cache.cubic.h -
cp1->cache.cubic.h * cp2->cache.cubic.z) * diff1;
out +=
(value1 / cp1->cache.cubic.h -
cp1->cache.cubic.h * cp1->cache.cubic.z) * diff2;
return out;
} else {
return value1;
}
}
static gboolean
interpolate_cubic_get (GstTimedValueControlSource * self,
GstClockTime timestamp, gdouble * value)
{
gboolean ret = FALSE;
GstControlPoint *cp1, *cp2 = NULL;
if (self->nvalues <= 2)
return interpolate_linear_get (self, timestamp, value);
g_mutex_lock (&self->lock);
if (_get_nearest_control_points (self, timestamp, &cp1, &cp2)) {
*value = _interpolate_cubic (self, cp1, cp1->value, cp2,
(cp2 ? cp2->value : 0.0), timestamp);
ret = TRUE;
}
g_mutex_unlock (&self->lock);
return ret;
}
static gboolean
interpolate_cubic_get_value_array (GstTimedValueControlSource * self,
GstClockTime timestamp, GstClockTime interval, guint n_values,
gdouble * values)
{
gboolean ret = FALSE;
guint i;
GstClockTime ts = timestamp;
GstClockTime next_ts = 0;
GstControlPoint *cp1 = NULL, *cp2 = NULL;
if (self->nvalues <= 2)
return interpolate_linear_get_value_array (self, timestamp, interval,
n_values, values);
g_mutex_lock (&self->lock);
for (i = 0; i < n_values; i++) {
GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT,
i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts));
if (ts >= next_ts) {
_get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts);
}
if (cp1) {
*values = _interpolate_cubic (self, cp1, cp1->value, cp2,
(cp2 ? cp2->value : 0.0), ts);
ret = TRUE;
GST_LOG ("values[%3d]=%lf", i, *values);
} else {
*values = NAN;
GST_LOG ("values[%3d]=-", i);
}
ts += interval;
values++;
}
g_mutex_unlock (&self->lock);
return ret;
}
/* monotonic cubic interpolation */
/* the following functions implement monotonic cubic spline interpolation.
* For details: http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
*
* In contrast to the previous cubic mode, the values won't overshoot.
*/
static void
_interpolate_cubic_monotonic_update_cache (GstTimedValueControlSource * self)
{
gint i, n = self->nvalues;
gdouble *dxs = g_new0 (gdouble, n);
gdouble *dys = g_new0 (gdouble, n);
gdouble *ms = g_new0 (gdouble, n);
gdouble *c1s = g_new0 (gdouble, n);
GSequenceIter *iter;
GstControlPoint *cp;
GstClockTime x, x_next, dx;
gdouble y, y_next, dy;
/* Get consecutive differences and slopes */
iter = g_sequence_get_begin_iter (self->values);
cp = g_sequence_get (iter);
x_next = cp->timestamp;
y_next = cp->value;
for (i = 0; i < n - 1; i++) {
x = x_next;
y = y_next;
iter = g_sequence_iter_next (iter);
cp = g_sequence_get (iter);
x_next = cp->timestamp;
y_next = cp->value;
dx = gst_guint64_to_gdouble (x_next - x);
dy = y_next - y;
dxs[i] = dx;
dys[i] = dy;
ms[i] = dy / dx;
}
/* Get degree-1 coefficients */
c1s[0] = ms[0];
for (i = 1; i < n; i++) {
gdouble m = ms[i - 1];
gdouble m_next = ms[i];
if (m * m_next <= 0) {
c1s[i] = 0.0;
} else {
gdouble dx_next, dx_sum;
dx = dxs[i], dx_next = dxs[i + 1], dx_sum = dx + dx_next;
c1s[i] = 3.0 * dx_sum / ((dx_sum + dx_next) / m + (dx_sum + dx) / m_next);
}
}
c1s[n - 1] = ms[n - 1];
/* Get degree-2 and degree-3 coefficients */
iter = g_sequence_get_begin_iter (self->values);
for (i = 0; i < n - 1; i++) {
gdouble c1, m, inv_dx, common;
cp = g_sequence_get (iter);
c1 = c1s[i];
m = ms[i];
inv_dx = 1.0 / dxs[i];
common = c1 + c1s[i + 1] - m - m;
cp->cache.cubic_monotonic.c1s = c1;
cp->cache.cubic_monotonic.c2s = (m - c1 - common) * inv_dx;
cp->cache.cubic_monotonic.c3s = common * inv_dx * inv_dx;
iter = g_sequence_iter_next (iter);
}
/* Free our temporary arrays */
g_free (dxs);
g_free (dys);
g_free (ms);
g_free (c1s);
}
static inline gdouble
_interpolate_cubic_monotonic (GstTimedValueControlSource * self,
GstControlPoint * cp1, gdouble value1, GstControlPoint * cp2,
gdouble value2, GstClockTime timestamp)
{
if (!self->valid_cache) {
_interpolate_cubic_monotonic_update_cache (self);
self->valid_cache = TRUE;
}
if (cp2) {
gdouble diff = gst_guint64_to_gdouble (timestamp - cp1->timestamp);
gdouble diff2 = diff * diff;
gdouble out;
out = value1 + cp1->cache.cubic_monotonic.c1s * diff;
out += cp1->cache.cubic_monotonic.c2s * diff2;
out += cp1->cache.cubic_monotonic.c3s * diff * diff2;
return out;
} else {
return value1;
}
}
static gboolean
interpolate_cubic_monotonic_get (GstTimedValueControlSource * self,
GstClockTime timestamp, gdouble * value)
{
gboolean ret = FALSE;
GstControlPoint *cp1, *cp2 = NULL;
if (self->nvalues <= 2)
return interpolate_linear_get (self, timestamp, value);
g_mutex_lock (&self->lock);
if (_get_nearest_control_points (self, timestamp, &cp1, &cp2)) {
*value = _interpolate_cubic_monotonic (self, cp1, cp1->value, cp2,
(cp2 ? cp2->value : 0.0), timestamp);
ret = TRUE;
}
g_mutex_unlock (&self->lock);
return ret;
}
static gboolean
interpolate_cubic_monotonic_get_value_array (GstTimedValueControlSource * self,
GstClockTime timestamp, GstClockTime interval, guint n_values,
gdouble * values)
{
gboolean ret = FALSE;
guint i;
GstClockTime ts = timestamp;
GstClockTime next_ts = 0;
GstControlPoint *cp1 = NULL, *cp2 = NULL;
if (self->nvalues <= 2)
return interpolate_linear_get_value_array (self, timestamp, interval,
n_values, values);
g_mutex_lock (&self->lock);
for (i = 0; i < n_values; i++) {
GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT,
i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts));
if (ts >= next_ts) {
_get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts);
}
if (cp1) {
*values = _interpolate_cubic_monotonic (self, cp1, cp1->value, cp2,
(cp2 ? cp2->value : 0.0), ts);
ret = TRUE;
GST_LOG ("values[%3d]=%lf", i, *values);
} else {
*values = NAN;
GST_LOG ("values[%3d]=-", i);
}
ts += interval;
values++;
}
g_mutex_unlock (&self->lock);
return ret;
}
static struct
{
GstControlSourceGetValue get;
GstControlSourceGetValueArray get_value_array;
} interpolation_modes[] = {
{
(GstControlSourceGetValue) interpolate_none_get,
(GstControlSourceGetValueArray) interpolate_none_get_value_array}, {
(GstControlSourceGetValue) interpolate_linear_get,
(GstControlSourceGetValueArray) interpolate_linear_get_value_array}, {
(GstControlSourceGetValue) interpolate_cubic_get,
(GstControlSourceGetValueArray) interpolate_cubic_get_value_array}, {
(GstControlSourceGetValue) interpolate_cubic_monotonic_get,
(GstControlSourceGetValueArray)
interpolate_cubic_monotonic_get_value_array}};
static const guint num_interpolation_modes = G_N_ELEMENTS (interpolation_modes);
enum
{
PROP_MODE = 1
};
struct _GstInterpolationControlSourcePrivate
{
GstInterpolationMode interpolation_mode;
};
#define _do_init \
GST_DEBUG_CATEGORY_INIT (GST_CAT_DEFAULT, "interpolation control source", 0, \
"timeline value interpolating control source")
G_DEFINE_TYPE_WITH_CODE (GstInterpolationControlSource,
gst_interpolation_control_source, GST_TYPE_TIMED_VALUE_CONTROL_SOURCE,
G_ADD_PRIVATE (GstInterpolationControlSource)
_do_init);
/**
* gst_interpolation_control_source_new:
*
* This returns a new, unbound #GstInterpolationControlSource.
*
* Returns: (transfer full): a new, unbound #GstInterpolationControlSource.
*/
GstControlSource *
gst_interpolation_control_source_new (void)
{
GstControlSource *csource =
g_object_new (GST_TYPE_INTERPOLATION_CONTROL_SOURCE, NULL);
/* Clear floating flag */
gst_object_ref_sink (csource);
return csource;
}
static gboolean
gst_interpolation_control_source_set_interpolation_mode
(GstInterpolationControlSource * self, GstInterpolationMode mode)
{
GstControlSource *csource = GST_CONTROL_SOURCE (self);
if (mode >= num_interpolation_modes || (int) mode < 0) {
GST_WARNING ("interpolation mode %d invalid or not implemented yet", mode);
return FALSE;
}
GST_TIMED_VALUE_CONTROL_SOURCE_LOCK (self);
csource->get_value = interpolation_modes[mode].get;
csource->get_value_array = interpolation_modes[mode].get_value_array;
gst_timed_value_control_invalidate_cache ((GstTimedValueControlSource *)
csource);
self->priv->interpolation_mode = mode;
GST_TIMED_VALUE_CONTROL_SOURCE_UNLOCK (self);
return TRUE;
}
static void
gst_interpolation_control_source_init (GstInterpolationControlSource * self)
{
self->priv = gst_interpolation_control_source_get_instance_private (self);
gst_interpolation_control_source_set_interpolation_mode (self,
GST_INTERPOLATION_MODE_NONE);
}
static void
gst_interpolation_control_source_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstInterpolationControlSource *self =
GST_INTERPOLATION_CONTROL_SOURCE (object);
switch (prop_id) {
case PROP_MODE:
gst_interpolation_control_source_set_interpolation_mode (self,
(GstInterpolationMode) g_value_get_enum (value));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_interpolation_control_source_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec)
{
GstInterpolationControlSource *self =
GST_INTERPOLATION_CONTROL_SOURCE (object);
switch (prop_id) {
case PROP_MODE:
g_value_set_enum (value, self->priv->interpolation_mode);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_interpolation_control_source_class_init (GstInterpolationControlSourceClass
* klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
gobject_class->set_property = gst_interpolation_control_source_set_property;
gobject_class->get_property = gst_interpolation_control_source_get_property;
g_object_class_install_property (gobject_class, PROP_MODE,
g_param_spec_enum ("mode", "Mode", "Interpolation mode",
GST_TYPE_INTERPOLATION_MODE, GST_INTERPOLATION_MODE_NONE,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
}