gstreamer/gst/audioconvert/gstchannelmix.c
Andy Wingo 790c059867 gst/: Some GCC4 fixes
Original commit message from CVS:
2005-05-05  Andy Wingo  <wingo@pobox.com>

* gst-libs/gst/tag/gstid3tag.c: (gst_tag_list_new_from_id3v1):
* gst-libs/gst/tag/gstvorbistag.c:
(gst_tag_list_from_vorbiscomment_buffer), (gst_vorbis_tag_chain):
* gst/adder/gstadder.h:
* gst/audioconvert/gstchannelmix.c:
(gst_audio_convert_fill_one_other):
* gst/audiorate/gstaudiorate.c: (gst_audiorate_setcaps),
(gst_audiorate_init), (gst_audiorate_chain):
* gst/playback/gstplaybasebin.c: (setup_source):
* gst/playback/test3.c: (update_scale):
Some GCC4 fixes

* po/af.po:
* po/az.po:
* po/cs.po:
* po/en_GB.po:
* po/hu.po:
* po/it.po:
* po/nb.po:
* po/nl.po:
* po/or.po:
* po/sq.po:
* po/sr.po:
* po/sv.po:
* po/uk.po:
* po/vi.po: Foo
2005-05-05 14:57:20 +00:00

569 lines
17 KiB
C

/* GStreamer
* Copyright (C) 2004 Ronald Bultje <rbultje@ronald.bitfreak.net>
*
* gstchannelmix.c: setup of channel conversion matrices
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include <string.h>
#include <gst/audio/multichannel.h>
#include "gstchannelmix.h"
/* GLib < 2.4 compatibility */
#ifndef G_MININT32
#define G_MININT32 ((gint32) 0x80000000)
#endif
#ifndef G_MAXINT32
#define G_MAXINT32 ((gint32) 0x7fffffff)
#endif
/*
* Channel matrix functions.
*/
void
gst_audio_convert_unset_matrix (GstAudioConvert * this)
{
gint i;
/* don't access if nothing there */
if (!this->matrix)
return;
/* free */
for (i = 0; i < this->sinkcaps.channels; i++)
g_free (this->matrix[i]);
g_free (this->matrix);
this->matrix = NULL;
}
/*
* Detect and fill in identical channels. E.g.
* forward the left/right front channels in a
* 5.1 to 2.0 conversion.
*/
static void
gst_audio_convert_fill_identical (GstAudioConvert * this)
{
gint ci, co;
/* Apart from the compatible channel assignments, we can also have
* same channel assignments. This is much simpler, we simply copy
* the value from source to dest! */
for (co = 0; co < this->srccaps.channels; co++) {
/* find a channel in input with same position */
for (ci = 0; ci < this->sinkcaps.channels; ci++) {
if (this->sinkcaps.pos[ci] == this->srccaps.pos[co]) {
this->matrix[ci][co] = 1.0;
}
}
}
}
/*
* Detect and fill in compatible channels. E.g.
* forward left/right front to mono (or the other
* way around) when going from 2.0 to 1.0.
*/
static void
gst_audio_convert_fill_compatible (GstAudioConvert * this)
{
/* Conversions from one-channel to compatible two-channel configs */
struct
{
GstAudioChannelPosition pos1[2];
GstAudioChannelPosition pos2[1];
} conv[] = {
/* front: mono <-> stereo */
{ {
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT}, {
GST_AUDIO_CHANNEL_POSITION_FRONT_MONO}},
/* front center: 2 <-> 1 */
{ {
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER}, {
GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER}},
/* rear: 2 <-> 1 */
{ {
GST_AUDIO_CHANNEL_POSITION_REAR_LEFT,
GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT}, {
GST_AUDIO_CHANNEL_POSITION_REAR_CENTER}}, { {
GST_AUDIO_CHANNEL_POSITION_INVALID}}
};
gint c;
/* conversions from compatible (but not the same) channel schemes. This
* goes two ways: if the sink has both pos1[0,1] and src has pos2[0] or
* if the src has both pos1[0,1] and sink has pos2[0], then we do the
* conversion. We hereby assume that the existance of pos1[0,1] and
* pos2[0] are mututally exclusive. There are no checks for that,
* unfortunately. This shouldn't lead to issues (like crashes or so),
* though. */
for (c = 0; conv[c].pos1[0] != GST_AUDIO_CHANNEL_POSITION_INVALID; c++) {
gint pos1_0 = -1, pos1_1 = -1, pos2_0 = -1, n;
/* Try to go from the given 2 channels to the given 1 channel */
for (n = 0; n < this->sinkcaps.channels; n++) {
if (this->sinkcaps.pos[n] == conv[c].pos1[0])
pos1_0 = n;
else if (this->sinkcaps.pos[n] == conv[c].pos1[1])
pos1_1 = n;
}
for (n = 0; n < this->srccaps.channels; n++) {
if (this->srccaps.pos[n] == conv[c].pos2[0])
pos2_0 = n;
}
if (pos1_0 != -1 && pos1_1 != -1 && pos2_0 != -1) {
this->matrix[pos1_0][pos2_0] = 1.0;
this->matrix[pos1_1][pos2_0] = 1.0;
}
/* Try to go from the given 1 channel to the given 2 channels */
pos1_0 = -1;
pos1_1 = -1;
pos2_0 = -1;
for (n = 0; n < this->srccaps.channels; n++) {
if (this->srccaps.pos[n] == conv[c].pos1[0])
pos1_0 = n;
else if (this->srccaps.pos[n] == conv[c].pos1[1])
pos1_1 = n;
}
for (n = 0; n < this->sinkcaps.channels; n++) {
if (this->sinkcaps.pos[n] == conv[c].pos2[0])
pos2_0 = n;
}
if (pos1_0 != -1 && pos1_1 != -1 && pos2_0 != -1) {
this->matrix[pos2_0][pos1_0] = 1.0;
this->matrix[pos2_0][pos1_1] = 1.0;
}
}
}
/*
* Detect and fill in channels not handled by the
* above two, e.g. center to left/right front in
* 5.1 to 2.0 (or the other way around).
*
* Unfortunately, limited to static conversions
* for now.
*/
static void
gst_audio_convert_detect_pos (GstAudioConvertCaps * caps,
gint * f, gboolean * has_f,
gint * c, gboolean * has_c, gint * r, gboolean * has_r,
gint * s, gboolean * has_s, gint * b, gboolean * has_b)
{
gint n;
for (n = 0; n < caps->channels; n++) {
switch (caps->pos[n]) {
case GST_AUDIO_CHANNEL_POSITION_FRONT_MONO:
case GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT:
case GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT:
*has_f = TRUE;
if (f[0] == -1)
f[0] = n;
else
f[1] = n;
break;
case GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER:
case GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER:
case GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER:
*has_c = TRUE;
if (c[0] == -1)
c[0] = n;
else
c[1] = n;
break;
case GST_AUDIO_CHANNEL_POSITION_REAR_CENTER:
case GST_AUDIO_CHANNEL_POSITION_REAR_LEFT:
case GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT:
*has_r = TRUE;
if (r[0] == -1)
r[0] = n;
else
r[1] = n;
break;
case GST_AUDIO_CHANNEL_POSITION_SIDE_LEFT:
case GST_AUDIO_CHANNEL_POSITION_SIDE_RIGHT:
*has_s = TRUE;
if (s[0] == -1)
s[0] = n;
else
s[1] = n;
break;
case GST_AUDIO_CHANNEL_POSITION_LFE:
*has_b = TRUE;
b[0] = n;
break;
default:
break;
}
}
}
static void
gst_audio_convert_fill_one_other (gfloat ** matrix,
GstAudioConvertCaps * from_caps, gint * from_idx,
GstAudioChannelPosition from_pos_l,
GstAudioChannelPosition from_pos_r,
GstAudioChannelPosition from_pos_c,
GstAudioConvertCaps * to_caps, gint * to_idx,
GstAudioChannelPosition to_pos_l,
GstAudioChannelPosition to_pos_r,
GstAudioChannelPosition to_pos_c, gfloat ratio)
{
gfloat in_r, out_r[2] = { 0.f, 0.f };
/*
* The idea is that we add up from the input (which means that if we
* have stereo input, we divide their sum by two) and put that in
* the matrix for their output ratio (given in $ratio).
* For left channels, we need to invert the signal sign (* -1).
*/
if (from_caps->pos[from_idx[0]] == from_pos_c)
in_r = 1.0;
else
in_r = 0.5;
if (to_caps->pos[to_idx[0]] == to_pos_l)
out_r[0] = in_r * -ratio;
else
out_r[0] = in_r * ratio;
if (to_idx[1] != -1) {
if (to_caps->pos[to_idx[1]] == to_pos_l)
out_r[1] = in_r * -ratio;
else
out_r[1] = in_r * ratio;
}
matrix[from_idx[0]][to_idx[0]] = out_r[0];
if (to_idx[1] != -1)
matrix[from_idx[0]][to_idx[1]] = out_r[1];
if (from_idx[1] != -1) {
matrix[from_idx[1]][to_idx[0]] = out_r[0];
if (to_idx[1] != -1)
matrix[from_idx[1]][to_idx[1]] = out_r[1];
}
}
#define RATIO_FRONT_CENTER (1.0 / sqrt (2.0))
#define RATIO_FRONT_REAR (1.0 / sqrt (2.0))
#define RATIO_FRONT_BASS (1.0)
#define RATIO_REAR_BASS (1.0 / sqrt (2.0))
#define RATIO_CENTER_BASS (1.0 / sqrt (2.0))
static void
gst_audio_convert_fill_others (GstAudioConvert * this)
{
gboolean in_has_front = FALSE, out_has_front = FALSE,
in_has_center = FALSE, out_has_center = FALSE,
in_has_rear = FALSE, out_has_rear = FALSE,
in_has_side = FALSE, out_has_side = FALSE,
in_has_bass = FALSE, out_has_bass = FALSE;
gint in_f[2] = { -1, -1 }, out_f[2] = {
-1, -1}, in_c[2] = {
-1, -1}, out_c[2] = {
-1, -1}, in_r[2] = {
-1, -1}, out_r[2] = {
-1, -1}, in_s[2] = {
-1, -1}, out_s[2] = {
-1, -1}, in_b[2] = {
-1, -1}, out_b[2] = {
-1, -1};
/* First see where (if at all) the various channels from/to
* which we want to convert are located in our matrix/array. */
gst_audio_convert_detect_pos (&this->sinkcaps,
in_f, &in_has_front,
in_c, &in_has_center, in_r, &in_has_rear,
in_s, &in_has_side, in_b, &in_has_bass);
gst_audio_convert_detect_pos (&this->srccaps,
out_f, &out_has_front,
out_c, &out_has_center, out_r, &out_has_rear,
out_s, &out_has_side, out_b, &out_has_bass);
/* center/front */
if (!in_has_center && in_has_front && out_has_center) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_f,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT,
GST_AUDIO_CHANNEL_POSITION_FRONT_MONO,
&this->srccaps, out_c,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, RATIO_FRONT_CENTER);
} else if (in_has_center && !out_has_center && out_has_front) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_c,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER,
&this->srccaps, out_f,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT,
GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, RATIO_FRONT_CENTER);
}
/* rear/front */
if (!in_has_rear && in_has_front && out_has_rear) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_f,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT,
GST_AUDIO_CHANNEL_POSITION_FRONT_MONO,
&this->srccaps, out_r,
GST_AUDIO_CHANNEL_POSITION_REAR_LEFT,
GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT,
GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, RATIO_FRONT_REAR);
} else if (in_has_center && !out_has_center && out_has_front) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_r,
GST_AUDIO_CHANNEL_POSITION_REAR_LEFT,
GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT,
GST_AUDIO_CHANNEL_POSITION_REAR_CENTER,
&this->srccaps, out_f,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT,
GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, RATIO_FRONT_REAR);
}
/* bass/any */
if (in_has_bass && !out_has_bass) {
if (out_has_front) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_b,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_LFE,
&this->srccaps, out_f,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT,
GST_AUDIO_CHANNEL_POSITION_FRONT_MONO, RATIO_FRONT_BASS);
}
if (out_has_center) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_b,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_LFE,
&this->srccaps, out_c,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER, RATIO_CENTER_BASS);
}
if (out_has_rear) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_b,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_LFE,
&this->srccaps, out_r,
GST_AUDIO_CHANNEL_POSITION_REAR_LEFT,
GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT,
GST_AUDIO_CHANNEL_POSITION_REAR_CENTER, RATIO_REAR_BASS);
}
} else if (!in_has_bass && out_has_bass) {
if (in_has_front) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_f,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT,
GST_AUDIO_CHANNEL_POSITION_FRONT_MONO,
&this->srccaps, out_b,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_LFE, RATIO_FRONT_BASS);
}
if (in_has_center) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_c,
GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER,
GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER,
&this->srccaps, out_b,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_LFE, RATIO_CENTER_BASS);
}
if (in_has_rear) {
gst_audio_convert_fill_one_other (this->matrix,
&this->sinkcaps, in_r,
GST_AUDIO_CHANNEL_POSITION_REAR_LEFT,
GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT,
GST_AUDIO_CHANNEL_POSITION_REAR_CENTER,
&this->srccaps, out_b,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_INVALID,
GST_AUDIO_CHANNEL_POSITION_LFE, RATIO_REAR_BASS);
}
}
/* FIXME: side */
}
/*
* Normalize output values.
*/
static void
gst_audio_convert_fill_normalize (GstAudioConvert * this)
{
gfloat sum, top = 0;
gint i, j;
for (j = 0; j < this->srccaps.channels; j++) {
/* calculate sum */
sum = 0.0;
for (i = 0; i < this->sinkcaps.channels; i++) {
sum += fabs (this->matrix[i][j]);
}
if (sum > top) {
top = sum;
}
}
/* normalize to this */
for (j = 0; j < this->srccaps.channels; j++) {
for (i = 0; i < this->sinkcaps.channels; i++) {
this->matrix[i][j] /= top;
}
}
}
/*
* Automagically generate conversion matrix.
*/
static void
gst_audio_convert_fill_matrix (GstAudioConvert * this)
{
gst_audio_convert_fill_identical (this);
gst_audio_convert_fill_compatible (this);
gst_audio_convert_fill_others (this);
gst_audio_convert_fill_normalize (this);
}
void
gst_audio_convert_setup_matrix (GstAudioConvert * this)
{
gint i, j;
GString *s;
/* don't lose memory */
gst_audio_convert_unset_matrix (this);
/* allocate */
this->matrix = g_new0 (gfloat *, this->sinkcaps.channels);
for (i = 0; i < this->sinkcaps.channels; i++) {
this->matrix[i] = g_new (gfloat, this->srccaps.channels);
for (j = 0; j < this->srccaps.channels; j++)
this->matrix[i][j] = 0.;
}
/* setup the matrix' internal values */
gst_audio_convert_fill_matrix (this);
/* debug */
s = g_string_new ("Matrix for");
g_string_append_printf (s, " %d -> %d: ",
this->sinkcaps.channels, this->srccaps.channels);
g_string_append (s, "{");
for (i = 0; i < this->sinkcaps.channels; i++) {
if (i != 0)
g_string_append (s, ",");
g_string_append (s, " {");
for (j = 0; j < this->srccaps.channels; j++) {
if (j != 0)
g_string_append (s, ",");
g_string_append_printf (s, " %f", this->matrix[i][j]);
}
g_string_append (s, " }");
}
g_string_append (s, " }");
GST_DEBUG (s->str);
g_string_free (s, TRUE);
}
gboolean
gst_audio_convert_passthrough (GstAudioConvert * this)
{
gint i;
/* only NxN matrices can be identities */
if (this->sinkcaps.channels != this->srccaps.channels)
return FALSE;
/* this assumes a normalized matrix */
for (i = 0; i < this->sinkcaps.channels; i++)
if (this->matrix[i][i] != 1.)
return FALSE;
return TRUE;
}
/* IMPORTANT: out_data == in_data is possible, make sure to not overwrite data
* you might need later on! */
void
gst_audio_convert_mix (GstAudioConvert * this,
gint32 * in_data, gint32 * out_data, gint samples)
{
gint in, out, n;
gint64 res;
gint32 tmp[this->srccaps.channels];
gboolean backwards = this->srccaps.channels > this->sinkcaps.channels;
/* FIXME: use liboil here? */
for (n = (backwards ? samples - 1 : 0); n < samples && n >= 0;
backwards ? n-- : n++) {
for (out = 0; out < this->srccaps.channels; out++) {
/* convert */
res = 0;
for (in = 0; in < this->sinkcaps.channels; in++) {
res += in_data[n * this->sinkcaps.channels + in] *
this->matrix[in][out];
}
/* clip (shouldn't we use doubles instead as intermediate format?) */
if (res < G_MININT32)
res = G_MININT32;
else if (res > G_MAXINT32)
res = G_MAXINT32;
tmp[out] = res;
}
memcpy (&out_data[n * this->srccaps.channels], tmp,
sizeof (gint32) * this->srccaps.channels);
}
}