mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2024-12-29 19:50:40 +00:00
3b54dace2d
In many cases the unistd.h includes weren't actually needed. Preparation for making tests work on Windows with MSVC.
934 lines
28 KiB
C
934 lines
28 KiB
C
/* GStreamer
|
|
* Copyright (C) 2005 Wim Taymans <wim@fluendo.com>
|
|
*
|
|
* gstsystemclock.c: Unit test for GstSystemClock
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <gst/check/gstcheck.h>
|
|
|
|
static GMutex af_lock;
|
|
static GCond af_cond;
|
|
|
|
/* see if the defines make sense */
|
|
GST_START_TEST (test_range)
|
|
{
|
|
GstClockTime time, time2;
|
|
|
|
time = GST_SECOND;
|
|
fail_unless (time == G_GUINT64_CONSTANT (1000000000));
|
|
|
|
time2 = time / 1000;
|
|
fail_unless (time2 == 1000000);
|
|
fail_unless (time2 == GST_MSECOND);
|
|
fail_unless (time2 == GST_TIME_AS_USECONDS (time));
|
|
|
|
time2 = time / 1000000;
|
|
fail_unless (time2 == 1000);
|
|
fail_unless (time2 == GST_USECOND);
|
|
fail_unless (time2 == GST_TIME_AS_MSECONDS (time));
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_signedness)
|
|
{
|
|
GstClockTime time[] = { 0, 1, G_MAXUINT64 / GST_SECOND };
|
|
GstClockTimeDiff diff[] =
|
|
{ 0, 1, -1, G_MAXINT64 / GST_SECOND, G_MININT64 / GST_SECOND };
|
|
guint i;
|
|
|
|
for (i = 0; i < G_N_ELEMENTS (time); i++) {
|
|
fail_if (time[i] != (time[i] * GST_SECOND / GST_SECOND));
|
|
}
|
|
for (i = 0; i < G_N_ELEMENTS (diff); i++) {
|
|
fail_if (diff[i] != (diff[i] * GST_SECOND / GST_SECOND));
|
|
}
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
#define TIME_UNIT (GST_SECOND / 5)
|
|
static void
|
|
gst_clock_debug (GstClock * clock)
|
|
{
|
|
GstClockTime time;
|
|
|
|
time = gst_clock_get_time (clock);
|
|
GST_DEBUG ("Clock info: time %" GST_TIME_FORMAT, GST_TIME_ARGS (time));
|
|
}
|
|
|
|
static gboolean
|
|
ok_callback (GstClock * clock, GstClockTime time,
|
|
GstClockID id, gpointer user_data)
|
|
{
|
|
GST_LOG ("unlocked async id %p", id);
|
|
return FALSE;
|
|
}
|
|
|
|
static gboolean
|
|
error_callback (GstClock * clock, GstClockTime time,
|
|
GstClockID id, gpointer user_data)
|
|
{
|
|
GST_WARNING ("unlocked unscheduled async id %p, this is wrong", id);
|
|
fail_if (TRUE);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
GMutex store_lock;
|
|
|
|
static gboolean
|
|
store_callback (GstClock * clock, GstClockTime time,
|
|
GstClockID id, gpointer user_data)
|
|
{
|
|
GList **list = user_data;
|
|
|
|
GST_DEBUG ("unlocked async id %p", id);
|
|
g_mutex_lock (&store_lock);
|
|
*list = g_list_append (*list, id);
|
|
g_mutex_unlock (&store_lock);
|
|
return FALSE;
|
|
}
|
|
|
|
static gboolean
|
|
notify_callback (GstClock * clock, GstClockTime time,
|
|
GstClockID id, gpointer user_data)
|
|
{
|
|
gboolean *ret = (gboolean *) user_data;
|
|
|
|
if (ret != NULL)
|
|
*ret = TRUE;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
GST_START_TEST (test_set_default)
|
|
{
|
|
GstClock *clock, *static_clock;
|
|
|
|
/* obtain the default system clock, which keeps a static ref and bumps the
|
|
* refcount before returning */
|
|
static_clock = gst_system_clock_obtain ();
|
|
fail_unless (static_clock != NULL, "Could not create default system clock");
|
|
g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 2);
|
|
|
|
/* set a new default clock to a different instance which should replace the
|
|
* static clock with this one, and unref the static clock */
|
|
clock = g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClock", NULL);
|
|
gst_object_ref_sink (clock);
|
|
gst_system_clock_set_default (clock);
|
|
g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 1);
|
|
g_object_unref (static_clock);
|
|
static_clock = gst_system_clock_obtain ();
|
|
fail_unless (static_clock == clock);
|
|
g_assert_cmpint (GST_OBJECT_REFCOUNT (clock), ==, 3);
|
|
g_object_unref (static_clock);
|
|
|
|
/* Reset the default clock to the static one */
|
|
gst_system_clock_set_default (NULL);
|
|
static_clock = gst_system_clock_obtain ();
|
|
fail_unless (static_clock != clock);
|
|
g_assert_cmpint (GST_OBJECT_REFCOUNT (clock), ==, 1);
|
|
g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 2);
|
|
g_object_unref (clock);
|
|
g_object_unref (static_clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_single_shot)
|
|
{
|
|
GstClock *clock;
|
|
GstClockID id, id2;
|
|
GstClockTime base;
|
|
GstClockReturn result;
|
|
|
|
clock = gst_system_clock_obtain ();
|
|
fail_unless (clock != NULL, "Could not create instance of GstSystemClock");
|
|
|
|
gst_clock_debug (clock);
|
|
base = gst_clock_get_time (clock);
|
|
|
|
id = gst_clock_new_single_shot_id (clock, base + TIME_UNIT);
|
|
fail_unless (id != NULL, "Could not create single shot id");
|
|
|
|
GST_DEBUG ("waiting one time unit");
|
|
result = gst_clock_id_wait (id, NULL);
|
|
gst_clock_debug (clock);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK (result=%d)",
|
|
result);
|
|
fail_unless (gst_clock_get_time (clock) > (base + TIME_UNIT),
|
|
"target time has not been reached");
|
|
|
|
GST_DEBUG ("waiting in the past");
|
|
result = gst_clock_id_wait (id, NULL);
|
|
gst_clock_debug (clock);
|
|
fail_unless (result == GST_CLOCK_EARLY,
|
|
"Waiting did not return EARLY(result=%d)", result);
|
|
gst_clock_id_unref (id);
|
|
|
|
id = gst_clock_new_single_shot_id (clock, base + 2 * TIME_UNIT);
|
|
GST_DEBUG ("waiting one second async id %p", id);
|
|
result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
gst_clock_id_unschedule (id);
|
|
gst_clock_id_unref (id);
|
|
|
|
id = gst_clock_new_single_shot_id (clock, base + 5 * TIME_UNIT);
|
|
GST_DEBUG ("waiting one second async, with cancel on id %p", id);
|
|
result = gst_clock_id_wait_async (id, error_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
GST_DEBUG ("cancel id %p after half a time unit", id);
|
|
gst_clock_id_unschedule (id);
|
|
gst_clock_id_unref (id);
|
|
GST_DEBUG ("canceled id %p", id);
|
|
|
|
GST_DEBUG ("waiting multiple one second async, with cancel");
|
|
id = gst_clock_new_single_shot_id (clock, base + 5 * TIME_UNIT);
|
|
id2 = gst_clock_new_single_shot_id (clock, base + 6 * TIME_UNIT);
|
|
GST_DEBUG ("waiting id %p", id);
|
|
result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
|
|
GST_DEBUG ("waiting id %p", id2);
|
|
result = gst_clock_id_wait_async (id2, error_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
GST_DEBUG ("cancel id %p after half a time unit", id2);
|
|
gst_clock_id_unschedule (id2);
|
|
GST_DEBUG ("canceled id %p", id2);
|
|
gst_clock_id_unref (id2);
|
|
|
|
/* wait for the entry to time out */
|
|
g_usleep (TIME_UNIT / 1000 * 5);
|
|
fail_unless (((GstClockEntry *) id)->status == GST_CLOCK_OK,
|
|
"Waiting did not finish");
|
|
gst_clock_id_unref (id);
|
|
|
|
gst_object_unref (clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_periodic_shot)
|
|
{
|
|
GstClock *clock;
|
|
GstClockID id, id2;
|
|
GstClockTime base;
|
|
GstClockReturn result;
|
|
|
|
clock = gst_system_clock_obtain ();
|
|
fail_unless (clock != NULL, "Could not create instance of GstSystemClock");
|
|
|
|
gst_clock_debug (clock);
|
|
base = gst_clock_get_time (clock);
|
|
|
|
/* signal every half a time unit */
|
|
id = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT / 2);
|
|
fail_unless (id != NULL, "Could not create periodic id");
|
|
|
|
GST_DEBUG ("waiting one time unit");
|
|
result = gst_clock_id_wait (id, NULL);
|
|
gst_clock_debug (clock);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
|
|
GST_DEBUG ("waiting for the next");
|
|
result = gst_clock_id_wait (id, NULL);
|
|
gst_clock_debug (clock);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
|
|
GST_DEBUG ("waiting for the next async %p", id);
|
|
result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
|
|
GST_DEBUG ("waiting some more for the next async %p", id);
|
|
result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
|
|
id2 = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT / 2);
|
|
fail_unless (id2 != NULL, "Could not create second periodic id");
|
|
|
|
GST_DEBUG ("waiting some more for another async %p", id2);
|
|
result = gst_clock_id_wait_async (id2, ok_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
|
|
GST_DEBUG ("unschedule %p", id);
|
|
gst_clock_id_unschedule (id);
|
|
|
|
/* entry cannot be used again */
|
|
result = gst_clock_id_wait_async (id, error_callback, NULL, NULL);
|
|
fail_unless (result == GST_CLOCK_UNSCHEDULED,
|
|
"Waiting did not return UNSCHEDULED");
|
|
result = gst_clock_id_wait (id, NULL);
|
|
fail_unless (result == GST_CLOCK_UNSCHEDULED,
|
|
"Waiting did not return UNSCHEDULED");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
|
|
/* clean up */
|
|
gst_clock_id_unref (id);
|
|
gst_clock_id_unschedule (id2);
|
|
gst_clock_id_unref (id2);
|
|
|
|
gst_object_unref (clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_async_order)
|
|
{
|
|
GstClock *clock;
|
|
GstClockID id1, id2;
|
|
GList *cb_list = NULL, *next;
|
|
GstClockTime base;
|
|
GstClockReturn result;
|
|
|
|
clock = gst_system_clock_obtain ();
|
|
fail_unless (clock != NULL, "Could not create instance of GstSystemClock");
|
|
|
|
gst_clock_debug (clock);
|
|
base = gst_clock_get_time (clock);
|
|
|
|
id1 = gst_clock_new_single_shot_id (clock, base + 2 * TIME_UNIT);
|
|
id2 = gst_clock_new_single_shot_id (clock, base + 1 * TIME_UNIT);
|
|
result = gst_clock_id_wait_async (id1, store_callback, &cb_list, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / (2 * 1000));
|
|
result = gst_clock_id_wait_async (id2, store_callback, &cb_list, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
g_usleep (TIME_UNIT / 1000);
|
|
/* at this point at least one of the timers should have timed out */
|
|
g_mutex_lock (&store_lock);
|
|
fail_unless (cb_list != NULL, "expected notification");
|
|
fail_unless (cb_list->data == id2,
|
|
"Expected notification for id2 to come first");
|
|
g_mutex_unlock (&store_lock);
|
|
g_usleep (TIME_UNIT / 1000);
|
|
g_mutex_lock (&store_lock);
|
|
/* now both should have timed out */
|
|
next = g_list_next (cb_list);
|
|
fail_unless (next != NULL, "expected second notification");
|
|
fail_unless (next->data == id1, "Missing notification for id1");
|
|
g_mutex_unlock (&store_lock);
|
|
|
|
gst_clock_id_unref (id1);
|
|
gst_clock_id_unref (id2);
|
|
g_list_free (cb_list);
|
|
|
|
gst_object_unref (clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_async_order_stress_test)
|
|
{
|
|
#define ALARM_COUNT 20
|
|
GstClock *clock;
|
|
GstClockID id[ALARM_COUNT];
|
|
GList *cb_list = NULL, *cb_list_it;
|
|
GstClockTime base;
|
|
GstClockReturn result;
|
|
unsigned int i;
|
|
|
|
clock = gst_system_clock_obtain ();
|
|
fail_unless (clock != NULL, "Could not create instance of GstSystemClock");
|
|
|
|
gst_clock_debug (clock);
|
|
base = gst_clock_get_time (clock);
|
|
|
|
/* keep inserting at the beginning of the list.
|
|
* We expect the alarm thread to keep detecting the new entries and to
|
|
* switch to wait on the first entry on the list
|
|
*/
|
|
for (i = ALARM_COUNT; i > 0; --i) {
|
|
id[i - 1] = gst_clock_new_single_shot_id (clock, base + i * TIME_UNIT);
|
|
result =
|
|
gst_clock_id_wait_async (id[i - 1], store_callback, &cb_list, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
}
|
|
|
|
g_usleep (TIME_UNIT * (ALARM_COUNT + 1) / 1000);
|
|
/* at this point all the timers should have timed out */
|
|
g_mutex_lock (&store_lock);
|
|
fail_unless (cb_list != NULL, "expected notification");
|
|
cb_list_it = cb_list;
|
|
/* alarms must trigger in order.
|
|
* Will fail if alarm thread did not properly switch to wait on first entry
|
|
* from the list
|
|
*/
|
|
for (i = 0; i < ALARM_COUNT; ++i) {
|
|
fail_unless (cb_list_it != NULL, "No notification received for id[%d]", i);
|
|
fail_unless (cb_list_it->data == id[i],
|
|
"Expected notification for id[%d]", i);
|
|
cb_list_it = g_list_next (cb_list_it);
|
|
}
|
|
g_mutex_unlock (&store_lock);
|
|
|
|
for (i = 0; i < ALARM_COUNT; ++i)
|
|
gst_clock_id_unref (id[i]);
|
|
g_list_free (cb_list);
|
|
|
|
gst_object_unref (clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
struct test_async_sync_interaction_data
|
|
{
|
|
GMutex lock;
|
|
|
|
GstClockID sync_id;
|
|
GstClockID sync_id2;
|
|
|
|
GstClockID async_id;
|
|
GstClockID async_id2;
|
|
GstClockID async_id3;
|
|
};
|
|
|
|
static gboolean
|
|
test_async_sync_interaction_cb (GstClock * clock, GstClockTime time,
|
|
GstClockID id, gpointer user_data)
|
|
{
|
|
struct test_async_sync_interaction_data *td =
|
|
(struct test_async_sync_interaction_data *) (user_data);
|
|
|
|
g_mutex_lock (&td->lock);
|
|
/* The first async callback is ignored */
|
|
if (id == td->async_id)
|
|
goto out;
|
|
|
|
if (id != td->async_id2 && id != td->async_id3)
|
|
goto out;
|
|
|
|
/* Unschedule the sync callback */
|
|
if (id == td->async_id3) {
|
|
gst_clock_id_unschedule (td->sync_id);
|
|
gst_clock_id_unschedule (td->async_id2);
|
|
}
|
|
out:
|
|
g_mutex_unlock (&td->lock);
|
|
return FALSE;
|
|
}
|
|
|
|
GST_START_TEST (test_async_sync_interaction)
|
|
{
|
|
/* This test schedules an async callback, then before it completes, schedules
|
|
* an earlier async callback, and quickly unschedules the first, and inserts
|
|
* a THIRD even earlier async callback. It then attempts to wait on a
|
|
* sync clock ID. While that's sleeping, the 3rd async callback should fire
|
|
* and unschedule it. This tests for problems with unscheduling async and
|
|
* sync callbacks on the system clock. */
|
|
GstClock *clock;
|
|
GstClockReturn result;
|
|
GstClockTime base;
|
|
GstClockTimeDiff jitter;
|
|
struct test_async_sync_interaction_data td;
|
|
int i;
|
|
|
|
clock = gst_system_clock_obtain ();
|
|
fail_unless (clock != NULL, "Could not create instance of GstSystemClock");
|
|
|
|
g_mutex_init (&td.lock);
|
|
|
|
for (i = 0; i < 50; i++) {
|
|
gst_clock_debug (clock);
|
|
base = gst_clock_get_time (clock);
|
|
g_mutex_lock (&td.lock);
|
|
td.async_id = gst_clock_new_single_shot_id (clock, base + 40 * GST_MSECOND);
|
|
td.async_id2 =
|
|
gst_clock_new_single_shot_id (clock, base + 30 * GST_MSECOND);
|
|
td.async_id3 =
|
|
gst_clock_new_single_shot_id (clock, base + 20 * GST_MSECOND);
|
|
td.sync_id2 = gst_clock_new_single_shot_id (clock, base + 10 * GST_MSECOND);
|
|
td.sync_id = gst_clock_new_single_shot_id (clock, base + 50 * GST_MSECOND);
|
|
g_mutex_unlock (&td.lock);
|
|
|
|
result = gst_clock_id_wait_async (td.async_id,
|
|
test_async_sync_interaction_cb, &td, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
|
|
/* Wait 10ms, then unschedule async_id and schedule async_id2 */
|
|
result = gst_clock_id_wait (td.sync_id2, &jitter);
|
|
fail_unless (result == GST_CLOCK_OK || result == GST_CLOCK_EARLY,
|
|
"Waiting did not return OK or EARLY");
|
|
/* async_id2 is earlier than async_id - should become head of the queue */
|
|
result = gst_clock_id_wait_async (td.async_id2,
|
|
test_async_sync_interaction_cb, &td, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
gst_clock_id_unschedule (td.async_id);
|
|
|
|
/* async_id3 is earlier than async_id2 - should become head of the queue */
|
|
result = gst_clock_id_wait_async (td.async_id3,
|
|
test_async_sync_interaction_cb, &td, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
|
|
/* While this is sleeping, the async3 id should fire and unschedule it */
|
|
result = gst_clock_id_wait (td.sync_id, &jitter);
|
|
fail_unless (result == GST_CLOCK_UNSCHEDULED || result == GST_CLOCK_EARLY,
|
|
"Waiting did not return UNSCHEDULED (was %d)", result);
|
|
|
|
gst_clock_id_unschedule (td.async_id3);
|
|
g_mutex_lock (&td.lock);
|
|
|
|
gst_clock_id_unref (td.sync_id);
|
|
gst_clock_id_unref (td.sync_id2);
|
|
gst_clock_id_unref (td.async_id);
|
|
gst_clock_id_unref (td.async_id2);
|
|
gst_clock_id_unref (td.async_id3);
|
|
g_mutex_unlock (&td.lock);
|
|
}
|
|
|
|
g_mutex_clear (&td.lock);
|
|
gst_object_unref (clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_periodic_multi)
|
|
{
|
|
GstClock *clock;
|
|
GstClockID clock_id;
|
|
GstClockID clock_id_async;
|
|
GstClockTime base;
|
|
GstClockReturn result;
|
|
gboolean got_callback = FALSE;
|
|
|
|
clock = gst_system_clock_obtain ();
|
|
fail_unless (clock != NULL, "Could not create instance of GstSystemClock");
|
|
|
|
gst_clock_debug (clock);
|
|
base = gst_clock_get_time (clock);
|
|
|
|
clock_id = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT);
|
|
gst_clock_id_wait (clock_id, NULL);
|
|
fail_unless (gst_clock_get_time (clock) >= base + TIME_UNIT);
|
|
fail_unless (gst_clock_get_time (clock) < base + 2 * TIME_UNIT);
|
|
|
|
/* now perform a concurrent wait and wait_async */
|
|
|
|
clock_id_async =
|
|
gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT);
|
|
result =
|
|
gst_clock_id_wait_async (clock_id_async, notify_callback, &got_callback,
|
|
NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Async waiting did not return OK");
|
|
|
|
result = gst_clock_id_wait (clock_id, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
fail_unless (gst_clock_get_time (clock) >= base + 2 * TIME_UNIT);
|
|
/* give the async thread some time to call our callback: */
|
|
g_usleep (TIME_UNIT / (10 * 1000));
|
|
fail_unless (got_callback == TRUE, "got no async callback (1)");
|
|
fail_unless (gst_clock_get_time (clock) < base + 3 * TIME_UNIT);
|
|
got_callback = FALSE;
|
|
|
|
result = gst_clock_id_wait (clock_id, NULL);
|
|
fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
|
|
fail_unless (gst_clock_get_time (clock) >= base + 3 * TIME_UNIT);
|
|
/* give the async thread some time to call our callback: */
|
|
g_usleep (TIME_UNIT / (10 * 1000));
|
|
fail_unless (got_callback == TRUE, "got no async callback (2)");
|
|
fail_unless (gst_clock_get_time (clock) < base + 4 * TIME_UNIT);
|
|
|
|
/* clean up */
|
|
gst_clock_id_unref (clock_id);
|
|
gst_clock_id_unschedule (clock_id_async);
|
|
gst_clock_id_unref (clock_id_async);
|
|
gst_object_unref (clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_diff)
|
|
{
|
|
GstClockTime time1[] = { 0, (GstClockTime) - 1, 0, 1, 2 * GST_SECOND,
|
|
(GstClockTime) - GST_SECOND, (GstClockTime) - GST_SECOND
|
|
};
|
|
GstClockTime time2[] =
|
|
{ 0, 1, 1, 0, 1 * GST_SECOND, (GstClockTime) - GST_SECOND, GST_SECOND };
|
|
GstClockTimeDiff d[] = { 0, 2, 1, -1, -GST_SECOND, 0, 2 * GST_SECOND };
|
|
guint i;
|
|
|
|
for (i = 0; i < G_N_ELEMENTS (d); i++) {
|
|
fail_if (d[i] != GST_CLOCK_DIFF (time1[i], time2[i]));
|
|
}
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
/* test if a blocking wait, unblocked by an async entry continues to be
|
|
* scheduled */
|
|
typedef struct
|
|
{
|
|
GstClock *clock;
|
|
GstClockID id;
|
|
GstClockTimeDiff jitter;
|
|
GstClockReturn ret;
|
|
} MixedInfo;
|
|
|
|
static gpointer
|
|
mixed_thread (MixedInfo * info)
|
|
{
|
|
info->ret = gst_clock_id_wait (info->id, &info->jitter);
|
|
return NULL;
|
|
}
|
|
|
|
static gboolean
|
|
mixed_async_cb (GstClock * clock, GstClockTime time,
|
|
GstClockID id, gpointer user_data)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
GST_START_TEST (test_mixed)
|
|
{
|
|
GThread *thread;
|
|
GError *error = NULL;
|
|
MixedInfo info;
|
|
GstClockTime base;
|
|
GstClockID id;
|
|
|
|
info.clock = gst_system_clock_obtain ();
|
|
fail_unless (info.clock != NULL,
|
|
"Could not create instance of GstSystemClock");
|
|
|
|
/* get current time of the clock as base time */
|
|
base = gst_clock_get_time (info.clock);
|
|
|
|
/* create entry to wait for 1 second */
|
|
info.id = gst_clock_new_single_shot_id (info.clock, base + GST_SECOND);
|
|
|
|
/* make and start an entry that is scheduled every 10ms */
|
|
id = gst_clock_new_periodic_id (info.clock, base, 10 * GST_MSECOND);
|
|
|
|
/* start waiting for the entry */
|
|
thread =
|
|
g_thread_try_new ("gst-check", (GThreadFunc) mixed_thread, &info, &error);
|
|
fail_unless (error == NULL, "error creating thread");
|
|
fail_unless (thread != NULL, "Could not create thread");
|
|
|
|
/* wait half a second so we are sure to be in the thread */
|
|
g_usleep (G_USEC_PER_SEC / 2);
|
|
|
|
/* start scheduling the entry */
|
|
gst_clock_id_wait_async (id, mixed_async_cb, NULL, NULL);
|
|
|
|
/* wait for thread to finish */
|
|
g_thread_join (thread);
|
|
/* entry must have timed out correctly */
|
|
fail_unless (info.ret == GST_CLOCK_OK, "clock return was %d", info.ret);
|
|
|
|
gst_clock_id_unschedule (id);
|
|
gst_clock_id_unref (id);
|
|
gst_clock_id_unref (info.id);
|
|
gst_object_unref (info.clock);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
static gboolean
|
|
test_async_full_slave_callback (GstClock * master, GstClockTime time,
|
|
GstClockID id, GstClock * clock)
|
|
{
|
|
GstClockTime stime, mtime;
|
|
gdouble r_squared;
|
|
|
|
/* notify the test case that we started */
|
|
GST_INFO ("callback started");
|
|
g_mutex_lock (&af_lock);
|
|
g_cond_signal (&af_cond);
|
|
|
|
/* wait for the test case to unref "clock" and signal */
|
|
GST_INFO ("waiting for test case to signal");
|
|
g_cond_wait (&af_cond, &af_lock);
|
|
|
|
stime = gst_clock_get_internal_time (clock);
|
|
mtime = gst_clock_get_time (master);
|
|
|
|
gst_clock_add_observation (clock, stime, mtime, &r_squared);
|
|
|
|
g_cond_signal (&af_cond);
|
|
g_mutex_unlock (&af_lock);
|
|
GST_INFO ("callback finished");
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
GST_START_TEST (test_async_full)
|
|
{
|
|
GstClock *master, *slave;
|
|
GstClockID *clockid;
|
|
|
|
/* create master and slave */
|
|
master =
|
|
g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClockMaster", NULL);
|
|
gst_object_ref_sink (master);
|
|
slave = g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClockMaster", NULL);
|
|
gst_object_ref_sink (slave);
|
|
GST_OBJECT_FLAG_SET (slave, GST_CLOCK_FLAG_CAN_SET_MASTER);
|
|
g_object_set (slave, "timeout", 50 * GST_MSECOND, NULL);
|
|
|
|
fail_unless (GST_OBJECT_REFCOUNT (master) == 1);
|
|
fail_unless (GST_OBJECT_REFCOUNT (slave) == 1);
|
|
|
|
/* register a periodic shot on the master to calibrate the slave */
|
|
g_mutex_lock (&af_lock);
|
|
clockid = gst_clock_new_periodic_id (master,
|
|
gst_clock_get_time (master), gst_clock_get_timeout (slave));
|
|
gst_clock_id_wait_async (clockid,
|
|
(GstClockCallback) test_async_full_slave_callback,
|
|
gst_object_ref (slave), (GDestroyNotify) gst_object_unref);
|
|
|
|
/* wait for the shot to be fired and test_async_full_slave_callback to be
|
|
* called */
|
|
GST_INFO ("waiting for the slave callback to start");
|
|
g_cond_wait (&af_cond, &af_lock);
|
|
GST_INFO ("slave callback running, unreffing slave");
|
|
|
|
/* unref the slave clock while the slave_callback is running. This should be
|
|
* safe since the master clock now stores a ref to the slave */
|
|
gst_object_unref (slave);
|
|
|
|
/* unref the clock entry. This should be safe as well since the clock thread
|
|
* refs the entry before executing it */
|
|
gst_clock_id_unschedule (clockid);
|
|
gst_clock_id_unref (clockid);
|
|
|
|
/* signal and wait for the callback to complete */
|
|
g_cond_signal (&af_cond);
|
|
|
|
GST_INFO ("waiting for callback to finish");
|
|
g_cond_wait (&af_cond, &af_lock);
|
|
GST_INFO ("callback finished");
|
|
g_mutex_unlock (&af_lock);
|
|
|
|
gst_object_unref (master);
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
GST_START_TEST (test_resolution)
|
|
{
|
|
GstClock *clock;
|
|
GstClockTime now_t, prev_t, resolution;
|
|
int i;
|
|
|
|
now_t = prev_t = GST_CLOCK_TIME_NONE;
|
|
clock = gst_system_clock_obtain ();
|
|
fail_unless (clock != NULL, "Could not create default system clock");
|
|
resolution = gst_clock_get_resolution (clock);
|
|
fail_unless (resolution != GST_CLOCK_TIME_NONE);
|
|
|
|
for (i = 0; i < 100000; ++i) {
|
|
now_t = gst_clock_get_internal_time (clock);
|
|
fail_unless (now_t != GST_CLOCK_TIME_NONE);
|
|
if (prev_t != GST_CLOCK_TIME_NONE) {
|
|
GstClockTime diff;
|
|
fail_unless (now_t >= prev_t);
|
|
diff = now_t - prev_t;
|
|
fail_unless (diff == 0 || diff >= resolution);
|
|
}
|
|
prev_t = now_t;
|
|
g_thread_yield ();
|
|
}
|
|
g_object_unref (clock);
|
|
clock = NULL;
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
typedef struct
|
|
{
|
|
GThread *thread_wait;
|
|
GThread *thread_unschedule;
|
|
GMutex lock;
|
|
gboolean running;
|
|
GstClockID id;
|
|
gboolean unschedule;
|
|
gint32 time_offset_min;
|
|
gint32 time_offset_max;
|
|
gboolean dont_unschedule_positive_offset;
|
|
} WaitUnscheduleData;
|
|
|
|
static gpointer
|
|
single_shot_wait_thread_func (gpointer data)
|
|
{
|
|
WaitUnscheduleData *d = data;
|
|
GstClock *clock = gst_system_clock_obtain ();
|
|
|
|
while (d->running) {
|
|
GstClockTime now;
|
|
gint offset;
|
|
GstClockID id;
|
|
|
|
now = gst_clock_get_time (clock);
|
|
offset = g_random_int_range (d->time_offset_min, d->time_offset_max);
|
|
|
|
g_mutex_lock (&d->lock);
|
|
d->unschedule = d->dont_unschedule_positive_offset ? offset < 0 : TRUE;
|
|
id = d->id =
|
|
gst_clock_new_single_shot_id (clock, now + (GstClockTime) offset);
|
|
g_mutex_unlock (&d->lock);
|
|
|
|
fail_unless (id != NULL, "Could not create single shot id");
|
|
|
|
gst_clock_id_wait (id, NULL);
|
|
|
|
g_mutex_lock (&d->lock);
|
|
gst_clock_id_unref (id);
|
|
d->id = NULL;
|
|
g_mutex_unlock (&d->lock);
|
|
}
|
|
|
|
g_object_unref (clock);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static gpointer
|
|
unschedule_thread_func (gpointer data)
|
|
{
|
|
WaitUnscheduleData *d = data;
|
|
|
|
while (d->running) {
|
|
g_mutex_lock (&d->lock);
|
|
if (d->id && d->unschedule) {
|
|
g_thread_yield ();
|
|
gst_clock_id_unschedule (d->id);
|
|
}
|
|
g_mutex_unlock (&d->lock);
|
|
g_thread_yield ();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
GST_START_TEST (test_stress_cleanup_unschedule)
|
|
{
|
|
WaitUnscheduleData data[50];
|
|
gint i;
|
|
|
|
for (i = 0; i < G_N_ELEMENTS (data); i++) {
|
|
WaitUnscheduleData *d = &data[i];
|
|
|
|
/* Don't unschedule waits with positive offsets in order to trigger
|
|
* gst_system_clock_wait_wakeup() */
|
|
d->dont_unschedule_positive_offset = TRUE;
|
|
/* Overweight of negative offsets in order to trigger GST_CLOCK_EARLY more
|
|
* frequently */
|
|
d->time_offset_min = -GST_MSECOND;
|
|
d->time_offset_max = GST_MSECOND / 10;
|
|
|
|
/* Initialize test */
|
|
d->id = NULL;
|
|
d->running = TRUE;
|
|
g_mutex_init (&d->lock);
|
|
d->thread_wait = g_thread_new ("wait", single_shot_wait_thread_func, d);
|
|
d->thread_unschedule = g_thread_new ("unschedule", unschedule_thread_func,
|
|
d);
|
|
}
|
|
|
|
/* Test duration */
|
|
g_usleep (G_USEC_PER_SEC);
|
|
|
|
/* Stop and free test data */
|
|
for (i = 0; i < G_N_ELEMENTS (data); i++) {
|
|
WaitUnscheduleData *d = &data[i];
|
|
d->running = FALSE;
|
|
g_thread_join (d->thread_wait);
|
|
g_thread_join (d->thread_unschedule);
|
|
g_mutex_clear (&d->lock);
|
|
}
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
|
|
GST_START_TEST (test_stress_reschedule)
|
|
{
|
|
WaitUnscheduleData data[50];
|
|
gint i;
|
|
|
|
for (i = 0; i < G_N_ELEMENTS (data); i++) {
|
|
WaitUnscheduleData *d = &data[i];
|
|
|
|
/* Try to unschedule all waits */
|
|
d->dont_unschedule_positive_offset = FALSE;
|
|
/* Small positive offsets in order to have both negative and positive
|
|
* diffs when a reschedule is needed. */
|
|
d->time_offset_min = 0;
|
|
d->time_offset_max = GST_MSECOND;
|
|
|
|
d->id = NULL;
|
|
d->running = TRUE;
|
|
g_mutex_init (&d->lock);
|
|
d->thread_wait = g_thread_new ("wait", single_shot_wait_thread_func, d);
|
|
d->thread_unschedule = g_thread_new ("unschedule", unschedule_thread_func,
|
|
d);
|
|
}
|
|
|
|
/* Test duration */
|
|
g_usleep (G_USEC_PER_SEC);
|
|
|
|
/* Stop and free test data */
|
|
for (i = 0; i < G_N_ELEMENTS (data); i++) {
|
|
WaitUnscheduleData *d = &data[i];
|
|
d->running = FALSE;
|
|
g_thread_join (d->thread_wait);
|
|
g_thread_join (d->thread_unschedule);
|
|
g_mutex_clear (&d->lock);
|
|
}
|
|
}
|
|
|
|
GST_END_TEST;
|
|
|
|
|
|
static Suite *
|
|
gst_systemclock_suite (void)
|
|
{
|
|
Suite *s = suite_create ("GstSystemClock");
|
|
TCase *tc_chain = tcase_create ("waiting");
|
|
|
|
suite_add_tcase (s, tc_chain);
|
|
tcase_add_test (tc_chain, test_range);
|
|
tcase_add_test (tc_chain, test_signedness);
|
|
tcase_add_test (tc_chain, test_single_shot);
|
|
tcase_add_test (tc_chain, test_periodic_shot);
|
|
tcase_add_test (tc_chain, test_periodic_multi);
|
|
tcase_add_test (tc_chain, test_async_order);
|
|
tcase_add_test (tc_chain, test_async_order_stress_test);
|
|
tcase_add_test (tc_chain, test_async_sync_interaction);
|
|
tcase_add_test (tc_chain, test_diff);
|
|
tcase_add_test (tc_chain, test_mixed);
|
|
tcase_add_test (tc_chain, test_async_full);
|
|
tcase_add_test (tc_chain, test_set_default);
|
|
tcase_add_test (tc_chain, test_resolution);
|
|
tcase_add_test (tc_chain, test_stress_cleanup_unschedule);
|
|
tcase_add_test (tc_chain, test_stress_reschedule);
|
|
|
|
return s;
|
|
}
|
|
|
|
GST_CHECK_MAIN (gst_systemclock);
|