gstreamer/gst-libs/gst/audio/audio-resampler.c
2016-03-28 13:25:51 +02:00

1169 lines
36 KiB
C

/* GStreamer
* Copyright (C) <2015> Wim Taymans <wim.taymans@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include <stdio.h>
#include <math.h>
#ifdef HAVE_ORC
#include <orc/orc.h>
#endif
#include "audio-resampler.h"
typedef struct _Tap
{
gpointer taps;
gint sample_inc;
gint next_phase;
gint size;
} Tap;
typedef void (*MakeTapsFunc) (GstAudioResampler * resampler, Tap * t, gint j);
typedef void (*ResampleFunc) (GstAudioResampler * resampler, gpointer in[],
gsize in_len, gpointer out[], gsize out_len, gsize * consumed);
typedef void (*DeinterleaveFunc) (GstAudioResampler * resampler,
gpointer * sbuf, gpointer in[], gsize in_frames);
#define MEM_ALIGN(m,a) ((gint8 *)((guintptr)((gint8 *)(m) + ((a)-1)) & ~((a)-1)))
#define ALIGN 16
#define TAPS_OVERREAD 16
struct _GstAudioResampler
{
GstAudioResamplerMethod method;
GstAudioResamplerFlags flags;
GstAudioFormat format;
GstStructure *options;
guint channels;
gint in_rate;
gint out_rate;
gint bps, bpf;
gint ostride;
gdouble cutoff;
gdouble kaiser_beta;
/* for cubic */
gdouble b, c;
guint n_taps;
Tap *taps;
gpointer coeff;
gpointer coeffmem;
gsize cstride;
gpointer tmpcoeff;
DeinterleaveFunc deinterleave;
ResampleFunc resample;
guint blocks;
guint inc;
gint samp_inc;
gint samp_frac;
gint samp_index;
gint samp_phase;
gint skip;
gpointer samples;
gsize samples_len;
gsize samples_avail;
gpointer *sbuf;
};
GST_DEBUG_CATEGORY_STATIC (audio_resampler_debug);
#define GST_CAT_DEFAULT audio_resampler_debug
/**
* SECTION:gstaudioresampler
* @short_description: Utility structure for resampler information
*
* #GstAudioResampler is a structure which holds the information
* required to perform various kinds of resampling filtering.
*
*/
typedef struct
{
gdouble cutoff;
gdouble downsample_cutoff_factor;
gdouble stopband_attenuation;
gdouble transition_bandwidth;
} KaiserQualityMap;
static const KaiserQualityMap kaiser_qualities[] = {
{0.860, 0.96511, 60, 0.7}, /* 8 taps */
{0.880, 0.96591, 65, 0.29}, /* 16 taps */
{0.910, 0.96923, 70, 0.145}, /* 32 taps */
{0.920, 0.97600, 80, 0.105}, /* 48 taps */
{0.940, 0.97979, 85, 0.087}, /* 64 taps default quality */
{0.940, 0.98085, 95, 0.077}, /* 80 taps */
{0.945, 0.99471, 100, 0.068}, /* 96 taps */
{0.950, 1.0, 105, 0.055}, /* 128 taps */
{0.960, 1.0, 110, 0.045}, /* 160 taps */
{0.968, 1.0, 115, 0.039}, /* 192 taps */
{0.975, 1.0, 120, 0.0305} /* 256 taps */
};
typedef struct
{
guint n_taps;
gdouble cutoff;
} BlackmanQualityMap;
static const BlackmanQualityMap blackman_qualities[] = {
{8, 0.5,},
{16, 0.6,},
{24, 0.72,},
{32, 0.8,},
{48, 0.85,}, /* default */
{64, 0.90,},
{80, 0.92,},
{96, 0.933,},
{128, 0.950,},
{148, 0.955,},
{160, 0.960,}
};
#define DEFAULT_QUALITY GST_AUDIO_RESAMPLER_QUALITY_DEFAULT
#define DEFAULT_OPT_CUBIC_B 1.0
#define DEFAULT_OPT_CUBIC_C 0.0
static gdouble
get_opt_double (GstStructure * options, const gchar * name, gdouble def)
{
gdouble res;
if (!options || !gst_structure_get_double (options, name, &res))
res = def;
return res;
}
static gint
get_opt_int (GstStructure * options, const gchar * name, gint def)
{
gint res;
if (!options || !gst_structure_get_int (options, name, &res))
res = def;
return res;
}
#define GET_OPT_CUTOFF(options,def) get_opt_double(options, \
GST_AUDIO_RESAMPLER_OPT_CUTOFF,def)
#define GET_OPT_DOWN_CUTOFF_FACTOR(options,def) get_opt_double(options, \
GST_AUDIO_RESAMPLER_OPT_DOWN_CUTOFF_FACTOR, def)
#define GET_OPT_STOP_ATTENUATION(options,def) get_opt_double(options, \
GST_AUDIO_RESAMPLER_OPT_STOP_ATTENUATION, def)
#define GET_OPT_TRANSITION_BANDWIDTH(options,def) get_opt_double(options, \
GST_AUDIO_RESAMPLER_OPT_TRANSITION_BANDWIDTH, def)
#define GET_OPT_CUBIC_B(options) get_opt_double(options, \
GST_AUDIO_RESAMPLER_OPT_CUBIC_B, DEFAULT_OPT_CUBIC_B)
#define GET_OPT_CUBIC_C(options) get_opt_double(options, \
GST_AUDIO_RESAMPLER_OPT_CUBIC_C, DEFAULT_OPT_CUBIC_C)
#define GET_OPT_N_TAPS(options,def) get_opt_int(options, \
GST_AUDIO_RESAMPLER_OPT_N_TAPS, def)
#include "dbesi0.c"
#define bessel dbesi0
static inline gdouble
get_nearest_tap (GstAudioResampler * resampler, gdouble x)
{
gdouble a = fabs (x);
if (a < 0.5)
return 1.0;
else
return 0.0;
}
static inline gdouble
get_linear_tap (GstAudioResampler * resampler, gdouble x)
{
gdouble a;
a = fabs (x) / resampler->n_taps;
if (a < 1.0)
return 1.0 - a;
else
return 0.0;
}
static inline gdouble
get_cubic_tap (GstAudioResampler * resampler, gdouble x)
{
gdouble a, a2, a3, b, c;
a = fabs (x * 4.0) / resampler->n_taps;
a2 = a * a;
a3 = a2 * a;
b = resampler->b;
c = resampler->c;
if (a <= 1.0)
return ((12.0 - 9.0 * b - 6.0 * c) * a3 +
(-18.0 + 12.0 * b + 6.0 * c) * a2 + (6.0 - 2.0 * b)) / 6.0;
else if (a <= 2.0)
return ((-b - 6.0 * c) * a3 +
(6.0 * b + 30.0 * c) * a2 +
(-12.0 * b - 48.0 * c) * a + (8.0 * b + 24.0 * c)) / 6.0;
else
return 0.0;
}
static inline gdouble
get_blackman_nuttall_tap (GstAudioResampler * resampler, gdouble x)
{
gdouble s, y, w, Fc = resampler->cutoff;
y = G_PI * x;
s = (y == 0.0 ? Fc : sin (y * Fc) / y);
w = 2.0 * y / resampler->n_taps + G_PI;
return s * (0.3635819 - 0.4891775 * cos (w) + 0.1365995 * cos (2 * w) -
0.0106411 * cos (3 * w));
}
static inline gdouble
get_kaiser_tap (GstAudioResampler * resampler, gdouble x)
{
gdouble s, y, w, Fc = resampler->cutoff;
y = G_PI * x;
s = (y == 0.0 ? Fc : sin (y * Fc) / y);
w = 2.0 * x / resampler->n_taps;
return s * bessel (resampler->kaiser_beta * sqrt (MAX (1 - w * w, 0)));
}
#define CONVERT_TAPS(type, precision) \
G_STMT_START { \
type *taps = t->taps = (type *) ((gint8*)resampler->coeff + j * resampler->cstride); \
gdouble multiplier = (1 << precision); \
gint i, j; \
gdouble offset, l_offset, h_offset; \
gboolean exact = FALSE; \
/* Round to integer, but with an adjustable bias that we use to */ \
/* eliminate the DC error. */ \
l_offset = 0.0; \
h_offset = 1.0; \
offset = 0.5; \
for (i = 0; i < 32; i++) { \
gint64 sum = 0; \
for (j = 0; j < n_taps; j++) \
sum += taps[j] = floor (offset + tmpcoeff[j] * multiplier / weight); \
if (sum == (1 << precision)) { \
exact = TRUE; \
break; \
} \
if (l_offset == h_offset) \
break; \
if (sum < (1 << precision)) { \
if (offset > l_offset) \
l_offset = offset; \
offset += (h_offset - l_offset) / 2; \
} else { \
if (offset < h_offset) \
h_offset = offset; \
offset -= (h_offset - l_offset) / 2; \
} \
} \
if (!exact) \
GST_WARNING ("can't find exact taps"); \
} G_STMT_END
#define PRECISION_S16 15
#define PRECISION_S32 30
static void
make_taps (GstAudioResampler * resampler, Tap * t, gint j)
{
gint n_taps = resampler->n_taps;
gdouble x, weight = 0.0;
gdouble *tmpcoeff = resampler->tmpcoeff;
gint tap_offs = n_taps / 2;
gint out_rate = resampler->out_rate;
gint l;
x = ((double) (1.0 - tap_offs) - (double) j / out_rate);
switch (resampler->method) {
case GST_AUDIO_RESAMPLER_METHOD_NEAREST:
for (l = 0; l < n_taps; l++, x += 1.0)
weight += tmpcoeff[l] = get_nearest_tap (resampler, x);
break;
case GST_AUDIO_RESAMPLER_METHOD_LINEAR:
for (l = 0; l < n_taps; l++, x += 1.0)
weight += tmpcoeff[l] = get_linear_tap (resampler, x);
break;
case GST_AUDIO_RESAMPLER_METHOD_CUBIC:
for (l = 0; l < n_taps; l++, x += 1.0)
weight += tmpcoeff[l] = get_cubic_tap (resampler, x);
break;
case GST_AUDIO_RESAMPLER_METHOD_BLACKMAN_NUTTALL:
for (l = 0; l < n_taps; l++, x += 1.0)
weight += tmpcoeff[l] = get_blackman_nuttall_tap (resampler, x);
break;
case GST_AUDIO_RESAMPLER_METHOD_KAISER:
for (l = 0; l < n_taps; l++, x += 1.0)
weight += tmpcoeff[l] = get_kaiser_tap (resampler, x);
break;
default:
break;
}
switch (resampler->format) {
case GST_AUDIO_FORMAT_F64:
{
gdouble *taps = t->taps =
(gdouble *) ((gint8 *) resampler->coeff + j * resampler->cstride);
for (l = 0; l < n_taps; l++)
taps[l] = tmpcoeff[l] / weight;
break;
}
case GST_AUDIO_FORMAT_F32:
{
gfloat *taps = t->taps =
(gfloat *) ((gint8 *) resampler->coeff + j * resampler->cstride);
for (l = 0; l < n_taps; l++)
taps[l] = tmpcoeff[l] / weight;
break;
}
case GST_AUDIO_FORMAT_S32:
CONVERT_TAPS (gint32, PRECISION_S32);
break;
case GST_AUDIO_FORMAT_S16:
CONVERT_TAPS (gint16, PRECISION_S16);
break;
default:
break;
}
}
static inline void
inner_product_gint16_1_c (gint16 * o, const gint16 * a, const gint16 * b,
gint len)
{
gint i;
gint32 res = 0;
for (i = 0; i < len; i++)
res += (gint32) a[i] * (gint32) b[i];
res = (res + (1 << (PRECISION_S16 - 1))) >> PRECISION_S16;
*o = CLAMP (res, -(1L << 15), (1L << 15) - 1);
}
static inline void
inner_product_gint32_1_c (gint32 * o, const gint32 * a, const gint32 * b,
gint len)
{
gint i;
gint64 res = 0;
for (i = 0; i < len; i++)
res += (gint64) a[i] * (gint64) b[i];
res = (res + (1 << (PRECISION_S32 - 1))) >> PRECISION_S32;
*o = CLAMP (res, -(1L << 31), (1L << 31) - 1);
}
static inline void
inner_product_gfloat_1_c (gfloat * o, const gfloat * a, const gfloat * b,
gint len)
{
gint i;
gfloat res = 0.0;
for (i = 0; i < len; i++)
res += a[i] * b[i];
*o = res;
}
static inline void
inner_product_gdouble_1_c (gdouble * o, const gdouble * a, const gdouble * b,
gint len)
{
gint i;
gdouble res = 0.0;
for (i = 0; i < len; i++)
res += a[i] * b[i];
*o = res;
}
#define MAKE_RESAMPLE_FUNC(type,channels,arch) \
static void \
resample_ ##type## _ ##channels## _ ##arch (GstAudioResampler * resampler, \
gpointer in[], gsize in_len, gpointer out[], gsize out_len, \
gsize * consumed) \
{ \
gint c, di = 0; \
gint n_taps = resampler->n_taps; \
gint blocks = resampler->blocks; \
gint ostride = resampler->ostride; \
gint samp_index = 0; \
gint samp_phase = 0; \
\
for (c = 0; c < blocks; c++) { \
type *ip = in[c]; \
type *op = ostride == 1 ? out[c] : (type *)out[0] + c; \
\
samp_index = resampler->samp_index; \
samp_phase = resampler->samp_phase; \
\
for (di = 0; di < out_len; di++) { \
Tap *t = &resampler->taps[samp_phase]; \
type *ipp = &ip[samp_index * channels]; \
\
if (G_UNLIKELY (t->taps == NULL)) \
make_taps (resampler, t, samp_phase); \
\
inner_product_ ##type## _##channels##_##arch (op, ipp, t->taps, n_taps); \
op += ostride; \
\
samp_phase = t->next_phase; \
samp_index += t->sample_inc; \
} \
memmove (ip, &ip[samp_index * channels], \
(in_len - samp_index) * sizeof(type) * channels); \
} \
*consumed = samp_index - resampler->samp_index; \
\
resampler->samp_index = 0; \
resampler->samp_phase = samp_phase; \
}
MAKE_RESAMPLE_FUNC (gint16, 1, c);
MAKE_RESAMPLE_FUNC (gint32, 1, c);
MAKE_RESAMPLE_FUNC (gfloat, 1, c);
MAKE_RESAMPLE_FUNC (gdouble, 1, c);
static ResampleFunc resample_funcs[] = {
resample_gint16_1_c,
resample_gint32_1_c,
resample_gfloat_1_c,
resample_gdouble_1_c,
NULL,
NULL,
NULL,
NULL,
};
#define resample_gint16_1 resample_funcs[0]
#define resample_gint32_1 resample_funcs[1]
#define resample_gfloat_1 resample_funcs[2]
#define resample_gdouble_1 resample_funcs[3]
#define resample_gint16_2 resample_funcs[4]
#define resample_gint32_2 resample_funcs[5]
#define resample_gfloat_2 resample_funcs[6]
#define resample_gdouble_2 resample_funcs[7]
#if defined HAVE_ORC && !defined DISABLE_ORC
# if defined (__i386__) || defined (__x86_64__)
# define CHECK_X86
# include "audio-resampler-x86.h"
# endif
#endif
static void
audio_resampler_init (void)
{
static gsize init_gonce = 0;
if (g_once_init_enter (&init_gonce)) {
GST_DEBUG_CATEGORY_INIT (audio_resampler_debug, "audio-resampler", 0,
"audio-resampler object");
#if defined HAVE_ORC && !defined DISABLE_ORC
orc_init ();
{
OrcTarget *target = orc_target_get_default ();
gint i;
if (target) {
unsigned int flags = orc_target_get_default_flags (target);
const gchar *name;
name = orc_target_get_name (target);
GST_DEBUG ("target %s, default flags %08x", name, flags);
for (i = 0; i < 32; ++i) {
if (flags & (1U << i)) {
name = orc_target_get_flag_name (target, i);
GST_DEBUG ("target flag %s", name);
#ifdef CHECK_X86
audio_resampler_check_x86 (name);
#endif
}
}
}
}
#endif
g_once_init_leave (&init_gonce, 1);
}
}
#define MAKE_DEINTERLEAVE_FUNC(type) \
static void \
deinterleave_ ##type (GstAudioResampler * resampler, gpointer sbuf[], \
gpointer in[], gsize in_frames) \
{ \
guint i, c, channels = resampler->channels; \
gsize samples_avail = resampler->samples_avail; \
for (c = 0; c < channels; c++) { \
type *s = (type *) sbuf[c] + samples_avail; \
if (G_UNLIKELY (in == NULL)) { \
for (i = 0; i < in_frames; i++) \
s[i] = 0; \
} else { \
type *ip = (type *) in[0] + c; \
for (i = 0; i < in_frames; i++, ip += channels) \
s[i] = *ip; \
} \
} \
}
MAKE_DEINTERLEAVE_FUNC (gdouble);
MAKE_DEINTERLEAVE_FUNC (gfloat);
MAKE_DEINTERLEAVE_FUNC (gint32);
MAKE_DEINTERLEAVE_FUNC (gint16);
static void
deinterleave_copy (GstAudioResampler * resampler, gpointer sbuf[],
gpointer in[], gsize in_frames)
{
guint c, blocks = resampler->blocks;
gsize bytes_avail, in_bytes, bpf;
bpf = resampler->bps * resampler->inc;
bytes_avail = resampler->samples_avail * bpf;
in_bytes = in_frames * bpf;
for (c = 0; c < blocks; c++) {
if (G_UNLIKELY (in == NULL))
memset ((guint8 *) sbuf[c] + bytes_avail, 0, in_bytes);
else
memcpy ((guint8 *) sbuf[c] + bytes_avail, in[c], in_bytes);
}
}
static void
calculate_kaiser_params (GstAudioResampler * resampler)
{
gdouble A, B, dw, tr_bw, Fc;
gint n;
const KaiserQualityMap *q = &kaiser_qualities[DEFAULT_QUALITY];
/* default cutoff */
Fc = q->cutoff;
if (resampler->out_rate < resampler->in_rate)
Fc *= q->downsample_cutoff_factor;
Fc = GET_OPT_CUTOFF (resampler->options, Fc);
A = GET_OPT_STOP_ATTENUATION (resampler->options, q->stopband_attenuation);
tr_bw =
GET_OPT_TRANSITION_BANDWIDTH (resampler->options,
q->transition_bandwidth);
GST_LOG ("Fc %f, A %f, tr_bw %f", Fc, A, tr_bw);
/* calculate Beta */
if (A > 50)
B = 0.1102 * (A - 8.7);
else if (A >= 21)
B = 0.5842 * pow (A - 21, 0.4) + 0.07886 * (A - 21);
else
B = 0.0;
/* calculate transition width in radians */
dw = 2 * G_PI * (tr_bw);
/* order of the filter */
n = (A - 8.0) / (2.285 * dw);
resampler->kaiser_beta = B;
resampler->n_taps = n + 1;
resampler->cutoff = Fc;
GST_LOG ("using Beta %f n_taps %d cutoff %f", resampler->kaiser_beta,
resampler->n_taps, resampler->cutoff);
}
static void
resampler_calculate_taps (GstAudioResampler * resampler)
{
gint bps;
gint j;
gint n_taps;
gint out_rate;
gint in_rate;
gboolean non_interleaved;
DeinterleaveFunc deinterleave;
ResampleFunc resample, resample_2;
switch (resampler->method) {
case GST_AUDIO_RESAMPLER_METHOD_NEAREST:
resampler->n_taps = 2;
break;
case GST_AUDIO_RESAMPLER_METHOD_LINEAR:
resampler->n_taps = GET_OPT_N_TAPS (resampler->options, 2);
break;
case GST_AUDIO_RESAMPLER_METHOD_CUBIC:
resampler->n_taps = GET_OPT_N_TAPS (resampler->options, 4);
resampler->b = GET_OPT_CUBIC_B (resampler->options);
resampler->c = GET_OPT_CUBIC_C (resampler->options);;
break;
case GST_AUDIO_RESAMPLER_METHOD_BLACKMAN_NUTTALL:
{
const BlackmanQualityMap *q = &blackman_qualities[DEFAULT_QUALITY];
resampler->n_taps = GET_OPT_N_TAPS (resampler->options, q->n_taps);
resampler->cutoff = GET_OPT_CUTOFF (resampler->options, q->cutoff);
break;
}
case GST_AUDIO_RESAMPLER_METHOD_KAISER:
calculate_kaiser_params (resampler);
break;
}
in_rate = resampler->in_rate;
out_rate = resampler->out_rate;
if (out_rate < in_rate) {
resampler->cutoff = resampler->cutoff * out_rate / in_rate;
resampler->n_taps = resampler->n_taps * in_rate / out_rate;
}
/* only round up for bigger taps, the small taps are used for nearest,
* linear and cubic and we want to use less taps for those. */
if (resampler->n_taps > 4)
resampler->n_taps = GST_ROUND_UP_8 (resampler->n_taps);
n_taps = resampler->n_taps;
bps = resampler->bps;
GST_LOG ("using n_taps %d cutoff %f", n_taps, resampler->cutoff);
resampler->taps = g_realloc_n (resampler->taps, out_rate, sizeof (Tap));
resampler->cstride = GST_ROUND_UP_32 (bps * (n_taps + TAPS_OVERREAD));
g_free (resampler->coeffmem);
resampler->coeffmem = g_malloc0 (out_rate * resampler->cstride + ALIGN - 1);
resampler->coeff = MEM_ALIGN (resampler->coeffmem, ALIGN);
resampler->tmpcoeff =
g_realloc_n (resampler->tmpcoeff, n_taps, sizeof (gdouble));
resampler->samp_inc = in_rate / out_rate;
resampler->samp_frac = in_rate % out_rate;
for (j = 0; j < out_rate; j++) {
Tap *t = &resampler->taps[j];
t->taps = NULL;
t->sample_inc = (j + in_rate) / out_rate;
t->next_phase = (j + in_rate) % out_rate;
}
non_interleaved =
(resampler->flags & GST_AUDIO_RESAMPLER_FLAG_NON_INTERLEAVED);
resampler->ostride = non_interleaved ? 1 : resampler->channels;
/* we resample each channel separately */
resampler->blocks = resampler->channels;
resampler->inc = 1;
switch (resampler->format) {
case GST_AUDIO_FORMAT_S16:
resample = resample_gint16_1;
resample_2 = resample_gint16_2;
deinterleave = deinterleave_gint16;
break;
case GST_AUDIO_FORMAT_S32:
resample = resample_gint32_1;
resample_2 = resample_gint32_2;
deinterleave = deinterleave_gint32;
break;
case GST_AUDIO_FORMAT_F32:
resample = resample_gfloat_1;
resample_2 = resample_gfloat_2;
deinterleave = deinterleave_gfloat;
break;
case GST_AUDIO_FORMAT_F64:
resample = resample_gdouble_1;
resample_2 = resample_gdouble_2;
deinterleave = deinterleave_gdouble;
break;
default:
g_assert_not_reached ();
break;
}
if (!non_interleaved && resampler->channels == 2 && n_taps >= 4 && resample_2) {
resampler->resample = resample_2;
resampler->deinterleave = deinterleave_copy;
resampler->blocks = 1;
resampler->inc = resampler->channels;;
} else {
resampler->resample = resample;
resampler->deinterleave = deinterleave;
}
}
#define PRINT_TAPS(type,print) \
G_STMT_START { \
type sum = 0.0, *taps; \
\
if (t->taps == NULL) \
make_taps (resampler, t, i); \
\
taps = t->taps; \
for (j = 0; j < n_taps; j++) { \
type tap = taps[j]; \
fprintf (stderr, "\t%" print " ", tap); \
sum += tap; \
} \
fprintf (stderr, "\t: sum %" print "\n", sum);\
} G_STMT_END
static void
resampler_dump (GstAudioResampler * resampler)
{
#if 0
gint i, n_taps, out_rate;
gint64 a;
out_rate = resampler->out_rate;
n_taps = resampler->n_taps;
fprintf (stderr, "out size %d, max taps %d\n", out_rate, n_taps);
a = g_get_monotonic_time ();
for (i = 0; i < out_rate; i++) {
gint j;
Tap *t = &resampler->taps[i];
fprintf (stderr, "%u: %d %d\t ", i, t->sample_inc, t->next_phase);
switch (resampler->format) {
case GST_AUDIO_FORMAT_F64:
PRINT_TAPS (gdouble, "f");
break;
case GST_AUDIO_FORMAT_F32:
PRINT_TAPS (gfloat, "f");
break;
case GST_AUDIO_FORMAT_S32:
PRINT_TAPS (gint32, "d");
break;
case GST_AUDIO_FORMAT_S16:
PRINT_TAPS (gint16, "d");
break;
default:
break;
}
}
fprintf (stderr, "time %" G_GUINT64_FORMAT "\n", g_get_monotonic_time () - a);
#endif
}
/**
* gst_audio_resampler_options_set_quality:
* @method: a #GstAudioResamplerMethod
* @quality: the quality
* @in_rate: the input rate
* @out_rate: the output rate
* @options: a #GstStructure
*
* Set the parameters for resampling from @in_rate to @out_rate using @method
* for @quality in @options.
*/
void
gst_audio_resampler_options_set_quality (GstAudioResamplerMethod method,
guint quality, guint in_rate, guint out_rate, GstStructure * options)
{
g_return_if_fail (options != NULL);
g_return_if_fail (quality < 11);
g_return_if_fail (in_rate != 0 && out_rate != 0);
switch (method) {
case GST_AUDIO_RESAMPLER_METHOD_NEAREST:
break;
case GST_AUDIO_RESAMPLER_METHOD_LINEAR:
gst_structure_set (options,
GST_AUDIO_RESAMPLER_OPT_N_TAPS, G_TYPE_INT, 2, NULL);
break;
case GST_AUDIO_RESAMPLER_METHOD_CUBIC:
gst_structure_set (options,
GST_AUDIO_RESAMPLER_OPT_N_TAPS, G_TYPE_INT, 4,
GST_AUDIO_RESAMPLER_OPT_CUBIC_B, G_TYPE_DOUBLE, DEFAULT_OPT_CUBIC_B,
GST_AUDIO_RESAMPLER_OPT_CUBIC_C, G_TYPE_DOUBLE, DEFAULT_OPT_CUBIC_C,
NULL);
break;
case GST_AUDIO_RESAMPLER_METHOD_BLACKMAN_NUTTALL:
{
const BlackmanQualityMap *map = &blackman_qualities[quality];
gst_structure_set (options,
GST_AUDIO_RESAMPLER_OPT_N_TAPS, G_TYPE_INT, map->n_taps,
GST_AUDIO_RESAMPLER_OPT_CUTOFF, G_TYPE_DOUBLE, map->cutoff, NULL);
break;
}
case GST_AUDIO_RESAMPLER_METHOD_KAISER:
{
const KaiserQualityMap *map = &kaiser_qualities[quality];
gdouble cutoff;
cutoff = map->cutoff;
if (out_rate < in_rate)
cutoff *= map->downsample_cutoff_factor;
gst_structure_set (options,
GST_AUDIO_RESAMPLER_OPT_CUTOFF, G_TYPE_DOUBLE, cutoff,
GST_AUDIO_RESAMPLER_OPT_STOP_ATTENUATION, G_TYPE_DOUBLE,
map->stopband_attenuation,
GST_AUDIO_RESAMPLER_OPT_TRANSITION_BANDWIDTH, G_TYPE_DOUBLE,
map->transition_bandwidth, NULL);
break;
}
}
}
/**
* gst_audio_resampler_new:
* @resampler: a #GstAudioResampler
* @method: a #GstAudioResamplerMethod
* @flags: #GstAudioResamplerFlags
* @in_rate: input rate
* @out_rate: output rate
* @options: extra options
*
* Make a new resampler.
*
* Returns: %TRUE on success
*/
GstAudioResampler *
gst_audio_resampler_new (GstAudioResamplerMethod method,
GstAudioResamplerFlags flags,
GstAudioFormat format, guint channels,
guint in_rate, guint out_rate, GstStructure * options)
{
GstAudioResampler *resampler;
const GstAudioFormatInfo *info;
g_return_val_if_fail (in_rate != 0, FALSE);
g_return_val_if_fail (out_rate != 0, FALSE);
audio_resampler_init ();
resampler = g_slice_new0 (GstAudioResampler);
resampler->method = method;
resampler->flags = flags;
resampler->format = format;
resampler->channels = channels;
info = gst_audio_format_get_info (format);
resampler->bps = GST_AUDIO_FORMAT_INFO_WIDTH (info) / 8;
resampler->bpf = resampler->bps * channels;
resampler->sbuf = g_malloc0 (sizeof (gpointer) * channels);
GST_DEBUG ("method %d, bps %d, bpf %d", method, resampler->bps,
resampler->bpf);
gst_audio_resampler_update (resampler, in_rate, out_rate, options);
return resampler;
}
/**
* gst_audio_resampler_update:
* @resampler: a #GstAudioResampler
* @in_rate: new input rate
* @out_rate: new output rate
* @options: new options or %NULL
*
* Update the resampler parameters for @resampler. This function should
* not be called concurrently with any other function on @resampler.
*
* When @in_rate or @out_rate is 0, its value is unchanged.
*
* Returns: %TRUE if the new parameters could be set
*/
gboolean
gst_audio_resampler_update (GstAudioResampler * resampler,
guint in_rate, guint out_rate, GstStructure * options)
{
gint gcd;
g_return_val_if_fail (resampler != NULL, FALSE);
if (in_rate == 0)
in_rate = resampler->in_rate;
if (out_rate == 0)
out_rate = resampler->out_rate;
gcd = gst_util_greatest_common_divisor (in_rate, out_rate);
in_rate /= gcd;
out_rate /= gcd;
resampler->in_rate = in_rate;
resampler->out_rate = out_rate;
if (options) {
if (resampler->options)
gst_structure_free (resampler->options);
resampler->options = gst_structure_copy (options);
}
GST_DEBUG ("%u->%u", in_rate, out_rate);
resampler_calculate_taps (resampler);
resampler_dump (resampler);
resampler->samp_index = 0;
resampler->samp_phase = 0;
resampler->samples_avail = resampler->n_taps / 2 - 1;
return TRUE;
}
/**
* gst_audio_resampler_free:
* @resampler: a #GstAudioResampler
*
* Free a previously allocated #GstAudioResampler @resampler.
*
* Since: 1.6
*/
void
gst_audio_resampler_free (GstAudioResampler * resampler)
{
g_return_if_fail (resampler != NULL);
g_free (resampler->taps);
g_free (resampler->coeffmem);
g_free (resampler->tmpcoeff);
g_free (resampler->samples);
g_free (resampler->sbuf);
if (resampler->options)
gst_structure_free (resampler->options);
g_slice_free (GstAudioResampler, resampler);
}
static inline gsize
calc_out (GstAudioResampler * resampler, gsize in)
{
gsize out;
out = ((in * resampler->out_rate -
resampler->samp_phase) / resampler->in_rate) + 1;
GST_LOG ("out %d = ((%d * %d - %d) / %d) + 1", (gint) out,
(gint) in, resampler->out_rate, resampler->samp_phase,
resampler->in_rate);
return out;
}
/**
* gst_audio_resampler_get_out_frames:
* @resampler: a #GstAudioResampler
* @in_frames: number of input frames
*
* Get the number of output frames that would be currently available when
* @in_frames are given to @resampler.
*
* Returns: The number of frames that would be availabe after giving
* @in_frames as input to @resampler.
*/
gsize
gst_audio_resampler_get_out_frames (GstAudioResampler * resampler,
gsize in_frames)
{
gsize need, avail;
g_return_val_if_fail (resampler != NULL, 0);
need = resampler->n_taps + resampler->samp_index + resampler->skip;
avail = resampler->samples_avail + in_frames;
GST_LOG ("need %d = %d + %d + %d, avail %d = %d + %d", (gint) need,
resampler->n_taps, resampler->samp_index, resampler->skip,
(gint) avail, (gint) resampler->samples_avail, (gint) in_frames);
if (avail < need)
return 0;
return calc_out (resampler, avail - need);
}
/**
* gst_audio_resampler_get_in_frames:
* @resampler: a #GstAudioResampler
* @out_frames: number of input frames
*
* Get the number of input frames that would currently be needed
* to produce @out_frames from @resampler.
*
* Returns: The number of input frames needed for producing
* @out_frames of data from @resampler.
*/
gsize
gst_audio_resampler_get_in_frames (GstAudioResampler * resampler,
gsize out_frames)
{
gsize in_frames;
g_return_val_if_fail (resampler != NULL, 0);
in_frames =
(resampler->samp_phase +
out_frames * resampler->samp_frac) / resampler->out_rate;
in_frames += out_frames * resampler->samp_inc;
return in_frames;
}
/**
* gst_audio_resampler_get_max_latency:
* @resampler: a #GstAudioResampler
*
* Get the maximum number of input samples that the resampler would
* need before producing output.
*
* Returns: the latency of @resampler as expressed in the number of
* frames.
*/
gsize
gst_audio_resampler_get_max_latency (GstAudioResampler * resampler)
{
g_return_val_if_fail (resampler != NULL, 0);
return resampler->n_taps / 2;
}
/* make the buffers to hold the (deinterleaved) samples */
static inline gpointer *
get_sample_bufs (GstAudioResampler * resampler, gsize need)
{
if (G_LIKELY (resampler->samples_len < need)) {
guint c, blocks = resampler->blocks;
gsize bytes;
gint8 *ptr;
GST_LOG ("realloc %d -> %d", (gint) resampler->samples_len, (gint) need);
bytes = GST_ROUND_UP_N (need * resampler->bps * resampler->inc, ALIGN);
/* FIXME, move history */
resampler->samples =
g_realloc (resampler->samples, resampler->blocks * bytes + ALIGN - 1);
resampler->samples_len = need;
ptr = MEM_ALIGN (resampler->samples, ALIGN);
/* set up new pointers */
for (c = 0; c < blocks; c++) {
resampler->sbuf[c] = ptr + (c * bytes);
}
}
return resampler->sbuf;
}
/**
* gst_audio_resampler_resample:
* @resampler: a #GstAudioResampler
* @in: input samples
* @in_frames: number of input frames
* @out: output samples
* @out_frames: number of output frames
*
* Perform resampling on @in_frames frames in @in and write @out_frames to @out.
*
* In case the samples are interleaved, @in and @out must point to an
* array with a single element pointing to a block of interleaved samples.
*
* If non-interleaved samples are used, @in and @out must point to an
* array with pointers to memory blocks, one for each channel.
*
* @in may be %NULL, in which case @in_frames of silence samples are pushed
* into the resampler.
*
* This function always produces @out_frames of output and consumes @in_frames of
* input. Use gst_audio_resampler_get_out_frames() and
* gst_audio_resampler_get_in_frames() to make sure @in_frames and @out_frames
* are matching and @in and @out point to enough memory.
*/
void
gst_audio_resampler_resample (GstAudioResampler * resampler,
gpointer in[], gsize in_frames, gpointer out[], gsize out_frames)
{
gsize samples_avail;
gsize need, consumed;
gpointer *sbuf;
/* do sample skipping */
if (G_UNLIKELY (resampler->skip >= in_frames)) {
/* we need tp skip all input */
resampler->skip -= in_frames;
return;
}
/* skip the last samples by advancing the sample index */
resampler->samp_index += resampler->skip;
samples_avail = resampler->samples_avail;
/* make sure we have enough space to copy our samples */
sbuf = get_sample_bufs (resampler, in_frames + samples_avail);
/* copy/deinterleave the samples */
resampler->deinterleave (resampler, sbuf, in, in_frames);
/* update new amount of samples in our buffer */
resampler->samples_avail = samples_avail += in_frames;
need = resampler->n_taps + resampler->samp_index;
if (G_UNLIKELY (samples_avail < need)) {
/* not enough samples to start */
return;
}
/* resample all channels */
resampler->resample (resampler, sbuf, samples_avail, out, out_frames,
&consumed);
GST_LOG ("in %" G_GSIZE_FORMAT ", used %" G_GSIZE_FORMAT ", consumed %"
G_GSIZE_FORMAT, in_frames, samples_avail, consumed);
/* update pointers */
if (G_LIKELY (consumed > 0)) {
gssize left = samples_avail - consumed;
if (left > 0) {
/* we consumed part of our samples */
resampler->samples_avail = left;
} else {
/* we consumed all our samples, empty our buffers */
resampler->samples_avail = 0;
resampler->skip = -left;
}
}
}