mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-22 15:18:21 +00:00
07cd425c25
Original commit message from CVS: * gst-libs/gst/cdda/sha1.c: (sha_transform): Use memcpy() instead of upcasting a byte array to long *. This fixes an unaligned memory access, resulting in SIGBUS on IA64. This should be ported to GCheckSum once we can use GLib 2.16. Partially fixes bug #500833.
450 lines
10 KiB
C
450 lines
10 KiB
C
/* (PD) 2001 The Bitzi Corporation
|
|
* Please see file COPYING or http://bitzi.com/publicdomain
|
|
* for more info.
|
|
*
|
|
* NIST Secure Hash Algorithm
|
|
* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
|
|
* from Peter C. Gutmann's implementation as found in
|
|
* Applied Cryptography by Bruce Schneier
|
|
* Further modifications to include the "UNRAVEL" stuff, below
|
|
*
|
|
* This code is in the public domain
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
#include <glib.h>
|
|
#define SHA_BYTE_ORDER G_BYTE_ORDER
|
|
|
|
#include <string.h>
|
|
#include "sha1.h"
|
|
|
|
/* UNRAVEL should be fastest & biggest */
|
|
/* UNROLL_LOOPS should be just as big, but slightly slower */
|
|
/* both undefined should be smallest and slowest */
|
|
|
|
#define UNRAVEL
|
|
/* #define UNROLL_LOOPS */
|
|
|
|
/* SHA f()-functions */
|
|
|
|
#define f1(x,y,z) ((x & y) | (~x & z))
|
|
#define f2(x,y,z) (x ^ y ^ z)
|
|
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
|
|
#define f4(x,y,z) (x ^ y ^ z)
|
|
|
|
/* SHA constants */
|
|
|
|
#define CONST1 0x5a827999L
|
|
#define CONST2 0x6ed9eba1L
|
|
#define CONST3 0x8f1bbcdcL
|
|
#define CONST4 0xca62c1d6L
|
|
|
|
/* truncate to 32 bits -- should be a null op on 32-bit machines */
|
|
|
|
#define T32(x) ((x) & 0xffffffffL)
|
|
|
|
/* 32-bit rotate */
|
|
|
|
#define R32(x,n) T32(((x << n) | (x >> (32 - n))))
|
|
|
|
/* the generic case, for when the overall rotation is not unraveled */
|
|
|
|
#define FG(n) \
|
|
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \
|
|
E = D; D = C; C = R32(B,30); B = A; A = T
|
|
|
|
/* specific cases, for when the overall rotation is unraveled */
|
|
|
|
#define FA(n) \
|
|
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30)
|
|
|
|
#define FB(n) \
|
|
E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30)
|
|
|
|
#define FC(n) \
|
|
D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30)
|
|
|
|
#define FD(n) \
|
|
C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30)
|
|
|
|
#define FE(n) \
|
|
B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30)
|
|
|
|
#define FT(n) \
|
|
A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30)
|
|
|
|
/* do SHA transformation */
|
|
|
|
static void
|
|
sha_transform (SHA_INFO * sha_info)
|
|
{
|
|
int i;
|
|
SHA_BYTE *dp;
|
|
SHA_LONG T, A, B, C, D, E, W[80], *WP;
|
|
|
|
dp = sha_info->data;
|
|
|
|
/*
|
|
the following makes sure that at least one code block below is
|
|
traversed or an error is reported, without the necessity for nested
|
|
preprocessor if/else/endif blocks, which are a great pain in the
|
|
nether regions of the anatomy...
|
|
*/
|
|
#undef SWAP_DONE
|
|
|
|
#if (SHA_BYTE_ORDER == 1234)
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; ++i) {
|
|
memcpy (&T, dp, sizeof (SHA_LONG));
|
|
dp += 4;
|
|
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
|
|
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
|
|
}
|
|
#endif /* SHA_BYTE_ORDER == 1234 */
|
|
|
|
#if (SHA_BYTE_ORDER == 4321)
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; ++i) {
|
|
memcpy (&T, dp, sizeof (SHA_LONG));
|
|
dp += 4;
|
|
W[i] = T32 (T);
|
|
}
|
|
#endif /* SHA_BYTE_ORDER == 4321 */
|
|
|
|
#if (SHA_BYTE_ORDER == 12345678)
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; i += 2) {
|
|
memcpy (&T, dp, sizeof (SHA_LONG));
|
|
dp += 8;
|
|
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
|
|
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
|
|
T >>= 32;
|
|
W[i + 1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
|
|
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
|
|
}
|
|
#endif /* SHA_BYTE_ORDER == 12345678 */
|
|
|
|
#if (SHA_BYTE_ORDER == 87654321)
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; i += 2) {
|
|
memcpy (&T, dp, sizeof (SHA_LONG));
|
|
dp += 8;
|
|
W[i] = T32 (T >> 32);
|
|
W[i + 1] = T32 (T);
|
|
}
|
|
#endif /* SHA_BYTE_ORDER == 87654321 */
|
|
|
|
#ifndef SWAP_DONE
|
|
#error Unknown byte order -- you need to add code here
|
|
#endif /* SWAP_DONE */
|
|
|
|
for (i = 16; i < 80; ++i) {
|
|
W[i] = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
|
|
#if (SHA_VERSION == 1)
|
|
W[i] = R32 (W[i], 1);
|
|
#endif /* SHA_VERSION */
|
|
}
|
|
A = sha_info->digest[0];
|
|
B = sha_info->digest[1];
|
|
C = sha_info->digest[2];
|
|
D = sha_info->digest[3];
|
|
E = sha_info->digest[4];
|
|
WP = W;
|
|
#ifdef UNRAVEL
|
|
FA (1);
|
|
FB (1);
|
|
FC (1);
|
|
FD (1);
|
|
FE (1);
|
|
FT (1);
|
|
FA (1);
|
|
FB (1);
|
|
FC (1);
|
|
FD (1);
|
|
FE (1);
|
|
FT (1);
|
|
FA (1);
|
|
FB (1);
|
|
FC (1);
|
|
FD (1);
|
|
FE (1);
|
|
FT (1);
|
|
FA (1);
|
|
FB (1);
|
|
FC (2);
|
|
FD (2);
|
|
FE (2);
|
|
FT (2);
|
|
FA (2);
|
|
FB (2);
|
|
FC (2);
|
|
FD (2);
|
|
FE (2);
|
|
FT (2);
|
|
FA (2);
|
|
FB (2);
|
|
FC (2);
|
|
FD (2);
|
|
FE (2);
|
|
FT (2);
|
|
FA (2);
|
|
FB (2);
|
|
FC (2);
|
|
FD (2);
|
|
FE (3);
|
|
FT (3);
|
|
FA (3);
|
|
FB (3);
|
|
FC (3);
|
|
FD (3);
|
|
FE (3);
|
|
FT (3);
|
|
FA (3);
|
|
FB (3);
|
|
FC (3);
|
|
FD (3);
|
|
FE (3);
|
|
FT (3);
|
|
FA (3);
|
|
FB (3);
|
|
FC (3);
|
|
FD (3);
|
|
FE (3);
|
|
FT (3);
|
|
FA (4);
|
|
FB (4);
|
|
FC (4);
|
|
FD (4);
|
|
FE (4);
|
|
FT (4);
|
|
FA (4);
|
|
FB (4);
|
|
FC (4);
|
|
FD (4);
|
|
FE (4);
|
|
FT (4);
|
|
FA (4);
|
|
FB (4);
|
|
FC (4);
|
|
FD (4);
|
|
FE (4);
|
|
FT (4);
|
|
FA (4);
|
|
FB (4);
|
|
sha_info->digest[0] = T32 (sha_info->digest[0] + E);
|
|
sha_info->digest[1] = T32 (sha_info->digest[1] + T);
|
|
sha_info->digest[2] = T32 (sha_info->digest[2] + A);
|
|
sha_info->digest[3] = T32 (sha_info->digest[3] + B);
|
|
sha_info->digest[4] = T32 (sha_info->digest[4] + C);
|
|
#else /* !UNRAVEL */
|
|
#ifdef UNROLL_LOOPS
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (1);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (2);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (3);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
FG (4);
|
|
#else /* !UNROLL_LOOPS */
|
|
for (i = 0; i < 20; ++i) {
|
|
FG (1);
|
|
}
|
|
for (i = 20; i < 40; ++i) {
|
|
FG (2);
|
|
}
|
|
for (i = 40; i < 60; ++i) {
|
|
FG (3);
|
|
}
|
|
for (i = 60; i < 80; ++i) {
|
|
FG (4);
|
|
}
|
|
#endif /* !UNROLL_LOOPS */
|
|
sha_info->digest[0] = T32 (sha_info->digest[0] + A);
|
|
sha_info->digest[1] = T32 (sha_info->digest[1] + B);
|
|
sha_info->digest[2] = T32 (sha_info->digest[2] + C);
|
|
sha_info->digest[3] = T32 (sha_info->digest[3] + D);
|
|
sha_info->digest[4] = T32 (sha_info->digest[4] + E);
|
|
#endif /* !UNRAVEL */
|
|
}
|
|
|
|
/* initialize the SHA digest */
|
|
|
|
void
|
|
sha_init (SHA_INFO * sha_info)
|
|
{
|
|
sha_info->digest[0] = 0x67452301L;
|
|
sha_info->digest[1] = 0xefcdab89L;
|
|
sha_info->digest[2] = 0x98badcfeL;
|
|
sha_info->digest[3] = 0x10325476L;
|
|
sha_info->digest[4] = 0xc3d2e1f0L;
|
|
sha_info->count_lo = 0L;
|
|
sha_info->count_hi = 0L;
|
|
sha_info->local = 0;
|
|
}
|
|
|
|
/* update the SHA digest */
|
|
|
|
void
|
|
sha_update (SHA_INFO * sha_info, SHA_BYTE * buffer, int count)
|
|
{
|
|
int i;
|
|
SHA_LONG clo;
|
|
|
|
clo = T32 (sha_info->count_lo + ((SHA_LONG) count << 3));
|
|
if (clo < sha_info->count_lo) {
|
|
++sha_info->count_hi;
|
|
}
|
|
sha_info->count_lo = clo;
|
|
sha_info->count_hi += (SHA_LONG) count >> 29;
|
|
if (sha_info->local) {
|
|
i = SHA_BLOCKSIZE - sha_info->local;
|
|
if (i > count) {
|
|
i = count;
|
|
}
|
|
memcpy (((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
|
|
count -= i;
|
|
buffer += i;
|
|
sha_info->local += i;
|
|
if (sha_info->local == SHA_BLOCKSIZE) {
|
|
sha_transform (sha_info);
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
while (count >= SHA_BLOCKSIZE) {
|
|
memcpy (sha_info->data, buffer, SHA_BLOCKSIZE);
|
|
buffer += SHA_BLOCKSIZE;
|
|
count -= SHA_BLOCKSIZE;
|
|
sha_transform (sha_info);
|
|
}
|
|
memcpy (sha_info->data, buffer, count);
|
|
sha_info->local = count;
|
|
}
|
|
|
|
/* finish computing the SHA digest */
|
|
|
|
void
|
|
sha_final (unsigned char digest[20], SHA_INFO * sha_info)
|
|
{
|
|
int count;
|
|
SHA_LONG lo_bit_count, hi_bit_count;
|
|
|
|
lo_bit_count = sha_info->count_lo;
|
|
hi_bit_count = sha_info->count_hi;
|
|
count = (int) ((lo_bit_count >> 3) & 0x3f);
|
|
((SHA_BYTE *) sha_info->data)[count++] = 0x80;
|
|
if (count > SHA_BLOCKSIZE - 8) {
|
|
memset (((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count);
|
|
sha_transform (sha_info);
|
|
memset ((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
|
|
} else {
|
|
memset (((SHA_BYTE *) sha_info->data) + count, 0,
|
|
SHA_BLOCKSIZE - 8 - count);
|
|
}
|
|
sha_info->data[56] = (unsigned char) ((hi_bit_count >> 24) & 0xff);
|
|
sha_info->data[57] = (unsigned char) ((hi_bit_count >> 16) & 0xff);
|
|
sha_info->data[58] = (unsigned char) ((hi_bit_count >> 8) & 0xff);
|
|
sha_info->data[59] = (unsigned char) ((hi_bit_count >> 0) & 0xff);
|
|
sha_info->data[60] = (unsigned char) ((lo_bit_count >> 24) & 0xff);
|
|
sha_info->data[61] = (unsigned char) ((lo_bit_count >> 16) & 0xff);
|
|
sha_info->data[62] = (unsigned char) ((lo_bit_count >> 8) & 0xff);
|
|
sha_info->data[63] = (unsigned char) ((lo_bit_count >> 0) & 0xff);
|
|
sha_transform (sha_info);
|
|
digest[0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
|
|
digest[1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
|
|
digest[2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
|
|
digest[3] = (unsigned char) ((sha_info->digest[0]) & 0xff);
|
|
digest[4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
|
|
digest[5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
|
|
digest[6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
|
|
digest[7] = (unsigned char) ((sha_info->digest[1]) & 0xff);
|
|
digest[8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
|
|
digest[9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
|
|
digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
|
|
digest[11] = (unsigned char) ((sha_info->digest[2]) & 0xff);
|
|
digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
|
|
digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
|
|
digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
|
|
digest[15] = (unsigned char) ((sha_info->digest[3]) & 0xff);
|
|
digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
|
|
digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
|
|
digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
|
|
digest[19] = (unsigned char) ((sha_info->digest[4]) & 0xff);
|
|
}
|