gstreamer/gst/cothreads/pth_mctx.c
Andy Wingo 1bc541f213 The core code from pth has been taken out and included in gstreamer.
Original commit message from CVS:
The core code from pth has been taken out and included in gstreamer.
This code is documented, more or less, in http://www-124.ibm.com/pthreads/docs/rse-pmt.ps.

This code is designed to replace cothreads.[ch], eventually.
2002-01-21 00:20:29 +00:00

557 lines
17 KiB
C

/*
** GNU Pth - The GNU Portable Threads
** Copyright (c) 1999-2001 Ralf S. Engelschall <rse@engelschall.com>
**
** This file is part of GNU Pth, a non-preemptive thread scheduling
** library which can be found at http://www.gnu.org/software/pth/.
**
** This library is free software; you can redistribute it and/or
** modify it under the terms of the GNU Lesser General Public
** License as published by the Free Software Foundation; either
** version 2.1 of the License, or (at your option) any later version.
**
** This library is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
** Lesser General Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public
** License along with this library; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
** USA, or contact Ralf S. Engelschall <rse@engelschall.com>.
**
** pth_mctx.c: Pth machine context handling
*/
/* ``If you can't do it in
ANSI C, it isn't worth doing.''
-- Unknown */
#include "pth_p.h"
#if cpp
/*
* machine context state structure
*
* In `jb' the CPU registers, the program counter, the stack
* pointer and (usually) the signals mask is stored. When the
* signal mask cannot be implicitly stored in `jb', it's
* alternatively stored explicitly in `sigs'. The `error' stores
* the value of `errno'.
*/
#if PTH_MCTX_MTH(mcsc)
#include <ucontext.h>
#endif
typedef struct pth_mctx_st pth_mctx_t;
struct pth_mctx_st {
#if PTH_MCTX_MTH(mcsc)
ucontext_t uc;
#elif PTH_MCTX_MTH(sjlj)
pth_sigjmpbuf jb;
#else
#error "unknown mctx method"
#endif
sigset_t sigs;
#if PTH_MCTX_DSP(sjlje)
sigset_t block;
#endif
int error;
};
/*
** ____ MACHINE STATE SWITCHING ______________________________________
*/
/*
* save the current machine context
*/
#if PTH_MCTX_MTH(mcsc)
#define pth_mctx_save(mctx) \
( (mctx)->error = errno, \
getcontext(&(mctx)->uc) )
#elif PTH_MCTX_MTH(sjlj) && PTH_MCTX_DSP(sjlje)
#define pth_mctx_save(mctx) \
( (mctx)->error = errno, \
sigprocmask(SIG_SETMASK, &((mctx)->block), NULL), \
pth_sigsetjmp((mctx)->jb) )
#elif PTH_MCTX_MTH(sjlj)
#define pth_mctx_save(mctx) \
( (mctx)->error = errno, \
pth_sigsetjmp((mctx)->jb) )
#else
#error "unknown mctx method"
#endif
/*
* restore the current machine context
* (at the location of the old context)
*/
#if PTH_MCTX_MTH(mcsc)
#define pth_mctx_restore(mctx) \
( errno = (mctx)->error, \
(void)setcontext(&(mctx)->uc) )
#elif PTH_MCTX_MTH(sjlj)
#define pth_mctx_restore(mctx) \
( errno = (mctx)->error, \
(void)pth_siglongjmp((mctx)->jb, 1) )
#else
#error "unknown mctx method"
#endif
/*
* restore the current machine context
* (at the location of the new context)
*/
#if PTH_MCTX_MTH(sjlj) && PTH_MCTX_DSP(sjlje)
#define pth_mctx_restored(mctx) \
sigprocmask(SIG_SETMASK, &((mctx)->sigs), NULL)
#else
#define pth_mctx_restored(mctx) \
/*nop*/
#endif
/*
* switch from one machine context to another
*/
#define SWITCH_DEBUG_LINE \
"==== THREAD CONTEXT SWITCH ==========================================="
#ifdef PTH_DEBUG
#define _pth_mctx_switch_debug pth_debug(NULL, 0, 1, SWITCH_DEBUG_LINE);
#else
#define _pth_mctx_switch_debug /*NOP*/
#endif
#if PTH_MCTX_MTH(mcsc)
#define pth_mctx_switch(old,new) \
_pth_mctx_switch_debug \
swapcontext(&((old)->uc), &((new)->uc));
#elif PTH_MCTX_MTH(sjlj)
#define pth_mctx_switch(old,new) \
_pth_mctx_switch_debug \
if (pth_mctx_save(old) == 0) \
pth_mctx_restore(new); \
pth_mctx_restored(old);
#else
#error "unknown mctx method"
#endif
#endif /* cpp */
/*
** ____ MACHINE STATE INITIALIZATION ________________________________
*/
#if PTH_MCTX_MTH(mcsc)
/*
* VARIANT 1: THE STANDARDIZED SVR4/SUSv2 APPROACH
*
* This is the preferred variant, because it uses the standardized
* SVR4/SUSv2 makecontext(2) and friends which is a facility intended
* for user-space context switching. The thread creation therefore is
* straight-foreward.
*/
intern int pth_mctx_set(
pth_mctx_t *mctx, void (*func)(void), char *sk_addr_lo, char *sk_addr_hi)
{
/* fetch current context */
if (getcontext(&(mctx->uc)) != 0)
return FALSE;
/* remove parent link */
mctx->uc.uc_link = NULL;
/* configure new stack */
mctx->uc.uc_stack.ss_sp = pth_skaddr(makecontext, sk_addr_lo, sk_addr_hi-sk_addr_lo);
mctx->uc.uc_stack.ss_size = pth_sksize(makecontext, sk_addr_lo, sk_addr_hi-sk_addr_lo);
mctx->uc.uc_stack.ss_flags = 0;
/* configure startup function (with no arguments) */
makecontext(&(mctx->uc), func, 0+1);
return TRUE;
}
#elif PTH_MCTX_MTH(sjlj) &&\
!PTH_MCTX_DSP(sjljlx) &&\
!PTH_MCTX_DSP(sjljisc) &&\
!PTH_MCTX_DSP(sjljw32)
/*
* VARIANT 2: THE SIGNAL STACK TRICK
*
* This uses sigstack/sigaltstack() and friends and is really the
* most tricky part of Pth. When you understand the following
* stuff you're a good Unix hacker and then you've already
* understood the gory ingredients of Pth. So, either welcome to
* the club of hackers, or do yourself a favor and skip this ;)
*
* The ingenious fact is that this variant runs really on _all_ POSIX
* compliant systems without special platform kludges. But be _VERY_
* carefully when you change something in the following code. The slightest
* change or reordering can lead to horribly broken code. Really every
* function call in the following case is intended to be how it is, doubt
* me...
*
* For more details we strongly recommend you to read the companion
* paper ``Portable Multithreading -- The Signal Stack Trick for
* User-Space Thread Creation'' from Ralf S. Engelschall. A copy of the
* draft of this paper you can find in the file rse-pmt.ps inside the
* GNU Pth distribution.
*/
#if !defined(SA_ONSTACK) && defined(SV_ONSTACK)
#define SA_ONSTACK SV_ONSTACK
#endif
#if !defined(SS_DISABLE) && defined(SA_DISABLE)
#define SS_DISABLE SA_DISABLE
#endif
#if PTH_MCTX_STK(sas) && !defined(HAVE_SS_SP) && defined(HAVE_SS_BASE)
#define ss_sp ss_base
#endif
static volatile jmp_buf mctx_trampoline;
static volatile pth_mctx_t mctx_caller;
static volatile sig_atomic_t mctx_called;
static pth_mctx_t * volatile mctx_creating;
static void (* volatile mctx_creating_func)(void);
static volatile sigset_t mctx_creating_sigs;
static void pth_mctx_set_trampoline(int);
static void pth_mctx_set_bootstrap(void);
/* initialize a machine state */
intern int pth_mctx_set(
pth_mctx_t *mctx, void (*func)(void), char *sk_addr_lo, char *sk_addr_hi)
{
struct sigaction sa;
struct sigaction osa;
#if PTH_MCTX_STK(sas) && defined(HAVE_STACK_T)
stack_t ss;
stack_t oss;
#elif PTH_MCTX_STK(sas)
struct sigaltstack ss;
struct sigaltstack oss;
#elif PTH_MCTX_STK(ss)
struct sigstack ss;
struct sigstack oss;
#else
#error "unknown mctx stack setup"
#endif
sigset_t osigs;
sigset_t sigs;
pth_debug1("pth_mctx_set: enter");
/*
* Preserve the SIGUSR1 signal state, block SIGUSR1,
* and establish our signal handler. The signal will
* later transfer control onto the signal stack.
*/
sigemptyset(&sigs);
sigaddset(&sigs, SIGUSR1);
sigprocmask(SIG_BLOCK, &sigs, &osigs);
sa.sa_handler = pth_mctx_set_trampoline;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_ONSTACK;
if (sigaction(SIGUSR1, &sa, &osa) != 0)
return FALSE;
/*
* Set the new stack.
*
* For sigaltstack we're lucky [from sigaltstack(2) on
* FreeBSD 3.1]: ``Signal stacks are automatically adjusted
* for the direction of stack growth and alignment
* requirements''
*
* For sigstack we have to decide ourself [from sigstack(2)
* on Solaris 2.6]: ``The direction of stack growth is not
* indicated in the historical definition of struct sigstack.
* The only way to portably establish a stack pointer is for
* the application to determine stack growth direction.''
*/
#if PTH_MCTX_STK(sas)
ss.ss_sp = pth_skaddr(sigaltstack, sk_addr_lo, sk_addr_hi-sk_addr_lo);
ss.ss_size = pth_sksize(sigaltstack, sk_addr_lo, sk_addr_hi-sk_addr_lo);
ss.ss_flags = 0;
if (sigaltstack(&ss, &oss) < 0)
return FALSE;
#elif PTH_MCTX_STK(ss)
ss.ss_sp = pth_skaddr(sigstack, sk_addr_lo, sk_addr_hi-sk_addr_lo);
ss.ss_onstack = 0;
if (sigstack(&ss, &oss) < 0)
return FALSE;
#else
#error "unknown mctx stack setup"
#endif
/*
* Now transfer control onto the signal stack and set it up.
* It will return immediately via "return" after the setjmp()
* was performed. Be careful here with race conditions. The
* signal can be delivered the first time sigsuspend() is
* called.
*/
mctx_called = FALSE;
kill(getpid(), SIGUSR1);
sigfillset(&sigs);
sigdelset(&sigs, SIGUSR1);
while (!mctx_called)
sigsuspend(&sigs);
/*
* Inform the system that we are back off the signal stack by
* removing the alternative signal stack. Be careful here: It
* first has to be disabled, before it can be removed.
*/
#if PTH_MCTX_STK(sas)
sigaltstack(NULL, &ss);
ss.ss_flags = SS_DISABLE;
if (sigaltstack(&ss, NULL) < 0)
return FALSE;
sigaltstack(NULL, &ss);
if (!(ss.ss_flags & SS_DISABLE))
return_errno(FALSE, EIO);
if (!(oss.ss_flags & SS_DISABLE))
sigaltstack(&oss, NULL);
#elif PTH_MCTX_STK(ss)
if (sigstack(&oss, NULL))
return FALSE;
#endif
/*
* Restore the old SIGUSR1 signal handler and mask
*/
sigaction(SIGUSR1, &osa, NULL);
sigprocmask(SIG_SETMASK, &osigs, NULL);
/*
* Initialize additional ingredients of the machine
* context structure.
*/
#if PTH_MCTX_DSP(sjlje)
sigemptyset(&mctx->block);
#endif
sigemptyset(&mctx->sigs);
mctx->error = 0;
/*
* Tell the trampoline and bootstrap function where to dump
* the new machine context, and what to do afterwards...
*/
mctx_creating = mctx;
mctx_creating_func = func;
memcpy((void *)&mctx_creating_sigs, &osigs, sizeof(sigset_t));
/*
* Now enter the trampoline again, but this time not as a signal
* handler. Instead we jump into it directly. The functionally
* redundant ping-pong pointer arithmentic is neccessary to avoid
* type-conversion warnings related to the `volatile' qualifier and
* the fact that `jmp_buf' usually is an array type.
*/
if (pth_mctx_save((pth_mctx_t *)&mctx_caller) == 0)
longjmp(*((jmp_buf *)&mctx_trampoline), 1);
/*
* Ok, we returned again, so now we're finished
*/
pth_debug1("pth_mctx_set: leave");
return TRUE;
}
/* trampoline signal handler */
static void pth_mctx_set_trampoline(int sig)
{
/*
* Save current machine state and _immediately_ go back with
* a standard "return" (to stop the signal handler situation)
* to let him remove the stack again. Notice that we really
* have do a normal "return" here, or the OS would consider
* the thread to be running on a signal stack which isn't
* good (for instance it wouldn't allow us to spawn a thread
* from within a thread, etc.)
*
* The functionally redundant ping-pong pointer arithmentic is again
* neccessary to avoid type-conversion warnings related to the
* `volatile' qualifier and the fact that `jmp_buf' usually is an
* array type.
*
* Additionally notice that we INTENTIONALLY DO NOT USE pth_mctx_save()
* here. Instead we use a plain setjmp(3) call because we have to make
* sure the alternate signal stack environment is _NOT_ saved into the
* machine context (which can be the case for sigsetjmp(3) on some
* platforms).
*/
if (setjmp(*((jmp_buf *)&mctx_trampoline)) == 0) {
pth_debug1("pth_mctx_set_trampoline: return to caller");
mctx_called = TRUE;
return;
}
pth_debug1("pth_mctx_set_trampoline: reentered from caller");
/*
* Ok, the caller has longjmp'ed back to us, so now prepare
* us for the real machine state switching. We have to jump
* into another function here to get a new stack context for
* the auto variables (which have to be auto-variables
* because the start of the thread happens later). Else with
* PIC (i.e. Position Independent Code which is used when PTH
* is built as a shared library) most platforms would
* horrible core dump as experience showed.
*/
pth_mctx_set_bootstrap();
}
/* boot function */
static void pth_mctx_set_bootstrap(void)
{
pth_mctx_t * volatile mctx_starting;
void (* volatile mctx_starting_func)(void);
/*
* Switch to the final signal mask (inherited from parent)
*/
sigprocmask(SIG_SETMASK, (sigset_t *)&mctx_creating_sigs, NULL);
/*
* Move startup details from static storage to local auto
* variables which is necessary because it has to survive in
* a local context until the thread is scheduled for real.
*/
mctx_starting = mctx_creating;
mctx_starting_func = mctx_creating_func;
/*
* Save current machine state (on new stack) and
* go back to caller until we're scheduled for real...
*/
pth_debug1("pth_mctx_set_trampoline_jumpin: switch back to caller");
pth_mctx_switch((pth_mctx_t *)mctx_starting, (pth_mctx_t *)&mctx_caller);
/*
* The new thread is now running: GREAT!
* Now we just invoke its init function....
*/
pth_debug1("pth_mctx_set_trampoline_jumpin: reentered from scheduler");
mctx_starting_func();
abort();
}
#elif PTH_MCTX_MTH(sjlj) && PTH_MCTX_DSP(sjljlx)
/*
* VARIANT 3: LINUX SPECIFIC JMP_BUF FIDDLING
*
* Oh hell, I really love it when Linux guys talk about their "POSIX
* compliant system". It's far away from POSIX compliant, IMHO. Autoconf
* finds sigstack/sigaltstack() on Linux, yes. But it doesn't work. Why?
* Because on Linux below version 2.2 and glibc versions below 2.1 these
* two functions are nothing more than silly stub functions which always
* return just -1. Very useful, yeah...
*/
#include <features.h>
intern int pth_mctx_set(
pth_mctx_t *mctx, void (*func)(void), char *sk_addr_lo, char *sk_addr_hi)
{
pth_mctx_save(mctx);
#if defined(__GLIBC__) && defined(__GLIBC_MINOR__) \
&& __GLIBC__ >= 2 && __GLIBC_MINOR__ >= 0 && defined(JB_PC) && defined(JB_SP)
mctx->jb[0].__jmpbuf[JB_PC] = (int)func;
mctx->jb[0].__jmpbuf[JB_SP] = (int)sk_addr_hi;
#elif defined(__GLIBC__) && defined(__GLIBC_MINOR__) \
&& __GLIBC__ >= 2 && __GLIBC_MINOR__ >= 0 && defined(__mc68000__)
mctx->jb[0].__jmpbuf[0].__aregs[0] = (long int)func;
mctx->jb[0].__jmpbuf[0].__sp = (int *)sk_addr_hi;
#elif defined(__GNU_LIBRARY__) && defined(__i386__)
mctx->jb[0].__jmpbuf[0].__pc = (char *)func;
mctx->jb[0].__jmpbuf[0].__sp = sk_addr_hi;
#else
#error "Unsupported Linux (g)libc version and/or platform"
#endif
sigemptyset(&mctx->sigs);
mctx->error = 0;
return TRUE;
}
/*
* VARIANT 4: INTERACTIVE SPECIFIC JMP_BUF FIDDLING
*
* No wonder, Interactive Unix (ISC) 4.x contains Microsoft code, so
* it's clear that this beast lacks both sigstack and sigaltstack (about
* makecontext we not even have to talk). So our only chance is to
* fiddle with it's jmp_buf ingredients, of course. We support only i386
* boxes.
*/
#elif PTH_MCTX_MTH(sjlj) && PTH_MCTX_DSP(sjljisc)
intern int
pth_mctx_set(pth_mctx_t *mctx, void (*func)(void),
char *sk_addr_lo, char *sk_addr_hi)
{
pth_mctx_save(mctx);
#if i386
mctx->jb[4] = (int)sk_addr_hi - sizeof(mctx->jb);
mctx->jb[5] = (int)func;
#else
#error "Unsupported ISC architecture"
#endif
sigemptyset(&mctx->sigs);
mctx->error = 0;
return TRUE;
}
/*
* VARIANT 5: WIN32 SPECIFIC JMP_BUF FIDDLING
*
* Oh hell, Win32 has setjmp(3), but no sigstack(2) or sigaltstack(2).
* So we have to fiddle around with the jmp_buf here too...
*/
#elif PTH_MCTX_MTH(sjlj) && PTH_MCTX_DSP(sjljw32)
intern int
pth_mctx_set(pth_mctx_t *mctx, void (*func)(void),
char *sk_addr_lo, char *sk_addr_hi)
{
pth_mctx_save(mctx);
#if i386
mctx->jb[7] = (int)sk_addr_hi;
mctx->jb[8] = (int)func;
#else
#error "Unsupported Win32 architecture"
#endif
sigemptyset(&mctx->sigs);
mctx->error = 0;
return TRUE;
}
/*
* VARIANT X: JMP_BUF FIDDLING FOR ONE MORE ESOTERIC OS
* Add the jmp_buf fiddling for your esoteric OS here...
*
#elif PTH_MCTX_MTH(sjlj) && PTH_MCTX_DSP(sjljeso)
intern int
pth_mctx_set(pth_mctx_t *mctx, void (*func)(void),
char *sk_addr_lo, char *sk_addr_hi)
{
pth_mctx_save(mctx);
sigemptyset(&mctx->sigs);
mctx->error = 0;
...start hacking here...
mctx->.... = func;
mctx->.... = sk_addr_hi;
mctx->.... = sk_addr_lo;
return TRUE;
}
*/
#else
#error "unknown mctx method"
#endif