gstreamer/gst-libs/gst/cdda/sha1.c
Sebastian Dröge 07cd425c25 gst-libs/gst/cdda/sha1.c: Use memcpy() instead of upcasting a byte array to long *. This fixes an unaligned memory ac...
Original commit message from CVS:
* gst-libs/gst/cdda/sha1.c: (sha_transform):
Use memcpy() instead of upcasting a byte array to long *. This
fixes an unaligned memory access, resulting in SIGBUS on IA64.
This should be ported to GCheckSum once we can use GLib 2.16.
Partially fixes bug #500833.
2008-02-27 10:42:08 +00:00

451 lines
10 KiB
C

/* (PD) 2001 The Bitzi Corporation
* Please see file COPYING or http://bitzi.com/publicdomain
* for more info.
*
* NIST Secure Hash Algorithm
* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* Further modifications to include the "UNRAVEL" stuff, below
*
* This code is in the public domain
*
* $Id$
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <glib.h>
#define SHA_BYTE_ORDER G_BYTE_ORDER
#include <string.h>
#include "sha1.h"
/* UNRAVEL should be fastest & biggest */
/* UNROLL_LOOPS should be just as big, but slightly slower */
/* both undefined should be smallest and slowest */
#define UNRAVEL
/* #define UNROLL_LOOPS */
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* truncate to 32 bits -- should be a null op on 32-bit machines */
#define T32(x) ((x) & 0xffffffffL)
/* 32-bit rotate */
#define R32(x,n) T32(((x << n) | (x >> (32 - n))))
/* the generic case, for when the overall rotation is not unraveled */
#define FG(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \
E = D; D = C; C = R32(B,30); B = A; A = T
/* specific cases, for when the overall rotation is unraveled */
#define FA(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30)
#define FB(n) \
E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30)
#define FC(n) \
D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30)
#define FD(n) \
C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30)
#define FE(n) \
B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30)
#define FT(n) \
A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30)
/* do SHA transformation */
static void
sha_transform (SHA_INFO * sha_info)
{
int i;
SHA_BYTE *dp;
SHA_LONG T, A, B, C, D, E, W[80], *WP;
dp = sha_info->data;
/*
the following makes sure that at least one code block below is
traversed or an error is reported, without the necessity for nested
preprocessor if/else/endif blocks, which are a great pain in the
nether regions of the anatomy...
*/
#undef SWAP_DONE
#if (SHA_BYTE_ORDER == 1234)
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
memcpy (&T, dp, sizeof (SHA_LONG));
dp += 4;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif /* SHA_BYTE_ORDER == 1234 */
#if (SHA_BYTE_ORDER == 4321)
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
memcpy (&T, dp, sizeof (SHA_LONG));
dp += 4;
W[i] = T32 (T);
}
#endif /* SHA_BYTE_ORDER == 4321 */
#if (SHA_BYTE_ORDER == 12345678)
#define SWAP_DONE
for (i = 0; i < 16; i += 2) {
memcpy (&T, dp, sizeof (SHA_LONG));
dp += 8;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
T >>= 32;
W[i + 1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif /* SHA_BYTE_ORDER == 12345678 */
#if (SHA_BYTE_ORDER == 87654321)
#define SWAP_DONE
for (i = 0; i < 16; i += 2) {
memcpy (&T, dp, sizeof (SHA_LONG));
dp += 8;
W[i] = T32 (T >> 32);
W[i + 1] = T32 (T);
}
#endif /* SHA_BYTE_ORDER == 87654321 */
#ifndef SWAP_DONE
#error Unknown byte order -- you need to add code here
#endif /* SWAP_DONE */
for (i = 16; i < 80; ++i) {
W[i] = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
#if (SHA_VERSION == 1)
W[i] = R32 (W[i], 1);
#endif /* SHA_VERSION */
}
A = sha_info->digest[0];
B = sha_info->digest[1];
C = sha_info->digest[2];
D = sha_info->digest[3];
E = sha_info->digest[4];
WP = W;
#ifdef UNRAVEL
FA (1);
FB (1);
FC (1);
FD (1);
FE (1);
FT (1);
FA (1);
FB (1);
FC (1);
FD (1);
FE (1);
FT (1);
FA (1);
FB (1);
FC (1);
FD (1);
FE (1);
FT (1);
FA (1);
FB (1);
FC (2);
FD (2);
FE (2);
FT (2);
FA (2);
FB (2);
FC (2);
FD (2);
FE (2);
FT (2);
FA (2);
FB (2);
FC (2);
FD (2);
FE (2);
FT (2);
FA (2);
FB (2);
FC (2);
FD (2);
FE (3);
FT (3);
FA (3);
FB (3);
FC (3);
FD (3);
FE (3);
FT (3);
FA (3);
FB (3);
FC (3);
FD (3);
FE (3);
FT (3);
FA (3);
FB (3);
FC (3);
FD (3);
FE (3);
FT (3);
FA (4);
FB (4);
FC (4);
FD (4);
FE (4);
FT (4);
FA (4);
FB (4);
FC (4);
FD (4);
FE (4);
FT (4);
FA (4);
FB (4);
FC (4);
FD (4);
FE (4);
FT (4);
FA (4);
FB (4);
sha_info->digest[0] = T32 (sha_info->digest[0] + E);
sha_info->digest[1] = T32 (sha_info->digest[1] + T);
sha_info->digest[2] = T32 (sha_info->digest[2] + A);
sha_info->digest[3] = T32 (sha_info->digest[3] + B);
sha_info->digest[4] = T32 (sha_info->digest[4] + C);
#else /* !UNRAVEL */
#ifdef UNROLL_LOOPS
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (1);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (2);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (3);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
FG (4);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) {
FG (1);
}
for (i = 20; i < 40; ++i) {
FG (2);
}
for (i = 40; i < 60; ++i) {
FG (3);
}
for (i = 60; i < 80; ++i) {
FG (4);
}
#endif /* !UNROLL_LOOPS */
sha_info->digest[0] = T32 (sha_info->digest[0] + A);
sha_info->digest[1] = T32 (sha_info->digest[1] + B);
sha_info->digest[2] = T32 (sha_info->digest[2] + C);
sha_info->digest[3] = T32 (sha_info->digest[3] + D);
sha_info->digest[4] = T32 (sha_info->digest[4] + E);
#endif /* !UNRAVEL */
}
/* initialize the SHA digest */
void
sha_init (SHA_INFO * sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
}
/* update the SHA digest */
void
sha_update (SHA_INFO * sha_info, SHA_BYTE * buffer, int count)
{
int i;
SHA_LONG clo;
clo = T32 (sha_info->count_lo + ((SHA_LONG) count << 3));
if (clo < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo = clo;
sha_info->count_hi += (SHA_LONG) count >> 29;
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy (((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
sha_transform (sha_info);
} else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
memcpy (sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
sha_transform (sha_info);
}
memcpy (sha_info->data, buffer, count);
sha_info->local = count;
}
/* finish computing the SHA digest */
void
sha_final (unsigned char digest[20], SHA_INFO * sha_info)
{
int count;
SHA_LONG lo_bit_count, hi_bit_count;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((SHA_BYTE *) sha_info->data)[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8) {
memset (((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count);
sha_transform (sha_info);
memset ((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
} else {
memset (((SHA_BYTE *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - 8 - count);
}
sha_info->data[56] = (unsigned char) ((hi_bit_count >> 24) & 0xff);
sha_info->data[57] = (unsigned char) ((hi_bit_count >> 16) & 0xff);
sha_info->data[58] = (unsigned char) ((hi_bit_count >> 8) & 0xff);
sha_info->data[59] = (unsigned char) ((hi_bit_count >> 0) & 0xff);
sha_info->data[60] = (unsigned char) ((lo_bit_count >> 24) & 0xff);
sha_info->data[61] = (unsigned char) ((lo_bit_count >> 16) & 0xff);
sha_info->data[62] = (unsigned char) ((lo_bit_count >> 8) & 0xff);
sha_info->data[63] = (unsigned char) ((lo_bit_count >> 0) & 0xff);
sha_transform (sha_info);
digest[0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
digest[1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
digest[2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
digest[3] = (unsigned char) ((sha_info->digest[0]) & 0xff);
digest[4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
digest[5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
digest[6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
digest[7] = (unsigned char) ((sha_info->digest[1]) & 0xff);
digest[8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
digest[9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
digest[11] = (unsigned char) ((sha_info->digest[2]) & 0xff);
digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
digest[15] = (unsigned char) ((sha_info->digest[3]) & 0xff);
digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
digest[19] = (unsigned char) ((sha_info->digest[4]) & 0xff);
}