gstreamer/subprojects/gst-plugins-base/gst-libs/gst/video/video-scaler.c

1647 lines
42 KiB
C

/* GStreamer
* Copyright (C) <2014> Wim Taymans <wim.taymans@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include <stdio.h>
#include <math.h>
/**
* SECTION:gstvideoscaler
* @title: GstVideoScaler
* @short_description: Utility object for rescaling video frames
*
* #GstVideoScaler is a utility object for rescaling and resampling
* video frames using various interpolation / sampling methods.
*
*/
#ifndef DISABLE_ORC
#include <orc/orcfunctions.h>
#else
#define orc_memcpy memcpy
#endif
#include "video-orc.h"
#include "video-scaler.h"
#ifndef GST_DISABLE_GST_DEBUG
#define GST_CAT_DEFAULT ensure_debug_category()
static GstDebugCategory *
ensure_debug_category (void)
{
static gsize cat_gonce = 0;
if (g_once_init_enter (&cat_gonce)) {
gsize cat_done;
cat_done = (gsize) _gst_debug_category_new ("video-scaler", 0,
"video-scaler object");
g_once_init_leave (&cat_gonce, cat_done);
}
return (GstDebugCategory *) cat_gonce;
}
#else
#define ensure_debug_category() /* NOOP */
#endif /* GST_DISABLE_GST_DEBUG */
#define SCALE_U8 12
#define SCALE_U8_ROUND (1 << (SCALE_U8 -1))
#define SCALE_U8_LQ 6
#define SCALE_U8_LQ_ROUND (1 << (SCALE_U8_LQ -1))
#define SCALE_U16 12
#define SCALE_U16_ROUND (1 << (SCALE_U16 -1))
#define LQ
typedef void (*GstVideoScalerHFunc) (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems);
typedef void (*GstVideoScalerVFunc) (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems);
struct _GstVideoScaler
{
GstVideoResamplerMethod method;
GstVideoScalerFlags flags;
GstVideoResampler resampler;
gboolean merged;
gint in_y_offset;
gint out_y_offset;
/* cached integer coefficients */
gint16 *taps_s16;
gint16 *taps_s16_4;
guint32 *offset_n;
/* for ORC */
gint inc;
gint tmpwidth;
gpointer tmpline1;
gpointer tmpline2;
};
static void
resampler_zip (GstVideoResampler * resampler, const GstVideoResampler * r1,
const GstVideoResampler * r2)
{
guint i, out_size, max_taps, n_phases;
gdouble *taps;
guint32 *offset, *phase;
g_return_if_fail (r1->max_taps == r2->max_taps);
out_size = r1->out_size + r2->out_size;
max_taps = r1->max_taps;
n_phases = out_size;
offset = g_malloc (sizeof (guint32) * out_size);
phase = g_malloc (sizeof (guint32) * n_phases);
taps = g_malloc (sizeof (gdouble) * max_taps * n_phases);
resampler->in_size = r1->in_size + r2->in_size;
resampler->out_size = out_size;
resampler->max_taps = max_taps;
resampler->n_phases = n_phases;
resampler->offset = offset;
resampler->phase = phase;
resampler->n_taps = g_malloc (sizeof (guint32) * out_size);
resampler->taps = taps;
for (i = 0; i < out_size; i++) {
guint idx = i / 2;
const GstVideoResampler *r;
r = (i & 1) ? r2 : r1;
offset[i] = r->offset[idx] * 2 + (i & 1);
phase[i] = i;
memcpy (taps + i * max_taps, r->taps + r->phase[idx] * max_taps,
max_taps * sizeof (gdouble));
}
}
static void
realloc_tmplines (GstVideoScaler * scale, gint n_elems, gint width)
{
gint n_taps = scale->resampler.max_taps;
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
n_taps *= 2;
scale->tmpline1 =
g_realloc (scale->tmpline1, sizeof (gint32) * width * n_elems * n_taps);
scale->tmpline2 =
g_realloc (scale->tmpline2, sizeof (gint32) * width * n_elems);
scale->tmpwidth = width;
}
static void
scaler_dump (GstVideoScaler * scale)
{
#if 0
gint i, j, in_size, out_size, max_taps;
guint32 *offset, *phase;
gdouble *taps;
GstVideoResampler *r = &scale->resampler;
in_size = r->in_size;
out_size = r->out_size;
offset = r->offset;
phase = r->phase;
max_taps = r->max_taps;
taps = r->taps;
g_print ("in %d, out %d, max_taps %d, n_phases %d\n", in_size, out_size,
max_taps, r->n_phases);
for (i = 0; i < out_size; i++) {
g_print ("%d: \t%d \t%d:", i, offset[i], phase[i]);
for (j = 0; j < max_taps; j++) {
g_print ("\t%f", taps[i * max_taps + j]);
}
g_print ("\n");
}
#endif
}
#define INTERLACE_SHIFT 0.5
/**
* gst_video_scaler_new: (skip)
* @method: a #GstVideoResamplerMethod
* @flags: #GstVideoScalerFlags
* @n_taps: number of taps to use
* @in_size: number of source elements
* @out_size: number of destination elements
* @options: (allow-none): extra options
*
* Make a new @method video scaler. @in_size source lines/pixels will
* be scaled to @out_size destination lines/pixels.
*
* @n_taps specifies the amount of pixels to use from the source for one output
* pixel. If n_taps is 0, this function chooses a good value automatically based
* on the @method and @in_size/@out_size.
*
* Returns: a #GstVideoScaler
*/
GstVideoScaler *
gst_video_scaler_new (GstVideoResamplerMethod method, GstVideoScalerFlags flags,
guint n_taps, guint in_size, guint out_size, GstStructure * options)
{
GstVideoScaler *scale;
g_return_val_if_fail (in_size != 0, NULL);
g_return_val_if_fail (out_size != 0, NULL);
scale = g_new0 (GstVideoScaler, 1);
GST_DEBUG ("%d %u %u->%u", method, n_taps, in_size, out_size);
scale->method = method;
scale->flags = flags;
if (flags & GST_VIDEO_SCALER_FLAG_INTERLACED) {
GstVideoResampler tresamp, bresamp;
gdouble shift;
shift = (INTERLACE_SHIFT * out_size) / in_size;
gst_video_resampler_init (&tresamp, method,
GST_VIDEO_RESAMPLER_FLAG_HALF_TAPS, (out_size + 1) / 2, n_taps, shift,
(in_size + 1) / 2, (out_size + 1) / 2, options);
n_taps = tresamp.max_taps;
gst_video_resampler_init (&bresamp, method, 0, out_size - tresamp.out_size,
n_taps, -shift, in_size - tresamp.in_size,
out_size - tresamp.out_size, options);
resampler_zip (&scale->resampler, &tresamp, &bresamp);
gst_video_resampler_clear (&tresamp);
gst_video_resampler_clear (&bresamp);
} else {
gst_video_resampler_init (&scale->resampler, method,
GST_VIDEO_RESAMPLER_FLAG_NONE, out_size, n_taps, 0.0, in_size, out_size,
options);
}
if (out_size == 1)
scale->inc = 0;
else
scale->inc = ((in_size - 1) << 16) / (out_size - 1) - 1;
scaler_dump (scale);
GST_DEBUG ("max_taps %d", scale->resampler.max_taps);
return scale;
}
/**
* gst_video_scaler_free:
* @scale: a #GstVideoScaler
*
* Free a previously allocated #GstVideoScaler @scale.
*/
void
gst_video_scaler_free (GstVideoScaler * scale)
{
g_return_if_fail (scale != NULL);
gst_video_resampler_clear (&scale->resampler);
g_free (scale->taps_s16);
g_free (scale->taps_s16_4);
g_free (scale->offset_n);
g_free (scale->tmpline1);
g_free (scale->tmpline2);
g_free (scale);
}
/**
* gst_video_scaler_get_max_taps:
* @scale: a #GstVideoScaler
*
* Get the maximum number of taps for @scale.
*
* Returns: the maximum number of taps
*/
guint
gst_video_scaler_get_max_taps (GstVideoScaler * scale)
{
g_return_val_if_fail (scale != NULL, 0);
return scale->resampler.max_taps;
}
/**
* gst_video_scaler_get_coeff:
* @scale: a #GstVideoScaler
* @out_offset: an output offset
* @in_offset: (out) (optional): result input offset
* @n_taps: (out) (optional): result n_taps
*
* For a given pixel at @out_offset, get the first required input pixel at
* @in_offset and the @n_taps filter coefficients.
*
* Note that for interlaced content, @in_offset needs to be incremented with
* 2 to get the next input line.
*
* Returns: an array of @n_tap gdouble values with filter coefficients.
*/
const gdouble *
gst_video_scaler_get_coeff (GstVideoScaler * scale,
guint out_offset, guint * in_offset, guint * n_taps)
{
guint offset, phase;
g_return_val_if_fail (scale != NULL, NULL);
g_return_val_if_fail (out_offset < scale->resampler.out_size, NULL);
offset = scale->resampler.offset[out_offset];
phase = scale->resampler.phase[out_offset];
if (in_offset)
*in_offset = offset;
if (n_taps) {
*n_taps = scale->resampler.max_taps;
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
*n_taps *= 2;
}
return scale->resampler.taps + phase * scale->resampler.max_taps;
}
static gboolean
resampler_convert_coeff (const gdouble * src,
gpointer dest, guint n, guint bits, guint precision)
{
gdouble multiplier;
gint i, j;
gdouble offset, l_offset, h_offset;
gboolean exact = FALSE;
multiplier = (1 << precision);
/* Round to integer, but with an adjustable bias that we use to
* eliminate the DC error. */
l_offset = 0.0;
h_offset = 1.0;
offset = 0.5;
for (i = 0; i < 64; i++) {
gint sum = 0;
for (j = 0; j < n; j++) {
gint16 tap = floor (offset + src[j] * multiplier);
((gint16 *) dest)[j] = tap;
sum += tap;
}
if (sum == (1 << precision)) {
exact = TRUE;
break;
}
if (l_offset == h_offset)
break;
if (sum < (1 << precision)) {
if (offset > l_offset)
l_offset = offset;
offset += (h_offset - l_offset) / 2;
} else {
if (offset < h_offset)
h_offset = offset;
offset -= (h_offset - l_offset) / 2;
}
}
if (!exact)
GST_WARNING ("can't find exact taps");
return exact;
}
static void
make_s16_taps (GstVideoScaler * scale, gint n_elems, gint precision)
{
gint i, j, max_taps, n_phases, out_size, src_inc;
gint16 *taps_s16, *taps_s16_4;
gdouble *taps;
guint32 *phase, *offset, *offset_n;
n_phases = scale->resampler.n_phases;
max_taps = scale->resampler.max_taps;
taps = scale->resampler.taps;
taps_s16 = scale->taps_s16 = g_malloc (sizeof (gint16) * n_phases * max_taps);
for (i = 0; i < n_phases; i++) {
resampler_convert_coeff (taps, taps_s16, max_taps, 16, precision);
taps += max_taps;
taps_s16 += max_taps;
}
out_size = scale->resampler.out_size;
taps_s16 = scale->taps_s16;
phase = scale->resampler.phase;
offset = scale->resampler.offset;
taps_s16_4 = scale->taps_s16_4 =
g_malloc (sizeof (gint16) * out_size * max_taps * 4);
offset_n = scale->offset_n =
g_malloc (sizeof (guint32) * out_size * max_taps);
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
src_inc = 2;
else
src_inc = 1;
for (j = 0; j < max_taps; j++) {
for (i = 0; i < out_size; i++) {
gint16 tap;
if (scale->merged) {
if ((i & 1) == scale->out_y_offset)
offset_n[j * out_size + i] = offset[i] + (2 * j);
else
offset_n[j * out_size + i] = offset[i] + (4 * j);
} else {
offset_n[j * out_size + i] = offset[i] + j * src_inc;
}
tap = taps_s16[phase[i] * max_taps + j];
taps_s16_4[(j * out_size + i) * n_elems + 0] = tap;
if (n_elems > 1)
taps_s16_4[(j * out_size + i) * n_elems + 1] = tap;
if (n_elems > 2)
taps_s16_4[(j * out_size + i) * n_elems + 2] = tap;
if (n_elems > 3)
taps_s16_4[(j * out_size + i) * n_elems + 3] = tap;
}
}
}
#undef ACC_SCALE
static void
video_scale_h_near_u8 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
guint8 *s, *d;
gint i;
d = (guint8 *) dest + dest_offset;
s = (guint8 *) src;
{
#ifndef ACC_SCALE
guint32 *offset = scale->resampler.offset + dest_offset;
for (i = 0; i < width; i++)
d[i] = s[offset[i]];
#else
gint acc = 0;
for (i = 0; i < width; i++) {
gint j = (acc + 0x8000) >> 16;
d[i] = s[j];
acc += scale->inc;
}
#endif
}
}
static void
video_scale_h_near_3u8 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
guint8 *s, *d;
gint i;
d = (guint8 *) dest + dest_offset;
s = (guint8 *) src;
{
#ifndef ACC_SCALE
guint32 *offset = scale->resampler.offset + dest_offset;
for (i = 0; i < width; i++) {
gint j = offset[i] * 3;
d[i * 3 + 0] = s[j + 0];
d[i * 3 + 1] = s[j + 1];
d[i * 3 + 2] = s[j + 2];
}
#else
gint acc = 0;
for (i = 0; i < width; i++) {
gint j = ((acc + 0x8000) >> 16) * 3;
d[i * 3 + 0] = s[j + 0];
d[i * 3 + 1] = s[j + 1];
d[i * 3 + 2] = s[j + 2];
acc += scale->inc;
}
#endif
}
}
static void
video_scale_h_near_u16 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
guint16 *s, *d;
gint i;
d = (guint16 *) dest + dest_offset;
s = (guint16 *) src;
{
#ifndef ACC_SCALE
guint32 *offset = scale->resampler.offset + dest_offset;
for (i = 0; i < width; i++)
d[i] = s[offset[i]];
#else
gint acc = 0;
for (i = 0; i < width; i++) {
gint j = (acc + 0x8000) >> 16;
d[i] = s[j];
acc += scale->inc;
}
#endif
}
}
static void
video_scale_h_near_u32 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
guint32 *s, *d;
d = (guint32 *) dest + dest_offset;
s = (guint32 *) src;
#if 0
/* ORC is slower on this */
video_orc_resample_h_near_u32_lq (d, s, 0, scale->inc, width);
#elif 0
video_orc_resample_h_near_u32 (d, s, offset, width);
#else
{
gint i;
#ifndef ACC_SCALE
guint32 *offset = scale->resampler.offset + dest_offset;
for (i = 0; i < width; i++)
d[i] = s[offset[i]];
#else
gint acc = 0;
for (i = 0; i < width; i++) {
gint j = (acc + 0x8000) >> 16;
d[i] = s[j];
acc += scale->inc;
}
#endif
}
#endif
}
static void
video_scale_h_near_u64 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
guint64 *s, *d;
gint i;
guint32 *offset;
d = (guint64 *) dest + dest_offset;
s = (guint64 *) src;
offset = scale->resampler.offset + dest_offset;
for (i = 0; i < width; i++)
d[i] = s[offset[i]];
}
static void
video_scale_h_2tap_1u8 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
guint8 *s, *d;
d = (guint8 *) dest + dest_offset;
s = (guint8 *) src;
video_orc_resample_h_2tap_1u8_lq (d, s, 0, scale->inc, width);
}
static void
video_scale_h_2tap_4u8 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
guint32 *s, *d;
d = (guint32 *) dest + dest_offset;
s = (guint32 *) src;
video_orc_resample_h_2tap_4u8_lq (d, s, 0, scale->inc, width);
}
static void
video_scale_h_ntap_u8 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
gint16 *taps;
gint i, max_taps, count;
gpointer d;
guint32 *offset_n;
guint8 *pixels;
gint16 *temp;
if (scale->taps_s16 == NULL)
#ifdef LQ
make_s16_taps (scale, n_elems, SCALE_U8_LQ);
#else
make_s16_taps (scale, n_elems, SCALE_U8);
#endif
max_taps = scale->resampler.max_taps;
offset_n = scale->offset_n;
pixels = (guint8 *) scale->tmpline1;
/* prepare the arrays */
count = width * max_taps;
switch (n_elems) {
case 1:
{
guint8 *s = (guint8 *) src;
for (i = 0; i < count; i++)
pixels[i] = s[offset_n[i]];
d = (guint8 *) dest + dest_offset;
break;
}
case 2:
{
guint16 *p16 = (guint16 *) pixels;
guint16 *s = (guint16 *) src;
for (i = 0; i < count; i++)
p16[i] = s[offset_n[i]];
d = (guint16 *) dest + dest_offset;
break;
}
case 3:
{
guint8 *s = (guint8 *) src;
for (i = 0; i < count; i++) {
gint j = offset_n[i] * 3;
pixels[i * 3 + 0] = s[j + 0];
pixels[i * 3 + 1] = s[j + 1];
pixels[i * 3 + 2] = s[j + 2];
}
d = (guint8 *) dest + dest_offset * 3;
break;
}
case 4:
{
guint32 *p32 = (guint32 *) pixels;
guint32 *s = (guint32 *) src;
#if 0
video_orc_resample_h_near_u32 (p32, s, offset_n, count);
#else
for (i = 0; i < count; i++)
p32[i] = s[offset_n[i]];
#endif
d = (guint32 *) dest + dest_offset;
break;
}
default:
return;
}
temp = (gint16 *) scale->tmpline2;
taps = scale->taps_s16_4;
count = width * n_elems;
#ifdef LQ
if (max_taps == 2) {
video_orc_resample_h_2tap_u8_lq (d, pixels, pixels + count, taps,
taps + count, count);
} else {
/* first pixels with first tap to temp */
if (max_taps >= 3) {
video_orc_resample_h_multaps3_u8_lq (temp, pixels, pixels + count,
pixels + count * 2, taps, taps + count, taps + count * 2, count);
max_taps -= 3;
pixels += count * 3;
taps += count * 3;
} else {
gint first = max_taps % 3;
video_orc_resample_h_multaps_u8_lq (temp, pixels, taps, count);
video_orc_resample_h_muladdtaps_u8_lq (temp, 0, pixels + count, count,
taps + count, count * 2, count, first - 1);
max_taps -= first;
pixels += count * first;
taps += count * first;
}
while (max_taps > 3) {
if (max_taps >= 6) {
video_orc_resample_h_muladdtaps3_u8_lq (temp, pixels, pixels + count,
pixels + count * 2, taps, taps + count, taps + count * 2, count);
max_taps -= 3;
pixels += count * 3;
taps += count * 3;
} else {
video_orc_resample_h_muladdtaps_u8_lq (temp, 0, pixels, count,
taps, count * 2, count, max_taps - 3);
pixels += count * (max_taps - 3);
taps += count * (max_taps - 3);
max_taps = 3;
}
}
if (max_taps == 3) {
video_orc_resample_h_muladdscaletaps3_u8_lq (d, pixels, pixels + count,
pixels + count * 2, taps, taps + count, taps + count * 2, temp,
count);
} else {
if (max_taps) {
/* add other pixels with other taps to t4 */
video_orc_resample_h_muladdtaps_u8_lq (temp, 0, pixels, count,
taps, count * 2, count, max_taps);
}
/* scale and write final result */
video_orc_resample_scaletaps_u8_lq (d, temp, count);
}
}
#else
/* first pixels with first tap to t4 */
video_orc_resample_h_multaps_u8 (temp, pixels, taps, count);
/* add other pixels with other taps to t4 */
video_orc_resample_h_muladdtaps_u8 (temp, 0, pixels + count, count,
taps + count, count * 2, count, max_taps - 1);
/* scale and write final result */
video_orc_resample_scaletaps_u8 (d, temp, count);
#endif
}
static void
video_scale_h_ntap_u16 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width, guint n_elems)
{
gint16 *taps;
gint i, max_taps, count;
gpointer d;
guint32 *offset_n;
guint16 *pixels;
gint32 *temp;
if (scale->taps_s16 == NULL)
make_s16_taps (scale, n_elems, SCALE_U16);
max_taps = scale->resampler.max_taps;
offset_n = scale->offset_n;
pixels = (guint16 *) scale->tmpline1;
/* prepare the arrays FIXME, we can add this into ORC */
count = width * max_taps;
switch (n_elems) {
case 1:
{
guint16 *s = (guint16 *) src;
for (i = 0; i < count; i++)
pixels[i] = s[offset_n[i]];
d = (guint16 *) dest + dest_offset;
break;
}
case 4:
{
guint64 *p64 = (guint64 *) pixels;
guint64 *s = (guint64 *) src;
#if 0
video_orc_resample_h_near_u32 (p32, s, offset_n, count);
#else
for (i = 0; i < count; i++)
p64[i] = s[offset_n[i]];
#endif
d = (guint64 *) dest + dest_offset;
break;
}
default:
return;
}
temp = (gint32 *) scale->tmpline2;
taps = scale->taps_s16_4;
count = width * n_elems;
if (max_taps == 2) {
video_orc_resample_h_2tap_u16 (d, pixels, pixels + count, taps,
taps + count, count);
} else {
/* first pixels with first tap to t4 */
video_orc_resample_h_multaps_u16 (temp, pixels, taps, count);
/* add other pixels with other taps to t4 */
video_orc_resample_h_muladdtaps_u16 (temp, 0, pixels + count, count * 2,
taps + count, count * 2, count, max_taps - 1);
/* scale and write final result */
video_orc_resample_scaletaps_u16 (d, temp, count);
}
}
static void
video_scale_v_near_u8 (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems)
{
if (dest != srcs[0])
memcpy (dest, srcs[0], n_elems * width);
}
static void
video_scale_v_near_u16 (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems)
{
if (dest != srcs[0])
memcpy (dest, srcs[0], n_elems * 2 * width);
}
static void
video_scale_v_2tap_u8 (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems)
{
gint max_taps, src_inc;
guint8 *s1, *s2, *d;
gint16 p1;
if (scale->taps_s16 == NULL)
#ifdef LQ
make_s16_taps (scale, n_elems, SCALE_U8_LQ + 2);
#else
make_s16_taps (scale, n_elems, SCALE_U8);
#endif
max_taps = scale->resampler.max_taps;
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
src_inc = 2;
else
src_inc = 1;
d = (guint8 *) dest;
s1 = (guint8 *) srcs[0 * src_inc];
s2 = (guint8 *) srcs[1 * src_inc];
p1 = scale->taps_s16[dest_offset * max_taps + 1];
#ifdef LQ
video_orc_resample_v_2tap_u8_lq (d, s1, s2, p1, width * n_elems);
#else
video_orc_resample_v_2tap_u8 (d, s1, s2, p1, width * n_elems);
#endif
}
static void
video_scale_v_2tap_u16 (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems)
{
gint max_taps, src_inc;
guint16 *s1, *s2, *d;
gint16 p1;
if (scale->taps_s16 == NULL)
make_s16_taps (scale, n_elems, SCALE_U16);
max_taps = scale->resampler.max_taps;
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
src_inc = 2;
else
src_inc = 1;
d = (guint16 *) dest;
s1 = (guint16 *) srcs[0 * src_inc];
s2 = (guint16 *) srcs[1 * src_inc];
p1 = scale->taps_s16[dest_offset * max_taps + 1];
video_orc_resample_v_2tap_u16 (d, s1, s2, p1, width * n_elems);
}
#if 0
static void
video_scale_h_4tap_8888 (GstVideoScaler * scale,
gpointer src, gpointer dest, guint dest_offset, guint width)
{
gint16 *taps;
gint i, max_taps, count;
guint8 *d;
guint32 *offset_n;
guint32 *pixels;
if (scale->taps_s16 == NULL)
make_s16_taps (scale, n_elems, S16_SCALE);
max_taps = scale->resampler.max_taps;
offset_n = scale->offset_n;
d = (guint8 *) dest + 4 * dest_offset;
/* prepare the arrays FIXME, we can add this into ORC */
count = width * max_taps;
pixels = (guint32 *) scale->tmpline1;
for (i = 0; i < count; i++)
pixels[i] = ((guint32 *) src)[offset_n[i]];
taps = scale->taps_s16_4;
count = width * 4;
video_orc_resample_h_4tap_8 (d, pixels, pixels + width, pixels + 2 * width,
pixels + 3 * width, taps, taps + count, taps + 2 * count,
taps + 3 * count, count);
}
#endif
static void
video_scale_v_4tap_u8 (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems)
{
gint max_taps;
guint8 *s1, *s2, *s3, *s4, *d;
gint p1, p2, p3, p4, src_inc;
gint16 *taps;
if (scale->taps_s16 == NULL)
#ifdef LQ
make_s16_taps (scale, n_elems, SCALE_U8_LQ);
#else
make_s16_taps (scale, n_elems, SCALE_U8);
#endif
max_taps = scale->resampler.max_taps;
taps = scale->taps_s16 + dest_offset * max_taps;
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
src_inc = 2;
else
src_inc = 1;
d = (guint8 *) dest;
s1 = (guint8 *) srcs[0 * src_inc];
s2 = (guint8 *) srcs[1 * src_inc];
s3 = (guint8 *) srcs[2 * src_inc];
s4 = (guint8 *) srcs[3 * src_inc];
p1 = taps[0];
p2 = taps[1];
p3 = taps[2];
p4 = taps[3];
#ifdef LQ
video_orc_resample_v_4tap_u8_lq (d, s1, s2, s3, s4, p1, p2, p3, p4,
width * n_elems);
#else
video_orc_resample_v_4tap_u8 (d, s1, s2, s3, s4, p1, p2, p3, p4,
width * n_elems);
#endif
}
static void
video_scale_v_ntap_u8 (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems)
{
gint16 *taps;
gint i, max_taps, count, src_inc;
gpointer d;
gint16 *temp;
if (scale->taps_s16 == NULL)
#ifdef LQ
make_s16_taps (scale, n_elems, SCALE_U8_LQ);
#else
make_s16_taps (scale, n_elems, SCALE_U8);
#endif
max_taps = scale->resampler.max_taps;
taps = scale->taps_s16 + (scale->resampler.phase[dest_offset] * max_taps);
d = (guint32 *) dest;
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
src_inc = 2;
else
src_inc = 1;
temp = (gint16 *) scale->tmpline2;
count = width * n_elems;
#ifdef LQ
if (max_taps >= 4) {
video_orc_resample_v_multaps4_u8_lq (temp, srcs[0], srcs[1 * src_inc],
srcs[2 * src_inc], srcs[3 * src_inc], taps[0], taps[1], taps[2],
taps[3], count);
max_taps -= 4;
srcs += 4 * src_inc;
taps += 4;
} else {
gint first = (max_taps % 4);
video_orc_resample_v_multaps_u8_lq (temp, srcs[0], taps[0], count);
for (i = 1; i < first; i++) {
video_orc_resample_v_muladdtaps_u8_lq (temp, srcs[i * src_inc], taps[i],
count);
}
max_taps -= first;
srcs += first * src_inc;
taps += first;
}
while (max_taps > 4) {
if (max_taps >= 8) {
video_orc_resample_v_muladdtaps4_u8_lq (temp, srcs[0], srcs[1 * src_inc],
srcs[2 * src_inc], srcs[3 * src_inc], taps[0], taps[1], taps[2],
taps[3], count);
max_taps -= 4;
srcs += 4 * src_inc;
taps += 4;
} else {
for (i = 0; i < max_taps - 4; i++)
video_orc_resample_v_muladdtaps_u8_lq (temp, srcs[i * src_inc], taps[i],
count);
srcs += (max_taps - 4) * src_inc;
taps += (max_taps - 4);
max_taps = 4;
}
}
if (max_taps == 4) {
video_orc_resample_v_muladdscaletaps4_u8_lq (d, srcs[0], srcs[1 * src_inc],
srcs[2 * src_inc], srcs[3 * src_inc], temp, taps[0], taps[1], taps[2],
taps[3], count);
} else {
for (i = 0; i < max_taps; i++)
video_orc_resample_v_muladdtaps_u8_lq (temp, srcs[i * src_inc], taps[i],
count);
video_orc_resample_scaletaps_u8_lq (d, temp, count);
}
#else
video_orc_resample_v_multaps_u8 (temp, srcs[0], taps[0], count);
for (i = 1; i < max_taps; i++) {
video_orc_resample_v_muladdtaps_u8 (temp, srcs[i * src_inc], taps[i],
count);
}
video_orc_resample_scaletaps_u8 (d, temp, count);
#endif
}
static void
video_scale_v_ntap_u16 (GstVideoScaler * scale,
gpointer srcs[], gpointer dest, guint dest_offset, guint width,
guint n_elems)
{
gint16 *taps;
gint i, max_taps, count, src_inc;
gpointer d;
gint32 *temp;
if (scale->taps_s16 == NULL)
make_s16_taps (scale, n_elems, SCALE_U16);
max_taps = scale->resampler.max_taps;
taps = scale->taps_s16 + (scale->resampler.phase[dest_offset] * max_taps);
d = (guint16 *) dest;
if (scale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED)
src_inc = 2;
else
src_inc = 1;
temp = (gint32 *) scale->tmpline2;
count = width * n_elems;
video_orc_resample_v_multaps_u16 (temp, srcs[0], taps[0], count);
for (i = 1; i < max_taps; i++) {
video_orc_resample_v_muladdtaps_u16 (temp, srcs[i * src_inc], taps[i],
count);
}
video_orc_resample_scaletaps_u16 (d, temp, count);
}
static gint
get_y_offset (GstVideoFormat format)
{
switch (format) {
case GST_VIDEO_FORMAT_YUY2:
case GST_VIDEO_FORMAT_YVYU:
return 0;
default:
case GST_VIDEO_FORMAT_UYVY:
return 1;
}
}
/**
* gst_video_scaler_combine_packed_YUV: (skip)
* @y_scale: a scaler for the Y component
* @uv_scale: a scaler for the U and V components
* @in_format: the input video format
* @out_format: the output video format
*
* Combine a scaler for Y and UV into one scaler for the packed @format.
*
* Returns: a new horizontal videoscaler for @format.
*
* Since: 1.6
*/
GstVideoScaler *
gst_video_scaler_combine_packed_YUV (GstVideoScaler * y_scale,
GstVideoScaler * uv_scale, GstVideoFormat in_format,
GstVideoFormat out_format)
{
GstVideoScaler *scale;
GstVideoResampler *resampler;
guint i, out_size, max_taps, n_phases;
gdouble *taps;
guint32 *offset, *phase;
g_return_val_if_fail (y_scale != NULL, NULL);
g_return_val_if_fail (uv_scale != NULL, NULL);
g_return_val_if_fail (uv_scale->resampler.max_taps ==
y_scale->resampler.max_taps, NULL);
scale = g_new0 (GstVideoScaler, 1);
scale->method = y_scale->method;
scale->flags = y_scale->flags;
scale->merged = TRUE;
resampler = &scale->resampler;
out_size = GST_ROUND_UP_4 (y_scale->resampler.out_size * 2);
max_taps = y_scale->resampler.max_taps;
n_phases = out_size;
offset = g_malloc (sizeof (guint32) * out_size);
phase = g_malloc (sizeof (guint32) * n_phases);
taps = g_malloc (sizeof (gdouble) * max_taps * n_phases);
resampler->in_size = y_scale->resampler.in_size * 2;
resampler->out_size = out_size;
resampler->max_taps = max_taps;
resampler->n_phases = n_phases;
resampler->offset = offset;
resampler->phase = phase;
resampler->n_taps = g_malloc (sizeof (guint32) * out_size);
resampler->taps = taps;
scale->in_y_offset = get_y_offset (in_format);
scale->out_y_offset = get_y_offset (out_format);
scale->inc = y_scale->inc;
for (i = 0; i < out_size; i++) {
gint ic;
if ((i & 1) == scale->out_y_offset) {
ic = MIN (i / 2, y_scale->resampler.out_size - 1);
offset[i] = y_scale->resampler.offset[ic] * 2 + scale->in_y_offset;
memcpy (taps + i * max_taps, y_scale->resampler.taps +
y_scale->resampler.phase[ic] * max_taps, max_taps * sizeof (gdouble));
} else {
ic = MIN (i / 4, uv_scale->resampler.out_size - 1);
offset[i] = uv_scale->resampler.offset[ic] * 4 + (i & 3);
memcpy (taps + i * max_taps, uv_scale->resampler.taps +
uv_scale->resampler.phase[ic] * max_taps,
max_taps * sizeof (gdouble));
}
phase[i] = i;
}
scaler_dump (scale);
return scale;
}
static gboolean
get_functions (GstVideoScaler * hscale, GstVideoScaler * vscale,
GstVideoFormat format,
GstVideoScalerHFunc * hfunc, GstVideoScalerVFunc * vfunc,
gint * n_elems, guint * width, gint * bits)
{
gboolean mono = FALSE;
switch (format) {
case GST_VIDEO_FORMAT_GRAY8:
*bits = 8;
*n_elems = 1;
mono = TRUE;
break;
case GST_VIDEO_FORMAT_YUY2:
case GST_VIDEO_FORMAT_YVYU:
case GST_VIDEO_FORMAT_UYVY:
*bits = 8;
*n_elems = 1;
*width = GST_ROUND_UP_4 (*width * 2);
break;
case GST_VIDEO_FORMAT_RGB:
case GST_VIDEO_FORMAT_BGR:
case GST_VIDEO_FORMAT_v308:
case GST_VIDEO_FORMAT_IYU2:
*bits = 8;
*n_elems = 3;
break;
case GST_VIDEO_FORMAT_AYUV:
case GST_VIDEO_FORMAT_RGBx:
case GST_VIDEO_FORMAT_BGRx:
case GST_VIDEO_FORMAT_xRGB:
case GST_VIDEO_FORMAT_xBGR:
case GST_VIDEO_FORMAT_RGBA:
case GST_VIDEO_FORMAT_BGRA:
case GST_VIDEO_FORMAT_ARGB:
case GST_VIDEO_FORMAT_ABGR:
*bits = 8;
*n_elems = 4;
break;
case GST_VIDEO_FORMAT_ARGB64:
case GST_VIDEO_FORMAT_ARGB64_LE:
case GST_VIDEO_FORMAT_ARGB64_BE:
case GST_VIDEO_FORMAT_RGBA64_BE:
case GST_VIDEO_FORMAT_RGBA64_LE:
case GST_VIDEO_FORMAT_BGRA64_BE:
case GST_VIDEO_FORMAT_BGRA64_LE:
case GST_VIDEO_FORMAT_ABGR64_BE:
case GST_VIDEO_FORMAT_ABGR64_LE:
case GST_VIDEO_FORMAT_AYUV64:
*bits = 16;
*n_elems = 4;
break;
case GST_VIDEO_FORMAT_GRAY16_LE:
case GST_VIDEO_FORMAT_GRAY16_BE:
*bits = 16;
*n_elems = 1;
mono = TRUE;
break;
case GST_VIDEO_FORMAT_NV12:
case GST_VIDEO_FORMAT_NV16:
case GST_VIDEO_FORMAT_NV21:
case GST_VIDEO_FORMAT_NV24:
case GST_VIDEO_FORMAT_NV61:
*bits = 8;
*n_elems = 2;
break;
default:
return FALSE;
}
if (*bits == 8) {
switch (hscale ? hscale->resampler.max_taps : 0) {
case 0:
break;
case 1:
if (*n_elems == 1)
*hfunc = video_scale_h_near_u8;
else if (*n_elems == 2)
*hfunc = video_scale_h_near_u16;
else if (*n_elems == 3)
*hfunc = video_scale_h_near_3u8;
else if (*n_elems == 4)
*hfunc = video_scale_h_near_u32;
break;
case 2:
if (*n_elems == 1 && mono)
*hfunc = video_scale_h_2tap_1u8;
else if (*n_elems == 4)
*hfunc = video_scale_h_2tap_4u8;
else
*hfunc = video_scale_h_ntap_u8;
break;
default:
*hfunc = video_scale_h_ntap_u8;
break;
}
switch (vscale ? vscale->resampler.max_taps : 0) {
case 0:
break;
case 1:
*vfunc = video_scale_v_near_u8;
break;
case 2:
*vfunc = video_scale_v_2tap_u8;
break;
case 4:
*vfunc = video_scale_v_4tap_u8;
break;
default:
*vfunc = video_scale_v_ntap_u8;
break;
}
} else if (*bits == 16) {
switch (hscale ? hscale->resampler.max_taps : 0) {
case 0:
break;
case 1:
if (*n_elems == 1)
*hfunc = video_scale_h_near_u16;
else
*hfunc = video_scale_h_near_u64;
break;
default:
*hfunc = video_scale_h_ntap_u16;
break;
}
switch (vscale ? vscale->resampler.max_taps : 0) {
case 0:
break;
case 1:
*vfunc = video_scale_v_near_u16;
break;
case 2:
*vfunc = video_scale_v_2tap_u16;
break;
default:
*vfunc = video_scale_v_ntap_u16;
break;
}
}
return TRUE;
}
/**
* gst_video_scaler_horizontal:
* @scale: a #GstVideoScaler
* @format: a #GstVideoFormat for @src and @dest
* @src: source pixels
* @dest: destination pixels
* @dest_offset: the horizontal destination offset
* @width: the number of pixels to scale
*
* Horizontally scale the pixels in @src to @dest, starting from @dest_offset
* for @width samples.
*/
void
gst_video_scaler_horizontal (GstVideoScaler * scale, GstVideoFormat format,
gpointer src, gpointer dest, guint dest_offset, guint width)
{
gint n_elems, bits;
GstVideoScalerHFunc func = NULL;
g_return_if_fail (scale != NULL);
g_return_if_fail (src != NULL);
g_return_if_fail (dest != NULL);
g_return_if_fail (dest_offset + width <= scale->resampler.out_size);
if (!get_functions (scale, NULL, format, &func, NULL, &n_elems, &width, &bits)
|| func == NULL)
goto no_func;
if (scale->tmpwidth < width)
realloc_tmplines (scale, n_elems, width);
func (scale, src, dest, dest_offset, width, n_elems);
return;
no_func:
{
GST_WARNING ("no scaler function for format");
}
}
/**
* gst_video_scaler_vertical:
* @scale: a #GstVideoScaler
* @format: a #GstVideoFormat for @srcs and @dest
* @src_lines: source pixels lines
* @dest: destination pixels
* @dest_offset: the vertical destination offset
* @width: the number of pixels to scale
*
* Vertically combine @width pixels in the lines in @src_lines to @dest.
* @dest is the location of the target line at @dest_offset and
* @srcs are the input lines for @dest_offset.
*/
void
gst_video_scaler_vertical (GstVideoScaler * scale, GstVideoFormat format,
gpointer src_lines[], gpointer dest, guint dest_offset, guint width)
{
gint n_elems, bits;
GstVideoScalerVFunc func = NULL;
g_return_if_fail (scale != NULL);
g_return_if_fail (src_lines != NULL);
g_return_if_fail (dest != NULL);
g_return_if_fail (dest_offset < scale->resampler.out_size);
if (!get_functions (NULL, scale, format, NULL, &func, &n_elems, &width, &bits)
|| func == NULL)
goto no_func;
if (scale->tmpwidth < width)
realloc_tmplines (scale, n_elems, width);
func (scale, src_lines, dest, dest_offset, width, n_elems);
return;
no_func:
{
GST_WARNING ("no scaler function for format");
}
}
/**
* gst_video_scaler_2d:
* @hscale: a horizontal #GstVideoScaler
* @vscale: a vertical #GstVideoScaler
* @format: a #GstVideoFormat for @srcs and @dest
* @src: source pixels
* @src_stride: source pixels stride
* @dest: destination pixels
* @dest_stride: destination pixels stride
* @x: the horizontal destination offset
* @y: the vertical destination offset
* @width: the number of output pixels to scale
* @height: the number of output lines to scale
*
* Scale a rectangle of pixels in @src with @src_stride to @dest with
* @dest_stride using the horizontal scaler @hscaler and the vertical
* scaler @vscale.
*
* One or both of @hscale and @vscale can be NULL to only perform scaling in
* one dimension or do a copy without scaling.
*
* @x and @y are the coordinates in the destination image to process.
*/
void
gst_video_scaler_2d (GstVideoScaler * hscale, GstVideoScaler * vscale,
GstVideoFormat format, gpointer src, gint src_stride,
gpointer dest, gint dest_stride, guint x, guint y,
guint width, guint height)
{
gint n_elems, bits;
GstVideoScalerHFunc hfunc = NULL;
GstVideoScalerVFunc vfunc = NULL;
gint i;
gboolean interlaced;
g_return_if_fail (src != NULL);
g_return_if_fail (dest != NULL);
if (!get_functions (hscale, vscale, format, &hfunc, &vfunc, &n_elems, &width,
&bits))
goto no_func;
interlaced = vscale && ! !(vscale->flags & GST_VIDEO_SCALER_FLAG_INTERLACED);
#define LINE(s,ss,i) ((guint8 *)(s) + ((i) * (ss)))
#define TMP_LINE(s,i) ((guint8 *)((s)->tmpline1) + (i) * (sizeof (gint32) * width * n_elems))
if (vscale == NULL) {
if (hscale == NULL) {
guint xo, xw;
guint8 *s, *d;
xo = x * n_elems;
xw = width * n_elems * (bits / 8);
s = LINE (src, src_stride, y) + xo;
d = LINE (dest, dest_stride, y) + xo;
/* no scaling, do memcpy */
for (i = y; i < height; i++) {
memcpy (d, s, xw);
d += dest_stride;
s += src_stride;
}
} else {
if (hscale->tmpwidth < width)
realloc_tmplines (hscale, n_elems, width);
/* only horizontal scaling */
for (i = y; i < height; i++) {
hfunc (hscale, LINE (src, src_stride, i), LINE (dest, dest_stride, i),
x, width, n_elems);
}
}
} else {
guint v_taps;
gpointer *lines;
if (vscale->tmpwidth < width)
realloc_tmplines (vscale, n_elems, width);
v_taps = vscale->resampler.max_taps;
lines = g_alloca ((interlaced ? 2 : 1) * v_taps * sizeof (gpointer));
memset (lines, 0, (interlaced ? 2 : 1) * v_taps * sizeof (gpointer));
if (hscale == NULL) {
guint src_inc = interlaced ? 2 : 1;
/* only vertical scaling */
for (i = y; i < height; i++) {
guint in, j;
in = vscale->resampler.offset[i];
for (j = 0; j < v_taps; j++) {
guint l = in + j * src_inc;
g_assert (l < vscale->resampler.in_size);
lines[j * src_inc] = LINE (src, src_stride, l);
}
vfunc (vscale, lines, LINE (dest, dest_stride, i), i, width, n_elems);
}
} else {
gint s1, s2;
guint *tmpline_lines;
tmpline_lines = g_newa (guint, (interlaced ? 2 : 1) * v_taps);
/* initialize with -1 */
memset (tmpline_lines, 0xff,
(interlaced ? 2 : 1) * v_taps * sizeof (guint));
if (hscale->tmpwidth < width)
realloc_tmplines (hscale, n_elems, width);
s1 = width * vscale->resampler.offset[height - 1];
s2 = width * height;
if (s1 <= s2) {
for (i = y; i < height; i++) {
guint in, j;
guint src_inc = interlaced ? 2 : 1;
guint f2_offset = (interlaced && (i % 2 == 1)) * v_taps;
in = vscale->resampler.offset[i];
for (j = 0; j < v_taps; j++) {
guint k;
guint l = in + j * src_inc;
g_assert (l < vscale->resampler.in_size);
/* First check if we already have this line in tmplines */
for (k = f2_offset; k < v_taps + f2_offset; k++) {
if (tmpline_lines[k] == l) {
lines[j * src_inc] = TMP_LINE (vscale, k);
break;
}
}
/* Found */
if (k < v_taps + f2_offset)
continue;
/* Otherwise find an empty line we can clear */
for (k = f2_offset; k < v_taps + f2_offset; k++) {
if (tmpline_lines[k] < in || tmpline_lines[k] == -1)
break;
}
/* Must not happen, that would mean we don't have enough space to
* begin with */
g_assert (k < v_taps + f2_offset);
hfunc (hscale, LINE (src, src_stride, l), TMP_LINE (vscale, k), x,
width, n_elems);
tmpline_lines[k] = l;
lines[j * src_inc] = TMP_LINE (vscale, k);
}
vfunc (vscale, lines, LINE (dest, dest_stride, i), i, width, n_elems);
}
} else {
guint vx, vw, w1, ws;
guint h_taps;
h_taps = hscale->resampler.max_taps;
w1 = x + width - 1;
ws = hscale->resampler.offset[w1];
/* we need to estimate the area that we first need to scale in the
* vertical direction. Scale x and width to find the lower bound and
* overshoot the width to find the upper bound */
vx = (hscale->inc * x) >> 16;
vx = MIN (vx, hscale->resampler.offset[x]);
vw = (hscale->inc * (x + width)) >> 16;
if (hscale->merged) {
if ((w1 & 1) == hscale->out_y_offset)
vw = MAX (vw, ws + (2 * h_taps));
else
vw = MAX (vw, ws + (4 * h_taps));
} else {
vw = MAX (vw, ws + h_taps);
}
vw += 1;
/* but clamp to max size */
vw = MIN (vw, hscale->resampler.in_size);
if (vscale->tmpwidth < vw)
realloc_tmplines (vscale, n_elems, vw);
for (i = y; i < height; i++) {
guint in, j;
guint src_inc = interlaced ? 2 : 1;
in = vscale->resampler.offset[i];
for (j = 0; j < v_taps; j++) {
guint l = in + j * src_inc;
g_assert (l < vscale->resampler.in_size);
lines[j * src_inc] =
LINE (src, src_stride, in + j * src_inc) + vx * n_elems;
}
vfunc (vscale, lines, TMP_LINE (vscale, 0) + vx * n_elems, i,
vw - vx, n_elems);
hfunc (hscale, TMP_LINE (vscale, 0), LINE (dest, dest_stride,
i), x, width, n_elems);
}
}
}
}
return;
no_func:
{
GST_WARNING ("no scaler function for format");
}
}
#undef LINE
#undef TMP_LINE