gstreamer/subprojects/gst-plugins-bad/gst-libs/gst/cuda/gstcudamemory.cpp

1912 lines
54 KiB
C++

/* GStreamer
* Copyright (C) <2018-2019> Seungha Yang <seungha.yang@navercorp.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gstcudamemory.h"
#include "gstcudautils.h"
#include "gstcuda-private.h"
#include <string.h>
#include <map>
#include <memory>
#ifdef G_OS_WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
GST_DEBUG_CATEGORY_STATIC (cuda_allocator_debug);
#define GST_CAT_DEFAULT cuda_allocator_debug
static GstAllocator *_gst_cuda_allocator = nullptr;
GType
gst_cuda_memory_alloc_method_get_type (void)
{
static GType type = 0;
static const GEnumValue alloc_methods[] = {
{GST_CUDA_MEMORY_ALLOC_UNKNOWN, "GST_CUDA_MEMORY_ALLOC_UNKNOWN", "unknown"},
{GST_CUDA_MEMORY_ALLOC_MALLOC, "GST_CUDA_MEMORY_ALLOC_MALLOC", "malloc"},
{GST_CUDA_MEMORY_ALLOC_MMAP, "GST_CUDA_MEMORY_ALLOC_MMAP", "mmap"},
{0, nullptr, nullptr}
};
GST_CUDA_CALL_ONCE_BEGIN {
type = g_enum_register_static ("GstCudaMemoryAllocMethod", alloc_methods);
} GST_CUDA_CALL_ONCE_END;
return type;
}
/* *INDENT-OFF* */
struct GstCudaMemoryTokenData
{
GstCudaMemoryTokenData (gpointer data, GDestroyNotify notify_func)
:user_data (data), notify (notify_func)
{
}
~GstCudaMemoryTokenData ()
{
if (notify)
notify (user_data);
}
gpointer user_data;
GDestroyNotify notify;
};
struct _GstCudaMemoryPrivate
{
_GstCudaMemoryPrivate ()
{
memset (&texture, 0, sizeof (texture));
}
GstCudaMemoryAllocMethod alloc_method = GST_CUDA_MEMORY_ALLOC_MALLOC;
CUdeviceptr data = 0;
void *staging = nullptr;
/* virtual memory */
gsize max_size = 0;
CUmemGenericAllocationHandle handle = 0;
CUmemAllocationProp alloc_prop;
gboolean exported = FALSE;
#ifdef G_OS_WIN32
HANDLE os_handle = nullptr;
#else
int os_handle = 0;
#endif
/* params used for cuMemAllocPitch */
gsize pitch = 0;
guint width_in_bytes = 0;
guint height = 0;
std::mutex lock;
GstCudaStream *stream = nullptr;
gint texture_align = 0;
/* Per plane, and point/linear sampling textures respectively */
CUtexObject texture[GST_VIDEO_MAX_PLANES][2];
gboolean saw_io = FALSE;
gboolean from_fixed_pool = FALSE;
std::map < gint64, std::unique_ptr < GstCudaMemoryTokenData >> token_map;
gpointer user_data = nullptr;
GDestroyNotify notify = nullptr;
};
/* *INDENT-ON* */
struct _GstCudaAllocatorPrivate
{
GstMemoryCopyFunction fallback_copy;
};
#define gst_cuda_allocator_parent_class parent_class
G_DEFINE_TYPE_WITH_PRIVATE (GstCudaAllocator, gst_cuda_allocator,
GST_TYPE_ALLOCATOR);
static void gst_cuda_allocator_free (GstAllocator * allocator,
GstMemory * memory);
static gpointer cuda_mem_map (GstMemory * mem, gsize maxsize,
GstMapFlags flags);
static void cuda_mem_unmap_full (GstMemory * mem, GstMapInfo * info);
static GstMemory *cuda_mem_copy (GstMemory * mem, gssize offset, gssize size);
static GstMemory *
gst_cuda_allocator_dummy_alloc (GstAllocator * allocator, gsize size,
GstAllocationParams * params)
{
g_return_val_if_reached (nullptr);
}
static void
gst_cuda_allocator_class_init (GstCudaAllocatorClass * klass)
{
GstAllocatorClass *allocator_class = GST_ALLOCATOR_CLASS (klass);
allocator_class->alloc = GST_DEBUG_FUNCPTR (gst_cuda_allocator_dummy_alloc);
allocator_class->free = GST_DEBUG_FUNCPTR (gst_cuda_allocator_free);
GST_DEBUG_CATEGORY_INIT (cuda_allocator_debug, "cudaallocator", 0,
"CUDA Allocator");
}
static void
gst_cuda_allocator_init (GstCudaAllocator * allocator)
{
GstAllocator *alloc = GST_ALLOCATOR_CAST (allocator);
GstCudaAllocatorPrivate *priv;
priv = allocator->priv = (GstCudaAllocatorPrivate *)
gst_cuda_allocator_get_instance_private (allocator);
alloc->mem_type = GST_CUDA_MEMORY_TYPE_NAME;
alloc->mem_map = cuda_mem_map;
alloc->mem_unmap_full = cuda_mem_unmap_full;
/* Store pointer to default mem_copy method for fallback copy */
priv->fallback_copy = alloc->mem_copy;
alloc->mem_copy = cuda_mem_copy;
GST_OBJECT_FLAG_SET (allocator, GST_ALLOCATOR_FLAG_CUSTOM_ALLOC);
}
static gboolean
gst_cuda_allocator_update_info (const GstVideoInfo * reference,
gsize pitch, gsize alloc_height, GstVideoInfo * aligned)
{
GstVideoInfo ret = *reference;
guint height = reference->height;
ret.size = pitch * alloc_height;
switch (GST_VIDEO_INFO_FORMAT (reference)) {
case GST_VIDEO_FORMAT_I420:
case GST_VIDEO_FORMAT_YV12:
case GST_VIDEO_FORMAT_I420_10LE:
case GST_VIDEO_FORMAT_I420_12LE:
/* we are wasting space yes, but required so that this memory
* can be used in kernel function */
ret.stride[0] = pitch;
ret.stride[1] = pitch;
ret.stride[2] = pitch;
ret.offset[0] = 0;
ret.offset[1] = ret.stride[0] * height;
ret.offset[2] = ret.offset[1] + (ret.stride[1] * (height + 1) / 2);
break;
case GST_VIDEO_FORMAT_Y42B:
case GST_VIDEO_FORMAT_I422_10LE:
case GST_VIDEO_FORMAT_I422_12LE:
ret.stride[0] = pitch;
ret.stride[1] = pitch;
ret.stride[2] = pitch;
ret.offset[0] = 0;
ret.offset[1] = ret.stride[0] * height;
ret.offset[2] = ret.offset[1] + (ret.stride[1] * height);
break;
case GST_VIDEO_FORMAT_NV12:
case GST_VIDEO_FORMAT_NV21:
case GST_VIDEO_FORMAT_P010_10LE:
case GST_VIDEO_FORMAT_P012_LE:
case GST_VIDEO_FORMAT_P016_LE:
ret.stride[0] = pitch;
ret.stride[1] = pitch;
ret.offset[0] = 0;
ret.offset[1] = ret.stride[0] * height;
break;
case GST_VIDEO_FORMAT_Y444:
case GST_VIDEO_FORMAT_Y444_10LE:
case GST_VIDEO_FORMAT_Y444_12LE:
case GST_VIDEO_FORMAT_Y444_16LE:
case GST_VIDEO_FORMAT_RGBP:
case GST_VIDEO_FORMAT_BGRP:
case GST_VIDEO_FORMAT_GBR:
case GST_VIDEO_FORMAT_GBR_10LE:
case GST_VIDEO_FORMAT_GBR_12LE:
case GST_VIDEO_FORMAT_GBR_16LE:
ret.stride[0] = pitch;
ret.stride[1] = pitch;
ret.stride[2] = pitch;
ret.offset[0] = 0;
ret.offset[1] = ret.stride[0] * height;
ret.offset[2] = ret.offset[1] * 2;
break;
case GST_VIDEO_FORMAT_GBRA:
ret.stride[0] = pitch;
ret.stride[1] = pitch;
ret.stride[2] = pitch;
ret.stride[3] = pitch;
ret.offset[0] = 0;
ret.offset[1] = ret.stride[0] * height;
ret.offset[2] = ret.offset[1] * 2;
ret.offset[3] = ret.offset[1] * 3;
break;
case GST_VIDEO_FORMAT_BGRA:
case GST_VIDEO_FORMAT_RGBA:
case GST_VIDEO_FORMAT_RGBx:
case GST_VIDEO_FORMAT_BGRx:
case GST_VIDEO_FORMAT_ARGB:
case GST_VIDEO_FORMAT_ABGR:
case GST_VIDEO_FORMAT_RGB:
case GST_VIDEO_FORMAT_BGR:
case GST_VIDEO_FORMAT_BGR10A2_LE:
case GST_VIDEO_FORMAT_RGB10A2_LE:
case GST_VIDEO_FORMAT_YUY2:
case GST_VIDEO_FORMAT_UYVY:
case GST_VIDEO_FORMAT_VUYA:
ret.stride[0] = pitch;
ret.offset[0] = 0;
break;
default:
return FALSE;
}
*aligned = ret;
return TRUE;
}
static GstMemory *
gst_cuda_allocator_alloc_internal (GstCudaAllocator * self,
GstCudaContext * context, GstCudaStream * stream, const GstVideoInfo * info,
guint width_in_bytes, guint alloc_height)
{
GstCudaMemoryPrivate *priv;
GstCudaMemory *mem;
CUdeviceptr data;
gboolean ret = FALSE;
gsize pitch;
GstVideoInfo alloc_info;
if (!gst_cuda_context_push (context))
return nullptr;
ret = gst_cuda_result (CuMemAllocPitch (&data, &pitch, width_in_bytes,
alloc_height, 16));
gst_cuda_context_pop (nullptr);
if (!ret) {
GST_ERROR_OBJECT (self, "Failed to allocate CUDA memory");
return nullptr;
}
if (!gst_cuda_allocator_update_info (info, pitch, alloc_height, &alloc_info)) {
GST_ERROR_OBJECT (self, "Couldn't calculate aligned info");
gst_cuda_context_push (context);
CuMemFree (data);
gst_cuda_context_pop (nullptr);
return nullptr;
}
mem = g_new0 (GstCudaMemory, 1);
mem->context = (GstCudaContext *) gst_object_ref (context);
mem->info = alloc_info;
mem->priv = priv = new GstCudaMemoryPrivate ();
priv->data = data;
priv->pitch = pitch;
priv->width_in_bytes = width_in_bytes;
priv->height = alloc_height;
priv->texture_align = gst_cuda_context_get_texture_alignment (context);
if (stream)
priv->stream = gst_cuda_stream_ref (stream);
gst_memory_init (GST_MEMORY_CAST (mem), (GstMemoryFlags) 0,
GST_ALLOCATOR_CAST (self), nullptr, alloc_info.size, 0, 0,
alloc_info.size);
return GST_MEMORY_CAST (mem);
}
static void
gst_cuda_allocator_free (GstAllocator * allocator, GstMemory * memory)
{
GstCudaMemory *mem = GST_CUDA_MEMORY_CAST (memory);
GstCudaMemoryPrivate *priv = mem->priv;
gst_cuda_context_push (mem->context);
/* Finish any pending operations before freeing */
if (priv->stream && priv->saw_io &&
GST_MEMORY_FLAG_IS_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC)) {
CuStreamSynchronize (gst_cuda_stream_get_handle (priv->stream));
}
priv->token_map.clear ();
for (guint i = 0; i < GST_VIDEO_MAX_PLANES; i++) {
for (guint j = 0; j < 2; j++) {
if (priv->texture[i][j]) {
CuTexObjectDestroy (priv->texture[i][j]);
}
}
}
if (priv->notify) {
priv->notify (priv->user_data);
} else if (priv->data) {
if (priv->alloc_method == GST_CUDA_MEMORY_ALLOC_MMAP) {
gst_cuda_result (CuMemUnmap (priv->data, priv->max_size));
gst_cuda_result (CuMemAddressFree (priv->data, priv->max_size));
gst_cuda_result (CuMemRelease (priv->handle));
if (priv->exported) {
#ifdef G_OS_WIN32
CloseHandle (priv->os_handle);
#else
close (priv->os_handle);
#endif
}
} else {
gst_cuda_result (CuMemFree (priv->data));
}
}
if (priv->staging)
gst_cuda_result (CuMemFreeHost (priv->staging));
gst_cuda_context_pop (nullptr);
gst_clear_cuda_stream (&priv->stream);
gst_object_unref (mem->context);
delete mem->priv;
g_free (mem);
}
static gboolean
gst_cuda_memory_upload (GstCudaAllocator * self, GstCudaMemory * mem)
{
GstCudaMemoryPrivate *priv = mem->priv;
gboolean ret = TRUE;
CUDA_MEMCPY2D param = { 0, };
CUstream stream = gst_cuda_stream_get_handle (priv->stream);
if (!priv->staging ||
!GST_MEMORY_FLAG_IS_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_UPLOAD)) {
return TRUE;
}
if (!gst_cuda_context_push (mem->context)) {
GST_ERROR_OBJECT (self, "Failed to push cuda context");
return FALSE;
}
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = priv->staging;
param.srcPitch = priv->pitch;
param.dstMemoryType = CU_MEMORYTYPE_DEVICE;
param.dstDevice = (CUdeviceptr) priv->data;
param.dstPitch = priv->pitch;
param.WidthInBytes = priv->width_in_bytes;
param.Height = priv->height;
ret = gst_cuda_result (CuMemcpy2DAsync (&param, stream));
/* Sync only if we use default stream.
* Otherwise (in case of non-default stream case) sync is caller's
* responsibility */
if (!priv->stream) {
CuStreamSynchronize (stream);
GST_MINI_OBJECT_FLAG_UNSET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC);
} else {
GST_MINI_OBJECT_FLAG_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC);
}
gst_cuda_context_pop (nullptr);
if (!ret)
GST_ERROR_OBJECT (self, "Failed to upload memory");
return ret;
}
static gboolean
gst_cuda_memory_download (GstCudaAllocator * self, GstCudaMemory * mem)
{
GstCudaMemoryPrivate *priv = mem->priv;
gboolean ret = TRUE;
CUDA_MEMCPY2D param = { 0, };
CUstream stream = gst_cuda_stream_get_handle (priv->stream);
if (!GST_MEMORY_FLAG_IS_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_DOWNLOAD))
return TRUE;
if (!gst_cuda_context_push (mem->context)) {
GST_ERROR_OBJECT (self, "Failed to push cuda context");
return FALSE;
}
if (!priv->staging) {
ret = gst_cuda_result (CuMemAllocHost (&priv->staging,
GST_MEMORY_CAST (mem)->size));
if (!ret) {
GST_ERROR_OBJECT (self, "Failed to allocate staging memory");
gst_cuda_context_pop (nullptr);
return FALSE;
}
}
param.srcMemoryType = CU_MEMORYTYPE_DEVICE;
param.srcDevice = (CUdeviceptr) priv->data;
param.srcPitch = priv->pitch;
param.dstMemoryType = CU_MEMORYTYPE_HOST;
param.dstHost = priv->staging;
param.dstPitch = priv->pitch;
param.WidthInBytes = priv->width_in_bytes;
param.Height = priv->height;
ret = gst_cuda_result (CuMemcpy2DAsync (&param, stream));
/* For CPU access, sync immediately */
CuStreamSynchronize (stream);
gst_cuda_context_pop (nullptr);
GST_MINI_OBJECT_FLAG_UNSET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC);
if (!ret)
GST_ERROR_OBJECT (self, "Failed to upload memory");
return ret;
}
static gpointer
cuda_mem_map (GstMemory * mem, gsize maxsize, GstMapFlags flags)
{
GstCudaAllocator *self = GST_CUDA_ALLOCATOR (mem->allocator);
GstCudaMemory *cmem = GST_CUDA_MEMORY_CAST (mem);
GstCudaMemoryPrivate *priv = cmem->priv;
gpointer ret = nullptr;
std::lock_guard < std::mutex > lk (priv->lock);
priv->saw_io = TRUE;
if ((flags & GST_MAP_CUDA) == GST_MAP_CUDA) {
if (!gst_cuda_memory_upload (self, cmem))
return nullptr;
GST_MEMORY_FLAG_UNSET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_UPLOAD);
if ((flags & GST_MAP_WRITE) == GST_MAP_WRITE) {
GST_MINI_OBJECT_FLAG_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_DOWNLOAD);
/* Assume that memory needs sync if we are using non-default stream */
if (priv->stream)
GST_MINI_OBJECT_FLAG_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC);
}
return (gpointer) priv->data;
}
/* First CPU access, must be downloaded */
if (!priv->staging)
GST_MINI_OBJECT_FLAG_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_DOWNLOAD);
if (!gst_cuda_memory_download (self, cmem))
return nullptr;
ret = priv->staging;
if ((flags & GST_MAP_WRITE) == GST_MAP_WRITE)
GST_MINI_OBJECT_FLAG_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_UPLOAD);
GST_MEMORY_FLAG_UNSET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_DOWNLOAD);
return ret;
}
static void
cuda_mem_unmap_full (GstMemory * mem, GstMapInfo * info)
{
GstCudaMemory *cmem = GST_CUDA_MEMORY_CAST (mem);
GstCudaMemoryPrivate *priv = cmem->priv;
std::lock_guard < std::mutex > lk (priv->lock);
if ((info->flags & GST_MAP_CUDA) == GST_MAP_CUDA) {
if ((info->flags & GST_MAP_WRITE) == GST_MAP_WRITE)
GST_MINI_OBJECT_FLAG_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_DOWNLOAD);
return;
}
if ((info->flags & GST_MAP_WRITE) == GST_MAP_WRITE)
GST_MINI_OBJECT_FLAG_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_UPLOAD);
return;
}
static GstMemory *
cuda_mem_copy (GstMemory * mem, gssize offset, gssize size)
{
GstCudaAllocator *self = GST_CUDA_ALLOCATOR (mem->allocator);
GstCudaMemory *src_mem = GST_CUDA_MEMORY_CAST (mem);
GstCudaContext *context = src_mem->context;
GstMapInfo src_info, dst_info;
CUDA_MEMCPY2D param = { 0, };
GstMemory *copy = nullptr;
gboolean ret;
GstCudaStream *stream = src_mem->priv->stream;
CUstream stream_handle = gst_cuda_stream_get_handle (stream);
/* non-zero offset or different size is not supported */
if (offset != 0 || (size != -1 && (gsize) size != mem->size)) {
GST_DEBUG_OBJECT (self, "Different size/offset, try fallback copy");
return self->priv->fallback_copy (mem, offset, size);
}
if (GST_IS_CUDA_POOL_ALLOCATOR (self)) {
gst_cuda_pool_allocator_acquire_memory (GST_CUDA_POOL_ALLOCATOR (self),
&copy);
}
if (!copy) {
copy = gst_cuda_allocator_alloc_internal (self, context, stream,
&src_mem->info, src_mem->priv->width_in_bytes, src_mem->priv->height);
}
if (!copy) {
GST_ERROR_OBJECT (self, "Failed to allocate memory for copying");
return nullptr;
}
if (!gst_memory_map (mem, &src_info,
(GstMapFlags) (GST_MAP_READ | GST_MAP_CUDA))) {
GST_ERROR_OBJECT (self, "Failed to map src memory");
gst_memory_unref (copy);
return nullptr;
}
if (!gst_memory_map (copy, &dst_info,
(GstMapFlags) (GST_MAP_WRITE | GST_MAP_CUDA))) {
GST_ERROR_OBJECT (self, "Failed to map dst memory");
gst_memory_unmap (mem, &src_info);
gst_memory_unref (copy);
return nullptr;
}
if (!gst_cuda_context_push (context)) {
GST_ERROR_OBJECT (self, "Failed to push cuda context");
gst_memory_unmap (mem, &src_info);
gst_memory_unmap (copy, &dst_info);
return nullptr;
}
param.srcMemoryType = CU_MEMORYTYPE_DEVICE;
param.srcDevice = (CUdeviceptr) src_info.data;
param.srcPitch = src_mem->priv->pitch;
param.dstMemoryType = CU_MEMORYTYPE_DEVICE;
param.dstDevice = (CUdeviceptr) dst_info.data;
param.dstPitch = src_mem->priv->pitch;
param.WidthInBytes = src_mem->priv->width_in_bytes;
param.Height = src_mem->priv->height;
ret = gst_cuda_result (CuMemcpy2DAsync (&param, stream_handle));
CuStreamSynchronize (stream_handle);
gst_cuda_context_pop (nullptr);
gst_memory_unmap (mem, &src_info);
gst_memory_unmap (copy, &dst_info);
if (!ret) {
GST_ERROR_OBJECT (self, "Failed to copy memory");
gst_memory_unref (copy);
return nullptr;
}
return copy;
}
/**
* gst_cuda_memory_init_once:
*
* Ensures that the #GstCudaAllocator is initialized and ready to be used.
*
* Since: 1.22
*/
void
gst_cuda_memory_init_once (void)
{
GST_CUDA_CALL_ONCE_BEGIN {
_gst_cuda_allocator =
(GstAllocator *) g_object_new (GST_TYPE_CUDA_ALLOCATOR, nullptr);
gst_object_ref_sink (_gst_cuda_allocator);
gst_object_ref (_gst_cuda_allocator);
gst_allocator_register (GST_CUDA_MEMORY_TYPE_NAME, _gst_cuda_allocator);
} GST_CUDA_CALL_ONCE_END;
}
/**
* gst_is_cuda_memory:
* @mem: A #GstMemory
*
* Check if @mem is a cuda memory
*
* Since: 1.22
*/
gboolean
gst_is_cuda_memory (GstMemory * mem)
{
return mem != nullptr && mem->allocator != nullptr &&
GST_IS_CUDA_ALLOCATOR (mem->allocator);
}
/**
* gst_cuda_memory_get_stream:
* @mem: A #GstCudaMemory
*
* Gets CUDA stream object associated with @mem
*
* Returns: (transfer none) (nullable): a #GstCudaStream or %NULL if default
* CUDA stream is in use
*
* Since: 1.24
*/
GstCudaStream *
gst_cuda_memory_get_stream (GstCudaMemory * mem)
{
g_return_val_if_fail (gst_is_cuda_memory ((GstMemory *) mem), nullptr);
return mem->priv->stream;
}
/**
* gst_cuda_memory_sync:
* @mem: A #GstCudaMemory
*
* Performs synchronization if needed
*
* Since: 1.24
*/
void
gst_cuda_memory_sync (GstCudaMemory * mem)
{
GstCudaMemoryPrivate *priv;
g_return_if_fail (gst_is_cuda_memory ((GstMemory *) mem));
priv = mem->priv;
if (!priv->stream)
return;
std::lock_guard < std::mutex > lk (priv->lock);
if (GST_MEMORY_FLAG_IS_SET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC)) {
GST_MEMORY_FLAG_UNSET (mem, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC);
if (gst_cuda_context_push (mem->context)) {
CuStreamSynchronize (gst_cuda_stream_get_handle (priv->stream));
gst_cuda_context_pop (nullptr);
}
}
}
typedef struct _TextureFormat
{
GstVideoFormat format;
CUarray_format array_format[GST_VIDEO_MAX_COMPONENTS];
guint channels[GST_VIDEO_MAX_COMPONENTS];
} TextureFormat;
#define CU_AD_FORMAT_NONE ((CUarray_format) 0)
#define MAKE_FORMAT_YUV_PLANAR(f,cf) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_NONE }, {1, 1, 1, 0} }
#define MAKE_FORMAT_YUV_SEMI_PLANAR(f,cf) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_NONE, CU_AD_FORMAT_NONE }, {1, 2, 0, 0} }
#define MAKE_FORMAT_RGB(f,cf) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_NONE, \
CU_AD_FORMAT_NONE, CU_AD_FORMAT_NONE }, {4, 0, 0, 0} }
#define MAKE_FORMAT_RGBP(f,cf) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_NONE }, {1, 1, 1, 0} }
#define MAKE_FORMAT_RGBAP(f,cf) \
{ GST_VIDEO_FORMAT_ ##f, { CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf, \
CU_AD_FORMAT_ ##cf, CU_AD_FORMAT_ ##cf }, {1, 1, 1, 1} }
static const TextureFormat format_map[] = {
MAKE_FORMAT_YUV_PLANAR (I420, UNSIGNED_INT8),
MAKE_FORMAT_YUV_PLANAR (YV12, UNSIGNED_INT8),
MAKE_FORMAT_YUV_SEMI_PLANAR (NV12, UNSIGNED_INT8),
MAKE_FORMAT_YUV_SEMI_PLANAR (NV21, UNSIGNED_INT8),
MAKE_FORMAT_YUV_SEMI_PLANAR (P010_10LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_SEMI_PLANAR (P012_LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_SEMI_PLANAR (P016_LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_PLANAR (I420_10LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_PLANAR (I420_12LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_PLANAR (Y444, UNSIGNED_INT8),
MAKE_FORMAT_YUV_PLANAR (Y444_10LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_PLANAR (Y444_12LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_PLANAR (Y444_16LE, UNSIGNED_INT16),
MAKE_FORMAT_RGB (RGBA, UNSIGNED_INT8),
MAKE_FORMAT_RGB (BGRA, UNSIGNED_INT8),
MAKE_FORMAT_RGB (RGBx, UNSIGNED_INT8),
MAKE_FORMAT_RGB (BGRx, UNSIGNED_INT8),
MAKE_FORMAT_RGB (ARGB, UNSIGNED_INT8),
MAKE_FORMAT_RGB (ARGB64, UNSIGNED_INT16),
MAKE_FORMAT_RGB (ABGR, UNSIGNED_INT8),
MAKE_FORMAT_YUV_PLANAR (Y42B, UNSIGNED_INT8),
MAKE_FORMAT_YUV_PLANAR (I422_10LE, UNSIGNED_INT16),
MAKE_FORMAT_YUV_PLANAR (I422_12LE, UNSIGNED_INT16),
MAKE_FORMAT_RGBP (RGBP, UNSIGNED_INT8),
MAKE_FORMAT_RGBP (BGRP, UNSIGNED_INT8),
MAKE_FORMAT_RGBP (GBR, UNSIGNED_INT8),
MAKE_FORMAT_RGBP (GBR_10LE, UNSIGNED_INT16),
MAKE_FORMAT_RGBP (GBR_12LE, UNSIGNED_INT16),
MAKE_FORMAT_RGBP (GBR_16LE, UNSIGNED_INT16),
MAKE_FORMAT_RGBAP (GBRA, UNSIGNED_INT8),
};
/**
* gst_cuda_memory_get_texture:
* @mem: A #GstCudaMemory
* @plane: the plane index
* @filter_mode: filter mode
* @texture: (out) (transfer none): a pointer to CUtexObject object
*
* Creates CUtexObject with given parameters
*
* Returns: %TRUE if successful
*
* Since: 1.24
*/
gboolean
gst_cuda_memory_get_texture (GstCudaMemory * mem, guint plane,
CUfilter_mode filter_mode, CUtexObject * texture)
{
GstAllocator *alloc;
GstCudaMemoryPrivate *priv;
CUtexObject tex = 0;
CUdeviceptr src_ptr;
CUDA_RESOURCE_DESC resource_desc;
CUDA_TEXTURE_DESC texture_desc;
const TextureFormat *format = nullptr;
CUresult ret;
g_return_val_if_fail (gst_is_cuda_memory ((GstMemory *) mem), FALSE);
g_return_val_if_fail (plane < GST_VIDEO_INFO_N_PLANES (&mem->info), FALSE);
g_return_val_if_fail (filter_mode == CU_TR_FILTER_MODE_POINT ||
filter_mode == CU_TR_FILTER_MODE_LINEAR, FALSE);
alloc = mem->mem.allocator;
priv = mem->priv;
std::lock_guard < std::mutex > lk (priv->lock);
if (priv->texture[plane][filter_mode]) {
*texture = priv->texture[plane][filter_mode];
return TRUE;
}
src_ptr = (CUdeviceptr) (((guint8 *) priv->data) + mem->info.offset[plane]);
if (priv->texture_align > 0 && (src_ptr % priv->texture_align) != 0) {
GST_INFO_OBJECT (alloc, "Plane %d data is not aligned", plane);
return FALSE;
}
for (guint i = 0; i < G_N_ELEMENTS (format_map); i++) {
if (format_map[i].format == GST_VIDEO_INFO_FORMAT (&mem->info)) {
format = &format_map[i];
break;
}
}
if (!format) {
GST_WARNING_OBJECT (alloc, "Not supported format %s",
gst_video_format_to_string (GST_VIDEO_INFO_FORMAT (&mem->info)));
return FALSE;
}
memset (&resource_desc, 0, sizeof (CUDA_RESOURCE_DESC));
memset (&texture_desc, 0, sizeof (CUDA_TEXTURE_DESC));
resource_desc.resType = CU_RESOURCE_TYPE_PITCH2D;
resource_desc.res.pitch2D.format = format->array_format[plane];
resource_desc.res.pitch2D.numChannels = format->channels[plane];
resource_desc.res.pitch2D.width =
GST_VIDEO_INFO_COMP_WIDTH (&mem->info, plane);
resource_desc.res.pitch2D.height =
GST_VIDEO_INFO_COMP_HEIGHT (&mem->info, plane);
resource_desc.res.pitch2D.pitchInBytes =
GST_VIDEO_INFO_PLANE_STRIDE (&mem->info, plane);
resource_desc.res.pitch2D.devPtr = src_ptr;
texture_desc.filterMode = filter_mode;
/* Will read texture value as a normalized [0, 1] float value
* with [0, 1) coordinates */
/* CU_TRSF_NORMALIZED_COORDINATES */
texture_desc.flags = 0x2;
/* CU_TR_ADDRESS_MODE_CLAMP */
texture_desc.addressMode[0] = (CUaddress_mode) 1;
texture_desc.addressMode[1] = (CUaddress_mode) 1;
texture_desc.addressMode[2] = (CUaddress_mode) 1;
if (!gst_cuda_context_push (mem->context))
return FALSE;
ret = CuTexObjectCreate (&tex, &resource_desc, &texture_desc, nullptr);
gst_cuda_context_pop (nullptr);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (alloc, "Could not create texture");
return FALSE;
}
/* Cache this texture to reuse later */
priv->texture[plane][filter_mode] = tex;
*texture = tex;
return TRUE;
}
/**
* gst_cuda_memory_get_user_data:
* @mem: A #GstCudaMemory
*
* Gets user data pointer stored via gst_cuda_allocator_alloc_wrapped()
*
* Returns: (transfer none) (nullable): the user data pointer
*
* Since: 1.24
*/
gpointer
gst_cuda_memory_get_user_data (GstCudaMemory * mem)
{
g_return_val_if_fail (gst_is_cuda_memory ((GstMemory *) mem), nullptr);
return mem->priv->user_data;
}
/**
* gst_cuda_memory_set_token_data:
* @mem: a #GstCudaMemory
* @token: an user token
* @data: an user data
* @notify: function to invoke with @data as argument, when @data needs to be
* freed
*
* Sets an opaque user data on a #GstCudaMemory
*
* Since: 1.24
*/
void
gst_cuda_memory_set_token_data (GstCudaMemory * mem, gint64 token,
gpointer data, GDestroyNotify notify)
{
GstCudaMemoryPrivate *priv;
g_return_if_fail (gst_is_cuda_memory (GST_MEMORY_CAST (mem)));
priv = mem->priv;
std::lock_guard < std::mutex > lk (priv->lock);
auto old_token = priv->token_map.find (token);
if (old_token != priv->token_map.end ())
priv->token_map.erase (old_token);
if (data) {
priv->token_map[token] =
std::unique_ptr < GstCudaMemoryTokenData >
(new GstCudaMemoryTokenData (data, notify));
}
}
/**
* gst_cuda_memory_get_token_data:
* @mem: a #GstCudaMemory
* @token: an user token
*
* Gets back user data pointer stored via gst_cuda_memory_set_token_data()
*
* Returns: (transfer none) (nullable): user data pointer or %NULL
*
* Since: 1.24
*/
gpointer
gst_cuda_memory_get_token_data (GstCudaMemory * mem, gint64 token)
{
GstCudaMemoryPrivate *priv;
gpointer ret = nullptr;
g_return_val_if_fail (gst_is_cuda_memory (GST_MEMORY_CAST (mem)), nullptr);
priv = mem->priv;
std::lock_guard < std::mutex > lk (priv->lock);
auto old_token = priv->token_map.find (token);
if (old_token != priv->token_map.end ())
ret = old_token->second->user_data;
return ret;
}
/**
* gst_cuda_memory_get_alloc_method:
* @mem: a #GstCudaMemory
*
* Query allocation method
*
* Since: 1.24
*/
GstCudaMemoryAllocMethod
gst_cuda_memory_get_alloc_method (GstCudaMemory * mem)
{
g_return_val_if_fail (gst_is_cuda_memory (GST_MEMORY_CAST (mem)),
GST_CUDA_MEMORY_ALLOC_UNKNOWN);
return mem->priv->alloc_method;
}
/**
* gst_cuda_memory_export:
* @mem: a #GstCudaMemory
* @os_handle: (out caller-allocates): a pointer to OS handle
*
* Exports virtual memory handle to OS specific handle.
*
* On Windows, @os_handle should be pointer to HANDLE (i.e., void **), and
* pointer to file descriptor (i.e., int *) on Linux.
*
* The returned @os_handle is owned by @mem and therefore caller shouldn't
* close the handle.
*
* returns: %TRUE if successful
*
* Since: 1.24
*/
gboolean
gst_cuda_memory_export (GstCudaMemory * mem, gpointer os_handle)
{
GstCudaMemoryPrivate *priv;
g_return_val_if_fail (gst_is_cuda_memory (GST_MEMORY_CAST (mem)), FALSE);
g_return_val_if_fail (os_handle != nullptr, FALSE);
priv = mem->priv;
if (priv->alloc_method != GST_CUDA_MEMORY_ALLOC_MMAP)
return FALSE;
if (priv->alloc_prop.requestedHandleTypes == CU_MEM_HANDLE_TYPE_NONE)
return FALSE;
std::lock_guard < std::mutex > lk (priv->lock);
if (!priv->exported) {
CUresult ret;
ret = CuMemExportToShareableHandle ((void *) &priv->os_handle, priv->handle,
priv->alloc_prop.requestedHandleTypes, 0);
if (!gst_cuda_result (ret))
return FALSE;
priv->exported = TRUE;
}
#ifdef G_OS_WIN32
*((HANDLE *) os_handle) = priv->os_handle;
#else
*((int *) os_handle) = priv->os_handle;
#endif
return TRUE;
}
static guint
gst_cuda_allocator_calculate_alloc_height (const GstVideoInfo * info)
{
guint alloc_height;
alloc_height = GST_VIDEO_INFO_HEIGHT (info);
/* make sure valid height for subsampled formats */
switch (GST_VIDEO_INFO_FORMAT (info)) {
case GST_VIDEO_FORMAT_I420:
case GST_VIDEO_FORMAT_YV12:
case GST_VIDEO_FORMAT_NV12:
case GST_VIDEO_FORMAT_P010_10LE:
case GST_VIDEO_FORMAT_P012_LE:
case GST_VIDEO_FORMAT_P016_LE:
case GST_VIDEO_FORMAT_I420_10LE:
case GST_VIDEO_FORMAT_I420_12LE:
alloc_height = GST_ROUND_UP_2 (alloc_height);
break;
default:
break;
}
switch (GST_VIDEO_INFO_FORMAT (info)) {
case GST_VIDEO_FORMAT_I420:
case GST_VIDEO_FORMAT_YV12:
case GST_VIDEO_FORMAT_I420_10LE:
case GST_VIDEO_FORMAT_I420_12LE:
alloc_height *= 2;
break;
case GST_VIDEO_FORMAT_NV12:
case GST_VIDEO_FORMAT_NV21:
case GST_VIDEO_FORMAT_P010_10LE:
case GST_VIDEO_FORMAT_P012_LE:
case GST_VIDEO_FORMAT_P016_LE:
alloc_height += alloc_height / 2;
break;
case GST_VIDEO_FORMAT_Y42B:
case GST_VIDEO_FORMAT_I422_10LE:
case GST_VIDEO_FORMAT_I422_12LE:
case GST_VIDEO_FORMAT_Y444:
case GST_VIDEO_FORMAT_Y444_10LE:
case GST_VIDEO_FORMAT_Y444_12LE:
case GST_VIDEO_FORMAT_Y444_16LE:
case GST_VIDEO_FORMAT_RGBP:
case GST_VIDEO_FORMAT_BGRP:
case GST_VIDEO_FORMAT_GBR:
case GST_VIDEO_FORMAT_GBR_10LE:
case GST_VIDEO_FORMAT_GBR_12LE:
case GST_VIDEO_FORMAT_GBR_16LE:
alloc_height *= 3;
break;
case GST_VIDEO_FORMAT_GBRA:
alloc_height *= 4;
break;
default:
break;
}
return alloc_height;
}
/**
* gst_cuda_allocator_alloc:
* @allocator: (transfer none) (allow-none): a #GstCudaAllocator
* @context: (transfer none): a #GstCudaContext
* @stream: (transfer none) (allow-none): a #GstCudaStream
* @info: a #GstVideoInfo
*
* Returns: (transfer full) (nullable): a newly allocated #GstCudaMemory
*
* Since: 1.22
*/
GstMemory *
gst_cuda_allocator_alloc (GstCudaAllocator * allocator,
GstCudaContext * context, GstCudaStream * stream, const GstVideoInfo * info)
{
guint alloc_height;
g_return_val_if_fail (GST_IS_CUDA_CONTEXT (context), nullptr);
g_return_val_if_fail (!stream || GST_IS_CUDA_STREAM (stream), nullptr);
g_return_val_if_fail (info != nullptr, nullptr);
if (stream && stream->context != context) {
GST_ERROR_OBJECT (context,
"stream object is holding different CUDA context");
return nullptr;
}
if (!allocator)
allocator = (GstCudaAllocator *) _gst_cuda_allocator;
alloc_height = gst_cuda_allocator_calculate_alloc_height (info);
return gst_cuda_allocator_alloc_internal (allocator, context, stream,
info, info->stride[0], alloc_height);
}
/**
* gst_cuda_allocator_set_active:
* @allocator: a #GstCudaAllocator
* @active: the new active state
*
* Controls the active state of @allocator. Default #GstCudaAllocator is
* stateless and therefore active state is ignored, but subclass implementation
* (e.g., #GstCudaPoolAllocator) will require explicit active state control
* for its internal resource management.
*
* This method is conceptually identical to gst_buffer_pool_set_active method.
*
* Returns: %TRUE if active state of @allocator was successfully updated.
*
* Since: 1.24
*/
gboolean
gst_cuda_allocator_set_active (GstCudaAllocator * allocator, gboolean active)
{
GstCudaAllocatorClass *klass;
g_return_val_if_fail (GST_IS_CUDA_ALLOCATOR (allocator), FALSE);
klass = GST_CUDA_ALLOCATOR_GET_CLASS (allocator);
if (klass->set_active)
return klass->set_active (allocator, active);
return TRUE;
}
/**
* gst_cuda_allocator_alloc_wrapped:
* @allocator: (transfer none) (allow-none): a #GstCudaAllocator
* @context: (transfer none): a #GstCudaContext
* @stream: (transfer none) (allow-none): a #GstCudaStream
* @info: a #GstVideoInfo
* @dev_ptr: a CUdeviceptr CUDA device memory
* @user_data: (allow-none): user data
* @notify: (allow-none) (scope async) (closure user_data):
* Called with @user_data when the memory is freed
*
* Allocates a new memory that wraps the given CUDA device memory.
*
* @info must represent actual memory layout, in other words, offset, stride
* and size fields of @info should be matched with memory layout of @dev_ptr
*
* By default, wrapped @dev_ptr will be freed at the time when #GstMemory
* is freed if @notify is %NULL. Otherwise, if caller sets @notify,
* freeing @dev_ptr is callers responsibility and default #GstCudaAllocator
* will not free it.
*
* Returns: (transfer full): a new #GstMemory
*
* Since: 1.24
*/
GstMemory *
gst_cuda_allocator_alloc_wrapped (GstCudaAllocator * allocator,
GstCudaContext * context, GstCudaStream * stream, const GstVideoInfo * info,
CUdeviceptr dev_ptr, gpointer user_data, GDestroyNotify notify)
{
GstCudaMemory *mem;
GstCudaMemoryPrivate *priv;
if (!allocator)
allocator = (GstCudaAllocator *) _gst_cuda_allocator;
g_return_val_if_fail (GST_IS_CUDA_ALLOCATOR (allocator), nullptr);
g_return_val_if_fail (GST_IS_CUDA_CONTEXT (context), nullptr);
g_return_val_if_fail (!stream || GST_IS_CUDA_STREAM (stream), nullptr);
g_return_val_if_fail (info, nullptr);
g_return_val_if_fail (dev_ptr, nullptr);
mem = g_new0 (GstCudaMemory, 1);
mem->priv = priv = new GstCudaMemoryPrivate ();
priv->data = dev_ptr;
priv->pitch = info->stride[0];
priv->width_in_bytes = GST_VIDEO_INFO_COMP_WIDTH (info, 0) *
GST_VIDEO_INFO_COMP_PSTRIDE (info, 0);
priv->height = info->size / priv->pitch;
if (stream)
priv->stream = gst_cuda_stream_ref (stream);
priv->user_data = user_data;
priv->notify = notify;
mem->context = (GstCudaContext *) gst_object_ref (context);
mem->info = *info;
gst_memory_init (GST_MEMORY_CAST (mem), (GstMemoryFlags) 0,
GST_ALLOCATOR_CAST (allocator), nullptr, info->size, 0, 0, info->size);
return GST_MEMORY_CAST (mem);
}
void
gst_cuda_memory_set_from_fixed_pool (GstMemory * mem)
{
GstCudaMemory *cmem;
if (!gst_is_cuda_memory (mem))
return;
cmem = GST_CUDA_MEMORY_CAST (mem);
cmem->priv->from_fixed_pool = TRUE;
}
gboolean
gst_cuda_memory_is_from_fixed_pool (GstMemory * mem)
{
GstCudaMemory *cmem;
if (!gst_is_cuda_memory (mem))
return FALSE;
cmem = GST_CUDA_MEMORY_CAST (mem);
return cmem->priv->from_fixed_pool;
}
static size_t
do_align (size_t value, size_t align)
{
if (align == 0)
return value;
return ((value + align - 1) / align) * align;
}
/**
* gst_cuda_allocator_virtual_alloc:
* @allocator: a #GstCudaAllocator
* @context: a #GstCudaContext
* @stream: a #GstCudaStream
* @info: a #GstVideoInfo
* @prop: allocation property
* @granularity_flags: allocation flags
*
* Allocates new #GstMemory object with CUDA virtual memory.
*
* Returns: (transfer full) (nullable): a newly allocated memory object or
* %NULL if allocation is not supported
*
* Since: 1.24
*/
GstMemory *
gst_cuda_allocator_virtual_alloc (GstCudaAllocator * allocator,
GstCudaContext * context, GstCudaStream * stream, const GstVideoInfo * info,
const CUmemAllocationProp * prop,
CUmemAllocationGranularity_flags granularity_flags)
{
guint alloc_height;
guint id = 0;
size_t granularity;
size_t stride;
size_t size;
size_t max_size;
CUresult ret;
gint texture_alignment;
CUmemGenericAllocationHandle handle;
CUdeviceptr ptr;
CUmemAccessDesc access_desc;
GstCudaMemoryPrivate *priv;
GstCudaMemory *mem;
GstVideoInfo alloc_info;
g_return_val_if_fail (GST_IS_CUDA_CONTEXT (context), nullptr);
g_return_val_if_fail (!stream || GST_IS_CUDA_STREAM (stream), nullptr);
g_return_val_if_fail (info != nullptr, nullptr);
g_return_val_if_fail (prop != nullptr, nullptr);
if (stream && stream->context != context) {
GST_ERROR_OBJECT (context,
"stream object is holding different CUDA context");
return nullptr;
}
g_object_get (context, "cuda-device-id", &id, nullptr);
if ((gint) id != prop->location.id) {
GST_ERROR_OBJECT (context, "Different device id");
return nullptr;
}
if (!allocator)
allocator = (GstCudaAllocator *) _gst_cuda_allocator;
alloc_height = gst_cuda_allocator_calculate_alloc_height (info);
texture_alignment = gst_cuda_context_get_texture_alignment (context);
stride = do_align (info->stride[0], texture_alignment);
if (!gst_cuda_allocator_update_info (info, stride, alloc_height, &alloc_info)) {
GST_ERROR_OBJECT (context, "Couldn't calculate aligned info");
return nullptr;
}
if (!gst_cuda_context_push (context))
return nullptr;
ret = CuMemGetAllocationGranularity (&granularity, prop, granularity_flags);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (context, "Couldn't get granularity");
goto error;
}
size = stride * alloc_height;
max_size = do_align (size, granularity);
ret = CuMemCreate (&handle, max_size, prop, 0);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (context, "Couldn't create memory");
goto error;
}
ret = CuMemAddressReserve (&ptr, max_size, 0, 0, 0);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (context, "Couldn't reserve memory");
gst_cuda_result (CuMemRelease (handle));
goto error;
}
ret = CuMemMap (ptr, max_size, 0, handle, 0);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (context, "Couldn't map memory");
CuMemAddressFree (ptr, max_size);
CuMemRelease (handle);
goto error;
}
memset (&access_desc, 0, sizeof (CUmemAccessDesc));
access_desc.location.id = (int) id;
access_desc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
access_desc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
ret = CuMemSetAccess (ptr, max_size, &access_desc, 1);
if (!gst_cuda_result (ret)) {
GST_ERROR_OBJECT (context, "Couldn't set access");
CuMemUnmap (ptr, max_size);
CuMemAddressFree (ptr, max_size);
CuMemRelease (handle);
goto error;
}
mem = g_new0 (GstCudaMemory, 1);
mem->context = (GstCudaContext *) gst_object_ref (context);
mem->info = alloc_info;
mem->priv = priv = new GstCudaMemoryPrivate ();
priv->data = ptr;
priv->pitch = stride;
priv->width_in_bytes = info->stride[0];
priv->height = alloc_height;
priv->texture_align = texture_alignment;
if (stream)
priv->stream = gst_cuda_stream_ref (stream);
priv->alloc_method = GST_CUDA_MEMORY_ALLOC_MMAP;
priv->max_size = max_size;
priv->handle = handle;
priv->alloc_prop = *prop;
gst_memory_init (GST_MEMORY_CAST (mem), (GstMemoryFlags) 0,
GST_ALLOCATOR_CAST (allocator), nullptr, max_size, 0, 0, size);
return GST_MEMORY_CAST (mem);
error:
gst_cuda_context_pop (nullptr);
return nullptr;
}
#define GST_CUDA_POOL_ALLOCATOR_IS_FLUSHING(alloc) (g_atomic_int_get (&alloc->priv->flushing))
struct _GstCudaPoolAllocatorPrivate
{
GstAtomicQueue *queue;
GstPoll *poll;
GstCudaMemoryAllocMethod alloc_method;
CUmemAllocationProp prop;
CUmemAllocationGranularity_flags granularity_flags;
GRecMutex lock;
gboolean started;
gboolean active;
guint outstanding;
guint cur_mems;
gboolean flushing;
};
static void gst_cuda_pool_allocator_finalize (GObject * object);
static gboolean
gst_cuda_pool_allocator_set_active (GstCudaAllocator * allocator,
gboolean active);
static gboolean gst_cuda_pool_allocator_start (GstCudaPoolAllocator * self);
static gboolean gst_cuda_pool_allocator_stop (GstCudaPoolAllocator * self);
static gboolean gst_cuda_memory_release (GstMiniObject * mini_object);
#define gst_cuda_pool_allocator_parent_class pool_alloc_parent_class
G_DEFINE_TYPE_WITH_PRIVATE (GstCudaPoolAllocator,
gst_cuda_pool_allocator, GST_TYPE_CUDA_ALLOCATOR);
static void
gst_cuda_pool_allocator_class_init (GstCudaPoolAllocatorClass * klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GstCudaAllocatorClass *cuda_alloc_class = GST_CUDA_ALLOCATOR_CLASS (klass);
gobject_class->finalize = gst_cuda_pool_allocator_finalize;
cuda_alloc_class->set_active = gst_cuda_pool_allocator_set_active;
}
static void
gst_cuda_pool_allocator_init (GstCudaPoolAllocator * allocator)
{
GstCudaPoolAllocatorPrivate *priv;
priv = allocator->priv = (GstCudaPoolAllocatorPrivate *)
gst_cuda_pool_allocator_get_instance_private (allocator);
g_rec_mutex_init (&priv->lock);
priv->poll = gst_poll_new_timer ();
priv->queue = gst_atomic_queue_new (16);
priv->flushing = 1;
priv->active = FALSE;
priv->started = FALSE;
priv->alloc_method = GST_CUDA_MEMORY_ALLOC_MALLOC;
/* 1 control write for flushing - the flush token */
gst_poll_write_control (priv->poll);
/* 1 control write for marking that we are not waiting for poll - the wait token */
gst_poll_write_control (priv->poll);
}
static void
gst_cuda_pool_allocator_finalize (GObject * object)
{
GstCudaPoolAllocator *self = GST_CUDA_POOL_ALLOCATOR (object);
GstCudaPoolAllocatorPrivate *priv = self->priv;
GST_DEBUG_OBJECT (self, "Finalize");
gst_cuda_pool_allocator_stop (self);
gst_atomic_queue_unref (priv->queue);
gst_poll_free (priv->poll);
g_rec_mutex_clear (&priv->lock);
gst_clear_cuda_stream (&self->stream);
gst_clear_object (&self->context);
G_OBJECT_CLASS (pool_alloc_parent_class)->finalize (object);
}
static gboolean
gst_cuda_pool_allocator_start (GstCudaPoolAllocator * self)
{
GstCudaPoolAllocatorPrivate *priv = self->priv;
priv->started = TRUE;
return TRUE;
}
static void
gst_cuda_pool_allocator_do_set_flushing (GstCudaPoolAllocator * self,
gboolean flushing)
{
GstCudaPoolAllocatorPrivate *priv = self->priv;
if (GST_CUDA_POOL_ALLOCATOR_IS_FLUSHING (self) == flushing)
return;
if (flushing) {
g_atomic_int_set (&priv->flushing, 1);
/* Write the flush token to wake up any waiters */
gst_poll_write_control (priv->poll);
} else {
while (!gst_poll_read_control (priv->poll)) {
if (errno == EWOULDBLOCK) {
/* This should not really happen unless flushing and unflushing
* happens on different threads. Let's wait a bit to get back flush
* token from the thread that was setting it to flushing */
g_thread_yield ();
continue;
} else {
/* Critical error but GstPoll already complained */
break;
}
}
g_atomic_int_set (&priv->flushing, 0);
}
}
static gboolean
gst_cuda_pool_allocator_set_active (GstCudaAllocator * allocator,
gboolean active)
{
GstCudaPoolAllocator *self = GST_CUDA_POOL_ALLOCATOR (allocator);
GstCudaPoolAllocatorPrivate *priv = self->priv;
gboolean ret = TRUE;
GST_LOG_OBJECT (self, "active %d", active);
g_rec_mutex_lock (&priv->lock);
/* just return if we are already in the right state */
if (priv->active == active)
goto done;
if (active) {
gst_cuda_pool_allocator_start (self);
/* flush_stop may release memory objects, setting to active to avoid running
* do_stop while activating the pool */
priv->active = TRUE;
gst_cuda_pool_allocator_do_set_flushing (self, FALSE);
} else {
gint outstanding;
/* set to flushing first */
gst_cuda_pool_allocator_do_set_flushing (self, TRUE);
/* when all memory objects are in the pool, free them. Else they will be
* freed when they are released */
outstanding = g_atomic_int_get (&priv->outstanding);
GST_LOG_OBJECT (self, "outstanding memories %d, (in queue %d)",
outstanding, gst_atomic_queue_length (priv->queue));
if (outstanding == 0) {
if (!gst_cuda_pool_allocator_stop (self)) {
GST_ERROR_OBJECT (self, "stop failed");
ret = FALSE;
goto done;
}
}
priv->active = FALSE;
}
done:
g_rec_mutex_unlock (&priv->lock);
return ret;
}
static void
gst_cuda_pool_allocator_free_memory (GstCudaPoolAllocator * self,
GstMemory * mem)
{
GstCudaPoolAllocatorPrivate *priv = self->priv;
g_atomic_int_add (&priv->cur_mems, -1);
GST_LOG_OBJECT (self, "freeing memory %p (%u left)", mem, priv->cur_mems);
GST_MINI_OBJECT_CAST (mem)->dispose = nullptr;
gst_memory_unref (mem);
}
static gboolean
gst_cuda_pool_allocator_clear_queue (GstCudaPoolAllocator * self)
{
GstCudaPoolAllocatorPrivate *priv = self->priv;
GstMemory *memory;
GST_LOG_OBJECT (self, "Clearing queue");
if (self->stream) {
/* Wait for outstanding operations */
gst_cuda_context_push (self->context);
CuStreamSynchronize (gst_cuda_stream_get_handle (self->stream));
gst_cuda_context_pop (nullptr);
}
while ((memory = (GstMemory *) gst_atomic_queue_pop (priv->queue))) {
while (!gst_poll_read_control (priv->poll)) {
if (errno == EWOULDBLOCK) {
/* We put the memory into the queue but did not finish writing control
* yet, let's wait a bit and retry */
g_thread_yield ();
continue;
} else {
/* Critical error but GstPoll already complained */
break;
}
}
/* Already synchronized above */
GST_MEMORY_FLAG_UNSET (memory, GST_CUDA_MEMORY_TRANSFER_NEED_SYNC);
gst_cuda_pool_allocator_free_memory (self, memory);
}
GST_LOG_OBJECT (self, "Clear done");
return priv->cur_mems == 0;
}
/* must be called with the lock */
static gboolean
gst_cuda_pool_allocator_stop (GstCudaPoolAllocator * self)
{
GstCudaPoolAllocatorPrivate *priv = self->priv;
GST_DEBUG_OBJECT (self, "Stop");
if (priv->started) {
if (!gst_cuda_pool_allocator_clear_queue (self))
return FALSE;
priv->started = FALSE;
}
return TRUE;
}
static inline void
dec_outstanding (GstCudaPoolAllocator * self)
{
if (g_atomic_int_dec_and_test (&self->priv->outstanding)) {
/* all memory objects are returned to the pool, see if we need to free them */
if (GST_CUDA_POOL_ALLOCATOR_IS_FLUSHING (self)) {
/* take the lock so that set_active is not run concurrently */
g_rec_mutex_lock (&self->priv->lock);
/* now that we have the lock, check if we have been de-activated with
* outstanding buffers */
if (!self->priv->active)
gst_cuda_pool_allocator_stop (self);
g_rec_mutex_unlock (&self->priv->lock);
}
}
}
static void
gst_cuda_pool_allocator_release_memory (GstCudaPoolAllocator * self,
GstMemory * mem)
{
GST_LOG_OBJECT (self, "Released memory %p", mem);
GST_MINI_OBJECT_CAST (mem)->dispose = nullptr;
mem->allocator = (GstAllocator *) gst_object_ref (_gst_cuda_allocator);
/* keep it around in our queue */
gst_atomic_queue_push (self->priv->queue, mem);
gst_poll_write_control (self->priv->poll);
dec_outstanding (self);
gst_object_unref (self);
}
static gboolean
gst_cuda_memory_release (GstMiniObject * object)
{
GstMemory *mem = GST_MEMORY_CAST (object);
GstCudaPoolAllocator *alloc;
g_assert (mem->allocator);
if (!GST_IS_CUDA_POOL_ALLOCATOR (mem->allocator)) {
GST_LOG_OBJECT (mem->allocator, "Not our memory, free");
return TRUE;
}
alloc = GST_CUDA_POOL_ALLOCATOR (mem->allocator);
/* return the memory to the allocator */
gst_memory_ref (mem);
gst_cuda_pool_allocator_release_memory (alloc, mem);
return FALSE;
}
/* must be called with the lock */
static GstFlowReturn
gst_cuda_pool_allocator_alloc (GstCudaPoolAllocator * self, GstMemory ** mem)
{
GstCudaPoolAllocatorPrivate *priv = self->priv;
GstMemory *new_mem;
/* increment the allocation counter */
g_atomic_int_add (&priv->cur_mems, 1);
if (priv->alloc_method == GST_CUDA_MEMORY_ALLOC_MMAP) {
new_mem = gst_cuda_allocator_virtual_alloc (nullptr,
self->context, self->stream, &self->info, &priv->prop,
priv->granularity_flags);
} else {
new_mem = gst_cuda_allocator_alloc (nullptr,
self->context, self->stream, &self->info);
}
if (!new_mem) {
GST_ERROR_OBJECT (self, "Failed to allocate new memory");
g_atomic_int_add (&priv->cur_mems, -1);
return GST_FLOW_ERROR;
}
*mem = new_mem;
return GST_FLOW_OK;
}
static GstFlowReturn
gst_cuda_pool_allocator_acquire_memory_internal (GstCudaPoolAllocator * self,
GstMemory ** memory)
{
GstFlowReturn result;
GstCudaPoolAllocatorPrivate *priv = self->priv;
while (TRUE) {
if (G_UNLIKELY (GST_CUDA_POOL_ALLOCATOR_IS_FLUSHING (self)))
goto flushing;
/* try to get a memory from the queue */
*memory = (GstMemory *) gst_atomic_queue_pop (priv->queue);
if (G_LIKELY (*memory)) {
while (!gst_poll_read_control (priv->poll)) {
if (errno == EWOULDBLOCK) {
/* We put the memory into the queue but did not finish writing control
* yet, let's wait a bit and retry */
g_thread_yield ();
continue;
} else {
/* Critical error but GstPoll already complained */
break;
}
}
result = GST_FLOW_OK;
GST_LOG_OBJECT (self, "acquired memory %p", *memory);
break;
}
/* no memory, try to allocate some more */
GST_LOG_OBJECT (self, "no memory, trying to allocate");
result = gst_cuda_pool_allocator_alloc (self, memory);
if (G_LIKELY (result == GST_FLOW_OK))
/* we have a memory, return it */
break;
if (G_UNLIKELY (result != GST_FLOW_EOS))
/* something went wrong, return error */
break;
/* now we release the control socket, we wait for a memory release or
* flushing */
if (!gst_poll_read_control (priv->poll)) {
if (errno == EWOULDBLOCK) {
/* This means that we have two threads trying to allocate memory
* already, and the other one already got the wait token. This
* means that we only have to wait for the poll now and not write the
* token afterwards: we will be woken up once the other thread is
* woken up and that one will write the wait token it removed */
GST_LOG_OBJECT (self, "waiting for free memory or flushing");
gst_poll_wait (priv->poll, GST_CLOCK_TIME_NONE);
} else {
/* This is a critical error, GstPoll already gave a warning */
result = GST_FLOW_ERROR;
break;
}
} else {
/* We're the first thread waiting, we got the wait token and have to
* write it again later
* OR
* We're a second thread and just consumed the flush token and block all
* other threads, in which case we must not wait and give it back
* immediately */
if (!GST_CUDA_POOL_ALLOCATOR_IS_FLUSHING (self)) {
GST_LOG_OBJECT (self, "waiting for free memory or flushing");
gst_poll_wait (priv->poll, GST_CLOCK_TIME_NONE);
}
gst_poll_write_control (priv->poll);
}
}
return result;
/* ERRORS */
flushing:
{
GST_DEBUG_OBJECT (self, "we are flushing");
return GST_FLOW_FLUSHING;
}
}
/**
* gst_cuda_pool_allocator_new:
* @context: a #GstCudaContext
* @stream: (allow-none): a #GstCudaStream
* @info: a #GstVideoInfo
*
* Creates a new #GstCudaPoolAllocator instance.
*
* Returns: (transfer full): a new #GstCudaPoolAllocator instance
*
* Since: 1.24
*/
GstCudaPoolAllocator *
gst_cuda_pool_allocator_new (GstCudaContext * context, GstCudaStream * stream,
const GstVideoInfo * info)
{
GstCudaPoolAllocator *self;
g_return_val_if_fail (GST_IS_CUDA_CONTEXT (context), nullptr);
g_return_val_if_fail (!stream || GST_IS_CUDA_STREAM (stream), nullptr);
self = (GstCudaPoolAllocator *)
g_object_new (GST_TYPE_CUDA_POOL_ALLOCATOR, nullptr);
gst_object_ref_sink (self);
self->context = (GstCudaContext *) gst_object_ref (context);
if (stream)
self->stream = gst_cuda_stream_ref (stream);
self->info = *info;
return self;
}
/**
* gst_cuda_pool_allocator_new_for_virtual_memory:
* @context: a #GstCudaContext
* @stream: (allow-none): a #GstCudaStream
* @info: a #GstVideoInfo
*
* Creates a new #GstCudaPoolAllocator instance for virtual memory allocation.
*
* Returns: (transfer full): a new #GstCudaPoolAllocator instance
*
* Since: 1.24
*/
GstCudaPoolAllocator *
gst_cuda_pool_allocator_new_for_virtual_memory (GstCudaContext * context,
GstCudaStream * stream, const GstVideoInfo * info,
const CUmemAllocationProp * prop,
CUmemAllocationGranularity_flags granularity_flags)
{
GstCudaPoolAllocator *self;
g_return_val_if_fail (GST_IS_CUDA_CONTEXT (context), nullptr);
g_return_val_if_fail (!stream || GST_IS_CUDA_STREAM (stream), nullptr);
g_return_val_if_fail (prop, nullptr);
self = (GstCudaPoolAllocator *)
g_object_new (GST_TYPE_CUDA_POOL_ALLOCATOR, nullptr);
gst_object_ref_sink (self);
self->context = (GstCudaContext *) gst_object_ref (context);
if (stream)
self->stream = gst_cuda_stream_ref (stream);
self->info = *info;
self->priv->prop = *prop;
self->priv->alloc_method = GST_CUDA_MEMORY_ALLOC_MMAP;
if (self->priv->prop.requestedHandleTypes == CU_MEM_HANDLE_TYPE_WIN32) {
self->priv->prop.win32HandleMetaData =
gst_cuda_get_win32_handle_metadata ();
}
return self;
}
/**
* gst_cuda_pool_allocator_acquire_memory:
* @allocator: a #GstCudaPoolAllocator
* @memory: (out): a #GstMemory
*
* Acquires a #GstMemory from @allocator. @memory should point to a memory
* location that can hold a pointer to the new #GstMemory.
*
* Returns: a #GstFlowReturn such as %GST_FLOW_FLUSHING when the allocator is
* inactive.
*
* Since: 1.24
*/
GstFlowReturn
gst_cuda_pool_allocator_acquire_memory (GstCudaPoolAllocator * allocator,
GstMemory ** memory)
{
GstFlowReturn result;
GstCudaPoolAllocatorPrivate *priv;
g_return_val_if_fail (GST_IS_CUDA_POOL_ALLOCATOR (allocator), GST_FLOW_ERROR);
g_return_val_if_fail (memory, GST_FLOW_ERROR);
priv = allocator->priv;
g_atomic_int_inc (&priv->outstanding);
result = gst_cuda_pool_allocator_acquire_memory_internal (allocator, memory);
if (result == GST_FLOW_OK) {
GstMemory *mem = *memory;
/* Replace default allocator with ours */
gst_object_unref (mem->allocator);
mem->allocator = (GstAllocator *) gst_object_ref (allocator);
GST_MINI_OBJECT_CAST (mem)->dispose = gst_cuda_memory_release;
} else {
dec_outstanding (allocator);
}
return result;
}