gstreamer/gst/spectrum/gstspectrum.c
2011-09-06 13:16:27 +02:00

1012 lines
30 KiB
C

/* GStreamer
* Copyright (C) <1999> Erik Walthinsen <omega@cse.ogi.edu>
* <2006,2011> Stefan Kost <ensonic@users.sf.net>
* <2007-2009> Sebastian Dröge <sebastian.droege@collabora.co.uk>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/**
* SECTION:element-spectrum
*
* The Spectrum element analyzes the frequency spectrum of an audio signal.
* If the #GstSpectrum:post-messages property is #TRUE, it sends analysis results
* as application messages named
* <classname>&quot;spectrum&quot;</classname> after each interval of time given
* by the #GstSpectrum:interval property.
*
* The message's structure contains some combination of these fields:
* <itemizedlist>
* <listitem>
* <para>
* #GstClockTime
* <classname>&quot;timestamp&quot;</classname>:
* the timestamp of the buffer that triggered the message.
* </para>
* </listitem>
* <listitem>
* <para>
* #GstClockTime
* <classname>&quot;stream-time&quot;</classname>:
* the stream time of the buffer.
* </para>
* </listitem>
* <listitem>
* <para>
* #GstClockTime
* <classname>&quot;running-time&quot;</classname>:
* the running_time of the buffer.
* </para>
* </listitem>
* <listitem>
* <para>
* #GstClockTime
* <classname>&quot;duration&quot;</classname>:
* the duration of the buffer.
* </para>
* </listitem>
* <listitem>
* <para>
* #GstClockTime
* <classname>&quot;endtime&quot;</classname>:
* the end time of the buffer that triggered the message as stream time (this
* is deprecated, as it can be calculated from stream-time + duration)
* </para>
* </listitem>
* <listitem>
* <para>
* #GstValueList of #gfloat
* <classname>&quot;magnitude&quot;</classname>:
* the level for each frequency band in dB. All values below the value of the
* #GstSpectrum:threshold property will be set to the threshold. Only present
* if the #GstSpectrum:message-magnitude property is %TRUE.
* </para>
* </listitem>
* <listitem>
* <para>
* #GstValueList of #gfloat
* <classname>&quot;phase&quot;</classname>:
* The phase for each frequency band. The value is between -pi and pi. Only
* present if the #GstSpectrum:message-phase property is %TRUE.
* </para>
* </listitem>
* </itemizedlist>
*
* If #GstSpectrum:multi-channel property is set to true. magnitude and phase
* fields will be each a nested #GstValueArray. The first dimension are the
* channels and the second dimension are the values.
*
* <refsect2>
* <title>Example application</title>
* |[
* <xi:include xmlns:xi="http://www.w3.org/2003/XInclude" parse="text" href="../../../../tests/examples/spectrum/spectrum-example.c" />
* ]|
* </refsect2>
*
* Last reviewed on 2011-03-10 (0.10.29)
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include <math.h>
#include "gstspectrum.h"
GST_DEBUG_CATEGORY_STATIC (gst_spectrum_debug);
#define GST_CAT_DEFAULT gst_spectrum_debug
/* elementfactory information */
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
# define FORMATS "{ S16LE, S24LE, S32LE, F32LE, F64LE }"
#else
# define FORMATS "{ S16BE, S24BE, S32BE, F32BE, F64BE }"
#endif
#define ALLOWED_CAPS \
GST_AUDIO_CAPS_MAKE (FORMATS)
/* Spectrum properties */
#define DEFAULT_POST_MESSAGES TRUE
#define DEFAULT_MESSAGE_MAGNITUDE TRUE
#define DEFAULT_MESSAGE_PHASE FALSE
#define DEFAULT_INTERVAL (GST_SECOND / 10)
#define DEFAULT_BANDS 128
#define DEFAULT_THRESHOLD -60
#define DEFAULT_MULTI_CHANNEL FALSE
enum
{
PROP_0,
PROP_POST_MESSAGES,
PROP_MESSAGE_MAGNITUDE,
PROP_MESSAGE_PHASE,
PROP_INTERVAL,
PROP_BANDS,
PROP_THRESHOLD,
PROP_MULTI_CHANNEL
};
#define gst_spectrum_parent_class parent_class
G_DEFINE_TYPE (GstSpectrum, gst_spectrum, GST_TYPE_AUDIO_FILTER);
static void gst_spectrum_finalize (GObject * object);
static void gst_spectrum_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec);
static void gst_spectrum_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec);
static gboolean gst_spectrum_start (GstBaseTransform * trans);
static gboolean gst_spectrum_stop (GstBaseTransform * trans);
static GstFlowReturn gst_spectrum_transform_ip (GstBaseTransform * trans,
GstBuffer * in);
static gboolean gst_spectrum_setup (GstAudioFilter * base,
const GstAudioInfo * info);
static void
gst_spectrum_class_init (GstSpectrumClass * klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
GstBaseTransformClass *trans_class = GST_BASE_TRANSFORM_CLASS (klass);
GstAudioFilterClass *filter_class = GST_AUDIO_FILTER_CLASS (klass);
GstCaps *caps;
gobject_class->set_property = gst_spectrum_set_property;
gobject_class->get_property = gst_spectrum_get_property;
gobject_class->finalize = gst_spectrum_finalize;
trans_class->start = GST_DEBUG_FUNCPTR (gst_spectrum_start);
trans_class->stop = GST_DEBUG_FUNCPTR (gst_spectrum_stop);
trans_class->transform_ip = GST_DEBUG_FUNCPTR (gst_spectrum_transform_ip);
trans_class->passthrough_on_same_caps = TRUE;
filter_class->setup = GST_DEBUG_FUNCPTR (gst_spectrum_setup);
/**
* GstSpectrum:post-messages
*
* Post messages on the bus with spectrum information.
*
* Since: 0.10.17
*/
g_object_class_install_property (gobject_class, PROP_POST_MESSAGES,
g_param_spec_boolean ("post-messages", "Post Messages",
"Whether to post a 'spectrum' element message on the bus for each "
"passed interval", DEFAULT_POST_MESSAGES,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_MESSAGE_MAGNITUDE,
g_param_spec_boolean ("message-magnitude", "Magnitude",
"Whether to add a 'magnitude' field to the structure of any "
"'spectrum' element messages posted on the bus",
DEFAULT_MESSAGE_MAGNITUDE,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_MESSAGE_PHASE,
g_param_spec_boolean ("message-phase", "Phase",
"Whether to add a 'phase' field to the structure of any "
"'spectrum' element messages posted on the bus",
DEFAULT_MESSAGE_PHASE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_INTERVAL,
g_param_spec_uint64 ("interval", "Interval",
"Interval of time between message posts (in nanoseconds)",
1, G_MAXUINT64, DEFAULT_INTERVAL,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_BANDS,
g_param_spec_uint ("bands", "Bands", "Number of frequency bands",
0, G_MAXUINT, DEFAULT_BANDS,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_THRESHOLD,
g_param_spec_int ("threshold", "Threshold",
"dB threshold for result. All lower values will be set to this",
G_MININT, 0, DEFAULT_THRESHOLD,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
/**
* GstSpectrum:multi-channel
*
* Send separate results for each channel
*
* Since: 0.10.29
*/
g_object_class_install_property (gobject_class, PROP_MULTI_CHANNEL,
g_param_spec_boolean ("multi-channel", "Multichannel results",
"Send separate results for each channel",
DEFAULT_MULTI_CHANNEL, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
GST_DEBUG_CATEGORY_INIT (gst_spectrum_debug, "spectrum", 0,
"audio spectrum analyser element");
gst_element_class_set_details_simple (element_class, "Spectrum analyzer",
"Filter/Analyzer/Audio",
"Run an FFT on the audio signal, output spectrum data",
"Erik Walthinsen <omega@cse.ogi.edu>, "
"Stefan Kost <ensonic@users.sf.net>, "
"Sebastian Dröge <sebastian.droege@collabora.co.uk>");
caps = gst_caps_from_string (ALLOWED_CAPS);
gst_audio_filter_class_add_pad_templates (filter_class, caps);
gst_caps_unref (caps);
}
static void
gst_spectrum_init (GstSpectrum * spectrum)
{
spectrum->post_messages = DEFAULT_POST_MESSAGES;
spectrum->message_magnitude = DEFAULT_MESSAGE_MAGNITUDE;
spectrum->message_phase = DEFAULT_MESSAGE_PHASE;
spectrum->interval = DEFAULT_INTERVAL;
spectrum->bands = DEFAULT_BANDS;
spectrum->threshold = DEFAULT_THRESHOLD;
}
static void
gst_spectrum_alloc_channel_data (GstSpectrum * spectrum)
{
gint i;
GstSpectrumChannel *cd;
guint bands = spectrum->bands;
guint nfft = 2 * bands - 2;
g_assert (spectrum->channel_data == NULL);
spectrum->num_channels = (spectrum->multi_channel) ?
GST_AUDIO_FILTER_CHANNELS (spectrum) : 1;
GST_DEBUG_OBJECT (spectrum, "allocating data for %d channels",
spectrum->num_channels);
spectrum->channel_data = g_new (GstSpectrumChannel, spectrum->num_channels);
for (i = 0; i < spectrum->num_channels; i++) {
cd = &spectrum->channel_data[i];
cd->fft_ctx = gst_fft_f32_new (nfft, FALSE);
cd->input = g_new0 (gfloat, nfft);
cd->input_tmp = g_new0 (gfloat, nfft);
cd->freqdata = g_new0 (GstFFTF32Complex, bands);
cd->spect_magnitude = g_new0 (gfloat, bands);
cd->spect_phase = g_new0 (gfloat, bands);
}
}
static void
gst_spectrum_free_channel_data (GstSpectrum * spectrum)
{
if (spectrum->channel_data) {
gint i;
GstSpectrumChannel *cd;
GST_DEBUG_OBJECT (spectrum, "freeing data for %d channels",
spectrum->num_channels);
for (i = 0; i < spectrum->num_channels; i++) {
cd = &spectrum->channel_data[i];
if (cd->fft_ctx)
gst_fft_f32_free (cd->fft_ctx);
g_free (cd->input);
g_free (cd->input_tmp);
g_free (cd->freqdata);
g_free (cd->spect_magnitude);
g_free (cd->spect_phase);
}
g_free (spectrum->channel_data);
spectrum->channel_data = NULL;
}
}
static void
gst_spectrum_flush (GstSpectrum * spectrum)
{
spectrum->num_frames = 0;
spectrum->num_fft = 0;
spectrum->accumulated_error = 0;
}
static void
gst_spectrum_reset_state (GstSpectrum * spectrum)
{
GST_DEBUG_OBJECT (spectrum, "resetting state");
gst_spectrum_free_channel_data (spectrum);
gst_spectrum_flush (spectrum);
}
static void
gst_spectrum_finalize (GObject * object)
{
GstSpectrum *spectrum = GST_SPECTRUM (object);
gst_spectrum_reset_state (spectrum);
G_OBJECT_CLASS (parent_class)->finalize (object);
}
static void
gst_spectrum_set_property (GObject * object, guint prop_id,
const GValue * value, GParamSpec * pspec)
{
GstSpectrum *filter = GST_SPECTRUM (object);
switch (prop_id) {
case PROP_POST_MESSAGES:
filter->post_messages = g_value_get_boolean (value);
break;
case PROP_MESSAGE_MAGNITUDE:
filter->message_magnitude = g_value_get_boolean (value);
break;
case PROP_MESSAGE_PHASE:
filter->message_phase = g_value_get_boolean (value);
break;
case PROP_INTERVAL:{
guint64 interval = g_value_get_uint64 (value);
if (filter->interval != interval) {
GST_BASE_TRANSFORM_LOCK (filter);
filter->interval = interval;
gst_spectrum_reset_state (filter);
GST_BASE_TRANSFORM_UNLOCK (filter);
}
}
break;
case PROP_BANDS:{
guint bands = g_value_get_uint (value);
if (filter->bands != bands) {
GST_BASE_TRANSFORM_LOCK (filter);
filter->bands = bands;
gst_spectrum_reset_state (filter);
GST_BASE_TRANSFORM_UNLOCK (filter);
}
}
break;
case PROP_THRESHOLD:
filter->threshold = g_value_get_int (value);
break;
case PROP_MULTI_CHANNEL:{
gboolean multi_channel = g_value_get_boolean (value);
if (filter->multi_channel != multi_channel) {
GST_BASE_TRANSFORM_LOCK (filter);
filter->multi_channel = multi_channel;
gst_spectrum_reset_state (filter);
GST_BASE_TRANSFORM_UNLOCK (filter);
}
}
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_spectrum_get_property (GObject * object, guint prop_id,
GValue * value, GParamSpec * pspec)
{
GstSpectrum *filter = GST_SPECTRUM (object);
switch (prop_id) {
case PROP_POST_MESSAGES:
g_value_set_boolean (value, filter->post_messages);
break;
case PROP_MESSAGE_MAGNITUDE:
g_value_set_boolean (value, filter->message_magnitude);
break;
case PROP_MESSAGE_PHASE:
g_value_set_boolean (value, filter->message_phase);
break;
case PROP_INTERVAL:
g_value_set_uint64 (value, filter->interval);
break;
case PROP_BANDS:
g_value_set_uint (value, filter->bands);
break;
case PROP_THRESHOLD:
g_value_set_int (value, filter->threshold);
break;
case PROP_MULTI_CHANNEL:
g_value_set_boolean (value, filter->multi_channel);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static gboolean
gst_spectrum_start (GstBaseTransform * trans)
{
GstSpectrum *spectrum = GST_SPECTRUM (trans);
gst_spectrum_reset_state (spectrum);
return TRUE;
}
static gboolean
gst_spectrum_stop (GstBaseTransform * trans)
{
GstSpectrum *spectrum = GST_SPECTRUM (trans);
gst_spectrum_reset_state (spectrum);
return TRUE;
}
/* mixing data readers */
static void
input_data_mixed_float (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint i, j, ip = 0;
gfloat v;
gfloat *in = (gfloat *) _in;
for (j = 0; j < len; j++) {
v = in[ip++];
for (i = 1; i < channels; i++)
v += in[ip++];
out[op] = v / channels;
op = (op + 1) % nfft;
}
}
static void
input_data_mixed_double (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint i, j, ip = 0;
gfloat v;
gdouble *in = (gdouble *) _in;
for (j = 0; j < len; j++) {
v = in[ip++];
for (i = 1; i < channels; i++)
v += in[ip++];
out[op] = v / channels;
op = (op + 1) % nfft;
}
}
static void
input_data_mixed_int32_max (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint i, j, ip = 0;
gint32 *in = (gint32 *) _in;
gfloat v;
for (j = 0; j < len; j++) {
v = in[ip++] / max_value;
for (i = 1; i < channels; i++)
v += in[ip++] / max_value;
out[op] = v / channels;
op = (op + 1) % nfft;
}
}
static void
input_data_mixed_int24_max (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint i, j;
gfloat v = 0.0;
for (j = 0; j < len; j++) {
for (i = 0; i < channels; i++) {
#if G_BYTE_ORDER == G_BIG_ENDIAN
gint32 value = GST_READ_UINT24_BE (_in);
#else
gint32 value = GST_READ_UINT24_LE (_in);
#endif
if (value & 0x00800000)
value |= 0xff000000;
v += value / max_value;
_in += 3;
}
out[op] = v / channels;
op = (op + 1) % nfft;
}
}
static void
input_data_mixed_int16_max (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint i, j, ip = 0;
gint16 *in = (gint16 *) _in;
gfloat v;
for (j = 0; j < len; j++) {
v = in[ip++] / max_value;
for (i = 1; i < channels; i++)
v += in[ip++] / max_value;
out[op] = v / channels;
op = (op + 1) % nfft;
}
}
/* non mixing data readers */
static void
input_data_float (const guint8 * _in, gfloat * out, guint len, guint channels,
gfloat max_value, guint op, guint nfft)
{
guint j, ip;
gfloat *in = (gfloat *) _in;
for (j = 0, ip = 0; j < len; j++, ip += channels) {
out[op] = in[ip];
op = (op + 1) % nfft;
}
}
static void
input_data_double (const guint8 * _in, gfloat * out, guint len, guint channels,
gfloat max_value, guint op, guint nfft)
{
guint j, ip;
gdouble *in = (gdouble *) _in;
for (j = 0, ip = 0; j < len; j++, ip += channels) {
out[op] = in[ip];
op = (op + 1) % nfft;
}
}
static void
input_data_int32_max (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint j, ip;
gint32 *in = (gint32 *) _in;
for (j = 0, ip = 0; j < len; j++, ip += channels) {
out[op] = in[ip] / max_value;
op = (op + 1) % nfft;
}
}
static void
input_data_int24_max (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint j;
for (j = 0; j < len; j++) {
#if G_BYTE_ORDER == G_BIG_ENDIAN
gint32 v = GST_READ_UINT24_BE (_in);
#else
gint32 v = GST_READ_UINT24_LE (_in);
#endif
if (v & 0x00800000)
v |= 0xff000000;
_in += 3 * channels;
out[op] = v / max_value;
op = (op + 1) % nfft;
}
}
static void
input_data_int16_max (const guint8 * _in, gfloat * out, guint len,
guint channels, gfloat max_value, guint op, guint nfft)
{
guint j, ip;
gint16 *in = (gint16 *) _in;
for (j = 0, ip = 0; j < len; j++, ip += channels) {
out[op] = in[ip] / max_value;
op = (op + 1) % nfft;
}
}
static gboolean
gst_spectrum_setup (GstAudioFilter * base, const GstAudioInfo * info)
{
GstSpectrum *spectrum = GST_SPECTRUM (base);
gboolean multi_channel = spectrum->multi_channel;
GstSpectrumInputData input_data = NULL;
switch (GST_AUDIO_INFO_FORMAT (info)) {
case GST_AUDIO_FORMAT_S16:
input_data =
multi_channel ? input_data_int16_max : input_data_mixed_int16_max;
break;
case GST_AUDIO_FORMAT_S24:
input_data =
multi_channel ? input_data_int24_max : input_data_mixed_int24_max;
break;
case GST_AUDIO_FORMAT_S32:
input_data =
multi_channel ? input_data_int32_max : input_data_mixed_int32_max;
break;
case GST_AUDIO_FORMAT_F32:
input_data = multi_channel ? input_data_float : input_data_mixed_float;
break;
case GST_AUDIO_FORMAT_F64:
input_data = multi_channel ? input_data_double : input_data_mixed_double;
break;
default:
g_assert_not_reached ();
break;
}
spectrum->input_data = input_data;
gst_spectrum_reset_state (spectrum);
return TRUE;
}
static GValue *
gst_spectrum_message_add_container (GstStructure * s, GType type,
const gchar * name)
{
GValue v = { 0, };
g_value_init (&v, type);
/* will copy-by-value */
gst_structure_set_value (s, name, &v);
g_value_unset (&v);
return (GValue *) gst_structure_get_value (s, name);
}
static void
gst_spectrum_message_add_list (GValue * cv, gfloat * data, guint num_values)
{
GValue v = { 0, };
guint i;
g_value_init (&v, G_TYPE_FLOAT);
for (i = 0; i < num_values; i++) {
g_value_set_float (&v, data[i]);
gst_value_list_append_value (cv, &v); /* copies by value */
}
g_value_unset (&v);
}
static void
gst_spectrum_message_add_array (GValue * cv, gfloat * data, guint num_values)
{
GValue v = { 0, };
GValue a = { 0, };
guint i;
g_value_init (&a, GST_TYPE_ARRAY);
g_value_init (&v, G_TYPE_FLOAT);
for (i = 0; i < num_values; i++) {
g_value_set_float (&v, data[i]);
gst_value_array_append_value (&a, &v); /* copies by value */
}
g_value_unset (&v);
gst_value_array_append_value (cv, &a); /* copies by value */
g_value_unset (&a);
}
static GstMessage *
gst_spectrum_message_new (GstSpectrum * spectrum, GstClockTime timestamp,
GstClockTime duration)
{
GstBaseTransform *trans = GST_BASE_TRANSFORM_CAST (spectrum);
GstSpectrumChannel *cd;
GstStructure *s;
GValue *mcv = NULL, *pcv = NULL;
GstClockTime endtime, running_time, stream_time;
GST_DEBUG_OBJECT (spectrum, "preparing message, bands =%d ", spectrum->bands);
running_time = gst_segment_to_running_time (&trans->segment, GST_FORMAT_TIME,
timestamp);
stream_time = gst_segment_to_stream_time (&trans->segment, GST_FORMAT_TIME,
timestamp);
/* endtime is for backwards compatibility */
endtime = stream_time + duration;
s = gst_structure_new ("spectrum",
"endtime", GST_TYPE_CLOCK_TIME, endtime,
"timestamp", G_TYPE_UINT64, timestamp,
"stream-time", G_TYPE_UINT64, stream_time,
"running-time", G_TYPE_UINT64, running_time,
"duration", G_TYPE_UINT64, duration, NULL);
if (!spectrum->multi_channel) {
cd = &spectrum->channel_data[0];
if (spectrum->message_magnitude) {
/* FIXME 0.11: this should be an array, not a list */
mcv = gst_spectrum_message_add_container (s, GST_TYPE_LIST, "magnitude");
gst_spectrum_message_add_list (mcv, cd->spect_magnitude, spectrum->bands);
}
if (spectrum->message_phase) {
/* FIXME 0.11: this should be an array, not a list */
pcv = gst_spectrum_message_add_container (s, GST_TYPE_LIST, "phase");
gst_spectrum_message_add_list (pcv, cd->spect_phase, spectrum->bands);
}
} else {
guint c;
guint channels = GST_AUDIO_FILTER_CHANNELS (spectrum);
if (spectrum->message_magnitude) {
mcv = gst_spectrum_message_add_container (s, GST_TYPE_ARRAY, "magnitude");
}
if (spectrum->message_phase) {
pcv = gst_spectrum_message_add_container (s, GST_TYPE_ARRAY, "phase");
}
for (c = 0; c < channels; c++) {
cd = &spectrum->channel_data[c];
if (spectrum->message_magnitude) {
gst_spectrum_message_add_array (mcv, cd->spect_magnitude,
spectrum->bands);
}
if (spectrum->message_phase) {
gst_spectrum_message_add_array (pcv, cd->spect_magnitude,
spectrum->bands);
}
}
}
return gst_message_new_element (GST_OBJECT (spectrum), s);
}
static void
gst_spectrum_run_fft (GstSpectrum * spectrum, GstSpectrumChannel * cd,
guint input_pos)
{
guint i;
guint bands = spectrum->bands;
guint nfft = 2 * bands - 2;
gint threshold = spectrum->threshold;
gfloat *input = cd->input;
gfloat *input_tmp = cd->input_tmp;
gfloat *spect_magnitude = cd->spect_magnitude;
gfloat *spect_phase = cd->spect_phase;
GstFFTF32Complex *freqdata = cd->freqdata;
GstFFTF32 *fft_ctx = cd->fft_ctx;
for (i = 0; i < nfft; i++)
input_tmp[i] = input[(input_pos + i) % nfft];
gst_fft_f32_window (fft_ctx, input_tmp, GST_FFT_WINDOW_HAMMING);
gst_fft_f32_fft (fft_ctx, input_tmp, freqdata);
if (spectrum->message_magnitude) {
gdouble val;
/* Calculate magnitude in db */
for (i = 0; i < bands; i++) {
val = freqdata[i].r * freqdata[i].r;
val += freqdata[i].i * freqdata[i].i;
val /= nfft * nfft;
val = 10.0 * log10 (val);
if (val < threshold)
val = threshold;
spect_magnitude[i] += val;
}
}
if (spectrum->message_phase) {
/* Calculate phase */
for (i = 0; i < bands; i++)
spect_phase[i] += atan2 (freqdata[i].i, freqdata[i].r);
}
}
static void
gst_spectrum_prepare_message_data (GstSpectrum * spectrum,
GstSpectrumChannel * cd)
{
guint i;
guint bands = spectrum->bands;
guint num_fft = spectrum->num_fft;
/* Calculate average */
if (spectrum->message_magnitude) {
gfloat *spect_magnitude = cd->spect_magnitude;
for (i = 0; i < bands; i++)
spect_magnitude[i] /= num_fft;
}
if (spectrum->message_phase) {
gfloat *spect_phase = cd->spect_phase;
for (i = 0; i < bands; i++)
spect_phase[i] /= num_fft;
}
}
static void
gst_spectrum_reset_message_data (GstSpectrum * spectrum,
GstSpectrumChannel * cd)
{
guint bands = spectrum->bands;
gfloat *spect_magnitude = cd->spect_magnitude;
gfloat *spect_phase = cd->spect_phase;
/* reset spectrum accumulators */
memset (spect_magnitude, 0, bands * sizeof (gfloat));
memset (spect_phase, 0, bands * sizeof (gfloat));
}
static GstFlowReturn
gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * buffer)
{
GstSpectrum *spectrum = GST_SPECTRUM (trans);
guint rate = GST_AUDIO_FILTER_RATE (spectrum);
guint channels = GST_AUDIO_FILTER_CHANNELS (spectrum);
guint bps = GST_AUDIO_FILTER_BPS (spectrum);
guint bpf = GST_AUDIO_FILTER_BPF (spectrum);
guint output_channels = spectrum->multi_channel ? channels : 1;
guint c;
gfloat max_value = (1UL << ((bps << 3) - 1)) - 1;
guint bands = spectrum->bands;
guint nfft = 2 * bands - 2;
guint input_pos;
gfloat *input;
const guint8 *data, *mdata;
gsize size;
guint fft_todo, msg_todo, block_size;
gboolean have_full_interval;
GstSpectrumChannel *cd;
GstSpectrumInputData input_data;
data = mdata = gst_buffer_map (buffer, &size, NULL, GST_MAP_READ);
GST_LOG_OBJECT (spectrum, "input size: %" G_GSIZE_FORMAT " bytes", size);
if (GST_BUFFER_IS_DISCONT (buffer)) {
GST_DEBUG_OBJECT (spectrum, "Discontinuity detected -- flushing");
gst_spectrum_flush (spectrum);
}
/* If we don't have a FFT context yet (or it was reset due to parameter
* changes) get one and allocate memory for everything
*/
if (spectrum->channel_data == NULL) {
GST_DEBUG_OBJECT (spectrum, "allocating for bands %u", bands);
gst_spectrum_alloc_channel_data (spectrum);
/* number of sample frames we process before posting a message
* interval is in ns */
spectrum->frames_per_interval =
gst_util_uint64_scale (spectrum->interval, rate, GST_SECOND);
spectrum->frames_todo = spectrum->frames_per_interval;
/* rounding error for frames_per_interval in ns,
* aggregated it in accumulated_error */
spectrum->error_per_interval = (spectrum->interval * rate) % GST_SECOND;
if (spectrum->frames_per_interval == 0)
spectrum->frames_per_interval = 1;
GST_INFO_OBJECT (spectrum, "interval %" GST_TIME_FORMAT ", fpi %"
G_GUINT64_FORMAT ", error %" GST_TIME_FORMAT,
GST_TIME_ARGS (spectrum->interval), spectrum->frames_per_interval,
GST_TIME_ARGS (spectrum->error_per_interval));
spectrum->input_pos = 0;
gst_spectrum_flush (spectrum);
}
if (spectrum->num_frames == 0)
spectrum->message_ts = GST_BUFFER_TIMESTAMP (buffer);
input_pos = spectrum->input_pos;
input_data = spectrum->input_data;
while (size >= bpf) {
/* run input_data for a chunk of data */
fft_todo = nfft - (spectrum->num_frames % nfft);
msg_todo = spectrum->frames_todo - spectrum->num_frames;
GST_LOG_OBJECT (spectrum,
"message frames todo: %u, fft frames todo: %u, input frames %u",
msg_todo, fft_todo, (size / bpf));
block_size = msg_todo;
if (block_size > (size / bpf))
block_size = (size / bpf);
if (block_size > fft_todo)
block_size = fft_todo;
for (c = 0; c < output_channels; c++) {
cd = &spectrum->channel_data[c];
input = cd->input;
/* Move the current frames into our ringbuffers */
input_data (data + c * bps, input, block_size, channels, max_value,
input_pos, nfft);
}
data += block_size * bpf;
size -= block_size * bpf;
input_pos = (input_pos + block_size) % nfft;
spectrum->num_frames += block_size;
have_full_interval = (spectrum->num_frames == spectrum->frames_todo);
GST_LOG_OBJECT (spectrum, "size: %u, do-fft = %d, do-message = %d", size,
(spectrum->num_frames % nfft == 0), have_full_interval);
/* If we have enough frames for an FFT or we have all frames required for
* the interval and we haven't run a FFT, then run an FFT */
if ((spectrum->num_frames % nfft == 0) ||
(have_full_interval && !spectrum->num_fft)) {
for (c = 0; c < output_channels; c++) {
cd = &spectrum->channel_data[c];
gst_spectrum_run_fft (spectrum, cd, input_pos);
}
spectrum->num_fft++;
}
/* Do we have the FFTs for one interval? */
if (have_full_interval) {
GST_DEBUG_OBJECT (spectrum, "nfft: %u frames: %" G_GUINT64_FORMAT
" fpi: %" G_GUINT64_FORMAT " error: %" GST_TIME_FORMAT, nfft,
spectrum->num_frames, spectrum->frames_per_interval,
GST_TIME_ARGS (spectrum->accumulated_error));
spectrum->frames_todo = spectrum->frames_per_interval;
if (spectrum->accumulated_error >= GST_SECOND) {
spectrum->accumulated_error -= GST_SECOND;
spectrum->frames_todo++;
}
spectrum->accumulated_error += spectrum->error_per_interval;
if (spectrum->post_messages) {
GstMessage *m;
for (c = 0; c < output_channels; c++) {
cd = &spectrum->channel_data[c];
gst_spectrum_prepare_message_data (spectrum, cd);
}
m = gst_spectrum_message_new (spectrum, spectrum->message_ts,
spectrum->interval);
gst_element_post_message (GST_ELEMENT (spectrum), m);
}
if (GST_CLOCK_TIME_IS_VALID (spectrum->message_ts))
spectrum->message_ts +=
gst_util_uint64_scale (spectrum->num_frames, GST_SECOND, rate);
for (c = 0; c < output_channels; c++) {
cd = &spectrum->channel_data[c];
gst_spectrum_reset_message_data (spectrum, cd);
}
spectrum->num_frames = 0;
spectrum->num_fft = 0;
}
}
spectrum->input_pos = input_pos;
gst_buffer_unmap (buffer, (guint8 *) mdata, -1);
g_assert (size == 0);
return GST_FLOW_OK;
}
static gboolean
plugin_init (GstPlugin * plugin)
{
return gst_element_register (plugin, "spectrum", GST_RANK_NONE,
GST_TYPE_SPECTRUM);
}
GST_PLUGIN_DEFINE (GST_VERSION_MAJOR,
GST_VERSION_MINOR,
"spectrum",
"Run an FFT on the audio signal, output spectrum data",
plugin_init, VERSION, GST_LICENSE, GST_PACKAGE_NAME, GST_PACKAGE_ORIGIN)