mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-03 22:18:50 +00:00
b76819bbd2
Original commit message from CVS: * configure.ac: * gst/audiofx/audioamplify.c: (gst_audio_amplify_clipping_method_get_type), (gst_audio_amplify_init), (gst_audio_amplify_transform_ip): * gst/audiofx/audiodynamic.c: (gst_audio_dynamic_init), (gst_audio_dynamic_transform_ip): * gst/audiofx/audioinvert.c: (gst_audio_invert_init), (gst_audio_invert_transform_ip): * gst/audiofx/audiopanorama.c: (gst_audio_panorama_init), (gst_audio_panorama_transform): * gst/level/gstlevel.c: (gst_level_init): Make elements GST_BUFFER_FLAG_GAP aware and call gst_base_transform_set_gap_aware for this. Bump core requirement to CVS. * gst/audiofx/audiochebyshevfreqband.c: (gst_audio_chebyshev_freq_band_transform_ip): * gst/audiofx/audiochebyshevfreqlimit.c: (gst_audio_chebyshev_freq_limit_transform_ip): Also sync GObject properties to the controller if operating in passthrough mode.
922 lines
28 KiB
C
922 lines
28 KiB
C
/*
|
|
* GStreamer
|
|
* Copyright (C) 2007 Sebastian Dröge <slomo@circular-chaos.org>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
* Chebyshev type 1 filter design based on
|
|
* "The Scientist and Engineer's Guide to DSP", Chapter 20.
|
|
* http://www.dspguide.com/
|
|
*
|
|
* For type 2 and Chebyshev filters in general read
|
|
* http://en.wikipedia.org/wiki/Chebyshev_filter
|
|
*
|
|
* Transformation from lowpass to bandpass/bandreject:
|
|
* http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandPassZ.htm
|
|
* http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandStopZ.htm
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* SECTION:element-audiochebyshevfreqband
|
|
* @short_description: Chebyshev band pass and band reject filter
|
|
*
|
|
* <refsect2>
|
|
* <para>
|
|
* Attenuates all frequencies outside (bandpass) or inside (bandreject) of a frequency
|
|
* band. The number of poles and the ripple parameter control the rolloff.
|
|
* </para>
|
|
* <para>
|
|
* This element has the advantage over the windowed sinc bandpass and bandreject filter that it is
|
|
* much faster and produces almost as good results. It's only disadvantages are the highly
|
|
* non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel.
|
|
* </para>
|
|
* <para>
|
|
* For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e.
|
|
* some frequencies in the passband will be amplified by that value. A higher ripple value will allow
|
|
* a faster rolloff.
|
|
* </para>
|
|
* <para>
|
|
* For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will
|
|
* be at most this value. A lower ripple value will allow a faster rolloff.
|
|
* </para>
|
|
* <para>
|
|
* As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter.
|
|
* </para>
|
|
* <para><note>
|
|
* Be warned that a too large number of poles can produce noise. The most poles are possible with
|
|
* a cutoff frequency at a quarter of the sampling rate.
|
|
* </note></para>
|
|
* <title>Example launch line</title>
|
|
* <para>
|
|
* <programlisting>
|
|
* gst-launch audiotestsrc freq=1500 ! audioconvert ! audiochebyshevfreqband mode=band-pass lower-frequency=1000 upper-frequenc=6000 poles=4 ! audioconvert ! alsasink
|
|
* gst-launch filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiochebyshevfreqband mode=band-reject lower-frequency=1000 upper-frequency=4000 ripple=0.2 ! audioconvert ! alsasink
|
|
* gst-launch audiotestsrc wave=white-noise ! audioconvert ! audiochebyshevfreqband mode=band-pass lower-frequency=1000 upper-frequency=4000 type=2 ! audioconvert ! alsasink
|
|
* </programlisting>
|
|
* </para>
|
|
* </refsect2>
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <gst/gst.h>
|
|
#include <gst/base/gstbasetransform.h>
|
|
#include <gst/audio/audio.h>
|
|
#include <gst/audio/gstaudiofilter.h>
|
|
#include <gst/controller/gstcontroller.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include "audiochebyshevfreqband.h"
|
|
|
|
#define GST_CAT_DEFAULT gst_audio_chebyshev_freq_band_debug
|
|
GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT);
|
|
|
|
static const GstElementDetails element_details =
|
|
GST_ELEMENT_DETAILS ("AudioChebyshevFreqBand",
|
|
"Filter/Effect/Audio",
|
|
"Chebyshev band pass and band reject filter",
|
|
"Sebastian Dröge <slomo@circular-chaos.org>");
|
|
|
|
/* Filter signals and args */
|
|
enum
|
|
{
|
|
/* FILL ME */
|
|
LAST_SIGNAL
|
|
};
|
|
|
|
enum
|
|
{
|
|
PROP_0,
|
|
PROP_MODE,
|
|
PROP_TYPE,
|
|
PROP_LOWER_FREQUENCY,
|
|
PROP_UPPER_FREQUENCY,
|
|
PROP_RIPPLE,
|
|
PROP_POLES
|
|
};
|
|
|
|
#define ALLOWED_CAPS \
|
|
"audio/x-raw-float," \
|
|
" width = (int) { 32, 64 }, " \
|
|
" endianness = (int) BYTE_ORDER," \
|
|
" rate = (int) [ 1, MAX ]," \
|
|
" channels = (int) [ 1, MAX ]"
|
|
|
|
#define DEBUG_INIT(bla) \
|
|
GST_DEBUG_CATEGORY_INIT (gst_audio_chebyshev_freq_band_debug, "audiochebyshevfreqband", 0, "audiochebyshevfreqband element");
|
|
|
|
GST_BOILERPLATE_FULL (GstAudioChebyshevFreqBand, gst_audio_chebyshev_freq_band,
|
|
GstAudioFilter, GST_TYPE_AUDIO_FILTER, DEBUG_INIT);
|
|
|
|
static void gst_audio_chebyshev_freq_band_set_property (GObject * object,
|
|
guint prop_id, const GValue * value, GParamSpec * pspec);
|
|
static void gst_audio_chebyshev_freq_band_get_property (GObject * object,
|
|
guint prop_id, GValue * value, GParamSpec * pspec);
|
|
|
|
static gboolean gst_audio_chebyshev_freq_band_setup (GstAudioFilter * filter,
|
|
GstRingBufferSpec * format);
|
|
static GstFlowReturn
|
|
gst_audio_chebyshev_freq_band_transform_ip (GstBaseTransform * base,
|
|
GstBuffer * buf);
|
|
static gboolean gst_audio_chebyshev_freq_band_start (GstBaseTransform * base);
|
|
|
|
static void process_64 (GstAudioChebyshevFreqBand * filter,
|
|
gdouble * data, guint num_samples);
|
|
static void process_32 (GstAudioChebyshevFreqBand * filter,
|
|
gfloat * data, guint num_samples);
|
|
|
|
enum
|
|
{
|
|
MODE_BAND_PASS = 0,
|
|
MODE_BAND_REJECT
|
|
};
|
|
|
|
#define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE (gst_audio_chebyshev_freq_band_mode_get_type ())
|
|
static GType
|
|
gst_audio_chebyshev_freq_band_mode_get_type (void)
|
|
{
|
|
static GType gtype = 0;
|
|
|
|
if (gtype == 0) {
|
|
static const GEnumValue values[] = {
|
|
{MODE_BAND_PASS, "Band pass (default)",
|
|
"band-pass"},
|
|
{MODE_BAND_REJECT, "Band reject",
|
|
"band-reject"},
|
|
{0, NULL, NULL}
|
|
};
|
|
|
|
gtype = g_enum_register_static ("GstAudioChebyshevFreqBandMode", values);
|
|
}
|
|
return gtype;
|
|
}
|
|
|
|
/* GObject vmethod implementations */
|
|
|
|
static void
|
|
gst_audio_chebyshev_freq_band_base_init (gpointer klass)
|
|
{
|
|
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
|
|
GstCaps *caps;
|
|
|
|
gst_element_class_set_details (element_class, &element_details);
|
|
|
|
caps = gst_caps_from_string (ALLOWED_CAPS);
|
|
gst_audio_filter_class_add_pad_templates (GST_AUDIO_FILTER_CLASS (klass),
|
|
caps);
|
|
gst_caps_unref (caps);
|
|
}
|
|
|
|
static void
|
|
gst_audio_chebyshev_freq_band_dispose (GObject * object)
|
|
{
|
|
GstAudioChebyshevFreqBand *filter = GST_AUDIO_CHEBYSHEV_FREQ_BAND (object);
|
|
|
|
if (filter->a) {
|
|
g_free (filter->a);
|
|
filter->a = NULL;
|
|
}
|
|
|
|
if (filter->b) {
|
|
g_free (filter->b);
|
|
filter->b = NULL;
|
|
}
|
|
|
|
if (filter->channels) {
|
|
GstAudioChebyshevFreqBandChannelCtx *ctx;
|
|
gint i, channels = GST_AUDIO_FILTER (filter)->format.channels;
|
|
|
|
for (i = 0; i < channels; i++) {
|
|
ctx = &filter->channels[i];
|
|
g_free (ctx->x);
|
|
g_free (ctx->y);
|
|
}
|
|
|
|
g_free (filter->channels);
|
|
filter->channels = NULL;
|
|
}
|
|
|
|
G_OBJECT_CLASS (parent_class)->dispose (object);
|
|
}
|
|
|
|
static void
|
|
gst_audio_chebyshev_freq_band_class_init (GstAudioChebyshevFreqBandClass *
|
|
klass)
|
|
{
|
|
GObjectClass *gobject_class;
|
|
GstBaseTransformClass *trans_class;
|
|
GstAudioFilterClass *filter_class;
|
|
|
|
gobject_class = (GObjectClass *) klass;
|
|
trans_class = (GstBaseTransformClass *) klass;
|
|
filter_class = (GstAudioFilterClass *) klass;
|
|
|
|
gobject_class->set_property = gst_audio_chebyshev_freq_band_set_property;
|
|
gobject_class->get_property = gst_audio_chebyshev_freq_band_get_property;
|
|
gobject_class->dispose = gst_audio_chebyshev_freq_band_dispose;
|
|
|
|
g_object_class_install_property (gobject_class, PROP_MODE,
|
|
g_param_spec_enum ("mode", "Mode",
|
|
"Low pass or high pass mode", GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE,
|
|
MODE_BAND_PASS, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE));
|
|
g_object_class_install_property (gobject_class, PROP_TYPE,
|
|
g_param_spec_int ("type", "Type",
|
|
"Type of the chebychev filter", 1, 2,
|
|
1, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE));
|
|
|
|
/* FIXME: Don't use the complete possible range but restrict the upper boundary
|
|
* so automatically generated UIs can use a slider without */
|
|
g_object_class_install_property (gobject_class, PROP_LOWER_FREQUENCY,
|
|
g_param_spec_float ("lower-frequency", "Lower frequency",
|
|
"Start frequency of the band (Hz)", 0.0, 100000.0,
|
|
0.0, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE));
|
|
g_object_class_install_property (gobject_class, PROP_UPPER_FREQUENCY,
|
|
g_param_spec_float ("upper-frequency", "Upper frequency",
|
|
"Stop frequency of the band (Hz)", 0.0, 100000.0,
|
|
0.0, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE));
|
|
g_object_class_install_property (gobject_class, PROP_RIPPLE,
|
|
g_param_spec_float ("ripple", "Ripple",
|
|
"Amount of ripple (dB)", 0.0, 200.0,
|
|
0.25, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE));
|
|
/* FIXME: What to do about this upper boundary? With a frequencies near
|
|
* rate/4 32 poles are completely possible, with frequencies very low
|
|
* or very high 16 poles already produces only noise */
|
|
g_object_class_install_property (gobject_class, PROP_POLES,
|
|
g_param_spec_int ("poles", "Poles",
|
|
"Number of poles to use, will be rounded up to the next multiply of four",
|
|
4, 32, 4, G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE));
|
|
|
|
filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_chebyshev_freq_band_setup);
|
|
trans_class->transform_ip =
|
|
GST_DEBUG_FUNCPTR (gst_audio_chebyshev_freq_band_transform_ip);
|
|
trans_class->start = GST_DEBUG_FUNCPTR (gst_audio_chebyshev_freq_band_start);
|
|
}
|
|
|
|
static void
|
|
gst_audio_chebyshev_freq_band_init (GstAudioChebyshevFreqBand * filter,
|
|
GstAudioChebyshevFreqBandClass * klass)
|
|
{
|
|
filter->lower_frequency = filter->upper_frequency = 0.0;
|
|
filter->mode = MODE_BAND_PASS;
|
|
filter->type = 1;
|
|
filter->poles = 4;
|
|
filter->ripple = 0.25;
|
|
gst_base_transform_set_in_place (GST_BASE_TRANSFORM (filter), TRUE);
|
|
|
|
filter->have_coeffs = FALSE;
|
|
filter->num_a = 0;
|
|
filter->num_b = 0;
|
|
filter->channels = NULL;
|
|
}
|
|
|
|
static void
|
|
generate_biquad_coefficients (GstAudioChebyshevFreqBand * filter,
|
|
gint p, gdouble * a0, gdouble * a1, gdouble * a2, gdouble * a3,
|
|
gdouble * a4, gdouble * b1, gdouble * b2, gdouble * b3, gdouble * b4)
|
|
{
|
|
gint np = filter->poles / 2;
|
|
gdouble ripple = filter->ripple;
|
|
|
|
/* pole location in s-plane */
|
|
gdouble rp, ip;
|
|
|
|
/* zero location in s-plane */
|
|
gdouble rz = 0.0, iz = 0.0;
|
|
|
|
/* transfer function coefficients for the z-plane */
|
|
gdouble x0, x1, x2, y1, y2;
|
|
gint type = filter->type;
|
|
|
|
/* Calculate pole location for lowpass at frequency 1 */
|
|
{
|
|
gdouble angle = (M_PI / 2.0) * (2.0 * p - 1) / np;
|
|
|
|
rp = -sin (angle);
|
|
ip = cos (angle);
|
|
}
|
|
|
|
/* If we allow ripple, move the pole from the unit
|
|
* circle to an ellipse and keep cutoff at frequency 1 */
|
|
if (ripple > 0 && type == 1) {
|
|
gdouble es, vx;
|
|
|
|
es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
|
|
|
|
vx = (1.0 / np) * asinh (1.0 / es);
|
|
rp = rp * sinh (vx);
|
|
ip = ip * cosh (vx);
|
|
} else if (type == 2) {
|
|
gdouble es, vx;
|
|
|
|
es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
|
|
vx = (1.0 / np) * asinh (es);
|
|
rp = rp * sinh (vx);
|
|
ip = ip * cosh (vx);
|
|
}
|
|
|
|
/* Calculate inverse of the pole location to move from
|
|
* type I to type II */
|
|
if (type == 2) {
|
|
gdouble mag2 = rp * rp + ip * ip;
|
|
|
|
rp /= mag2;
|
|
ip /= mag2;
|
|
}
|
|
|
|
/* Calculate zero location for frequency 1 on the
|
|
* unit circle for type 2 */
|
|
if (type == 2) {
|
|
gdouble angle = M_PI / (np * 2.0) + ((p - 1) * M_PI) / (np);
|
|
gdouble mag2;
|
|
|
|
rz = 0.0;
|
|
iz = cos (angle);
|
|
mag2 = rz * rz + iz * iz;
|
|
rz /= mag2;
|
|
iz /= mag2;
|
|
}
|
|
|
|
/* Convert from s-domain to z-domain by
|
|
* using the bilinear Z-transform, i.e.
|
|
* substitute s by (2/t)*((z-1)/(z+1))
|
|
* with t = 2 * tan(0.5).
|
|
*/
|
|
if (type == 1) {
|
|
gdouble t, m, d;
|
|
|
|
t = 2.0 * tan (0.5);
|
|
m = rp * rp + ip * ip;
|
|
d = 4.0 - 4.0 * rp * t + m * t * t;
|
|
|
|
x0 = (t * t) / d;
|
|
x1 = 2.0 * x0;
|
|
x2 = x0;
|
|
y1 = (8.0 - 2.0 * m * t * t) / d;
|
|
y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
|
|
} else {
|
|
gdouble t, m, d;
|
|
|
|
t = 2.0 * tan (0.5);
|
|
m = rp * rp + ip * ip;
|
|
d = 4.0 - 4.0 * rp * t + m * t * t;
|
|
|
|
x0 = (t * t * iz * iz + 4.0) / d;
|
|
x1 = (-8.0 + 2.0 * iz * iz * t * t) / d;
|
|
x2 = x0;
|
|
y1 = (8.0 - 2.0 * m * t * t) / d;
|
|
y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
|
|
}
|
|
|
|
/* Convert from lowpass at frequency 1 to either bandpass
|
|
* or band reject.
|
|
*
|
|
* For bandpass substitute z^(-1) with:
|
|
*
|
|
* -2 -1
|
|
* -z + alpha * z - beta
|
|
* ----------------------------
|
|
* -2 -1
|
|
* beta * z - alpha * z + 1
|
|
*
|
|
* alpha = (2*a*b)/(1+b)
|
|
* beta = (b-1)/(b+1)
|
|
* a = cos((w1 + w0)/2) / cos((w1 - w0)/2)
|
|
* b = tan(1/2) * cot((w1 - w0)/2)
|
|
*
|
|
* For bandreject substitute z^(-1) with:
|
|
*
|
|
* -2 -1
|
|
* z - alpha * z + beta
|
|
* ----------------------------
|
|
* -2 -1
|
|
* beta * z - alpha * z + 1
|
|
*
|
|
* alpha = (2*a)/(1+b)
|
|
* beta = (1-b)/(1+b)
|
|
* a = cos((w1 + w0)/2) / cos((w1 - w0)/2)
|
|
* b = tan(1/2) * tan((w1 - w0)/2)
|
|
*
|
|
*/
|
|
{
|
|
gdouble a, b, d;
|
|
gdouble alpha, beta;
|
|
gdouble w0 =
|
|
2.0 * M_PI * (filter->lower_frequency /
|
|
GST_AUDIO_FILTER (filter)->format.rate);
|
|
gdouble w1 =
|
|
2.0 * M_PI * (filter->upper_frequency /
|
|
GST_AUDIO_FILTER (filter)->format.rate);
|
|
|
|
if (filter->mode == MODE_BAND_PASS) {
|
|
a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0);
|
|
b = tan (1.0 / 2.0) / tan ((w1 - w0) / 2.0);
|
|
|
|
alpha = (2.0 * a * b) / (1.0 + b);
|
|
beta = (b - 1.0) / (b + 1.0);
|
|
|
|
d = 1.0 + beta * (y1 - beta * y2);
|
|
|
|
*a0 = (x0 + beta * (-x1 + beta * x2)) / d;
|
|
*a1 = (alpha * (-2.0 * x0 + x1 + beta * x1 - 2.0 * beta * x2)) / d;
|
|
*a2 =
|
|
(-x1 - beta * beta * x1 + 2.0 * beta * (x0 + x2) +
|
|
alpha * alpha * (x0 - x1 + x2)) / d;
|
|
*a3 = (alpha * (x1 + beta * (-2.0 * x0 + x1) - 2.0 * x2)) / d;
|
|
*a4 = (beta * (beta * x0 - x1) + x2) / d;
|
|
*b1 = (alpha * (2.0 + y1 + beta * y1 - 2.0 * beta * y2)) / d;
|
|
*b2 =
|
|
(-y1 - beta * beta * y1 - alpha * alpha * (1.0 + y1 - y2) +
|
|
2.0 * beta * (-1.0 + y2)) / d;
|
|
*b3 = (alpha * (y1 + beta * (2.0 + y1) - 2.0 * y2)) / d;
|
|
*b4 = (-beta * beta - beta * y1 + y2) / d;
|
|
} else {
|
|
a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0);
|
|
b = tan (1.0 / 2.0) * tan ((w1 - w0) / 2.0);
|
|
|
|
alpha = (2.0 * a) / (1.0 + b);
|
|
beta = (1.0 - b) / (1.0 + b);
|
|
|
|
d = -1.0 + beta * (beta * y2 + y1);
|
|
|
|
*a0 = (-x0 - beta * x1 - beta * beta * x2) / d;
|
|
*a1 = (alpha * (2.0 * x0 + x1 + beta * x1 + 2.0 * beta * x2)) / d;
|
|
*a2 =
|
|
(-x1 - beta * beta * x1 - 2.0 * beta * (x0 + x2) -
|
|
alpha * alpha * (x0 + x1 + x2)) / d;
|
|
*a3 = (alpha * (x1 + beta * (2.0 * x0 + x1) + 2.0 * x2)) / d;
|
|
*a4 = (-beta * beta * x0 - beta * x1 - x2) / d;
|
|
*b1 = (alpha * (-2.0 + y1 + beta * y1 + 2.0 * beta * y2)) / d;
|
|
*b2 =
|
|
-(y1 + beta * beta * y1 + 2.0 * beta * (-1.0 + y2) +
|
|
alpha * alpha * (-1.0 + y1 + y2)) / d;
|
|
*b3 = (alpha * (beta * (-2.0 + y1) + y1 + 2.0 * y2)) / d;
|
|
*b4 = -(-beta * beta + beta * y1 + y2) / d;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Evaluate the transfer function that corresponds to the IIR
|
|
* coefficients at zr + zi*I and return the magnitude */
|
|
static gdouble
|
|
calculate_gain (gdouble * a, gdouble * b, gint num_a, gint num_b, gdouble zr,
|
|
gdouble zi)
|
|
{
|
|
gdouble sum_ar, sum_ai;
|
|
gdouble sum_br, sum_bi;
|
|
gdouble gain_r, gain_i;
|
|
|
|
gdouble sum_r_old;
|
|
gdouble sum_i_old;
|
|
|
|
gint i;
|
|
|
|
sum_ar = 0.0;
|
|
sum_ai = 0.0;
|
|
for (i = num_a; i >= 0; i--) {
|
|
sum_r_old = sum_ar;
|
|
sum_i_old = sum_ai;
|
|
|
|
sum_ar = (sum_r_old * zr - sum_i_old * zi) + a[i];
|
|
sum_ai = (sum_r_old * zi + sum_i_old * zr) + 0.0;
|
|
}
|
|
|
|
sum_br = 0.0;
|
|
sum_bi = 0.0;
|
|
for (i = num_b; i >= 0; i--) {
|
|
sum_r_old = sum_br;
|
|
sum_i_old = sum_bi;
|
|
|
|
sum_br = (sum_r_old * zr - sum_i_old * zi) - b[i];
|
|
sum_bi = (sum_r_old * zi + sum_i_old * zr) - 0.0;
|
|
}
|
|
sum_br += 1.0;
|
|
sum_bi += 0.0;
|
|
|
|
gain_r =
|
|
(sum_ar * sum_br + sum_ai * sum_bi) / (sum_br * sum_br + sum_bi * sum_bi);
|
|
gain_i =
|
|
(sum_ai * sum_br - sum_ar * sum_bi) / (sum_br * sum_br + sum_bi * sum_bi);
|
|
|
|
return (sqrt (gain_r * gain_r + gain_i * gain_i));
|
|
}
|
|
|
|
static void
|
|
generate_coefficients (GstAudioChebyshevFreqBand * filter)
|
|
{
|
|
gint channels = GST_AUDIO_FILTER (filter)->format.channels;
|
|
|
|
if (filter->a) {
|
|
g_free (filter->a);
|
|
filter->a = NULL;
|
|
}
|
|
|
|
if (filter->b) {
|
|
g_free (filter->b);
|
|
filter->b = NULL;
|
|
}
|
|
|
|
if (filter->channels) {
|
|
GstAudioChebyshevFreqBandChannelCtx *ctx;
|
|
gint i;
|
|
|
|
for (i = 0; i < channels; i++) {
|
|
ctx = &filter->channels[i];
|
|
g_free (ctx->x);
|
|
g_free (ctx->y);
|
|
}
|
|
|
|
g_free (filter->channels);
|
|
filter->channels = NULL;
|
|
}
|
|
|
|
if (GST_AUDIO_FILTER (filter)->format.rate == 0) {
|
|
filter->num_a = 1;
|
|
filter->a = g_new0 (gdouble, 1);
|
|
filter->a[0] = 1.0;
|
|
filter->num_b = 0;
|
|
filter->channels = g_new0 (GstAudioChebyshevFreqBandChannelCtx, channels);
|
|
GST_LOG_OBJECT (filter, "rate was not set yet");
|
|
return;
|
|
}
|
|
|
|
filter->have_coeffs = TRUE;
|
|
|
|
if (filter->upper_frequency <= filter->lower_frequency) {
|
|
filter->num_a = 1;
|
|
filter->a = g_new0 (gdouble, 1);
|
|
filter->a[0] = (filter->mode == MODE_BAND_PASS) ? 0.0 : 1.0;
|
|
filter->num_b = 0;
|
|
filter->channels = g_new0 (GstAudioChebyshevFreqBandChannelCtx, channels);
|
|
GST_LOG_OBJECT (filter, "frequency band had no or negative dimension");
|
|
return;
|
|
}
|
|
|
|
if (filter->upper_frequency > GST_AUDIO_FILTER (filter)->format.rate / 2) {
|
|
filter->upper_frequency = GST_AUDIO_FILTER (filter)->format.rate / 2;
|
|
GST_LOG_OBJECT (filter, "clipped upper frequency to nyquist frequency");
|
|
}
|
|
|
|
if (filter->lower_frequency < 0.0) {
|
|
filter->lower_frequency = 0.0;
|
|
GST_LOG_OBJECT (filter, "clipped lower frequency to 0.0");
|
|
}
|
|
|
|
/* Calculate coefficients for the chebyshev filter */
|
|
{
|
|
gint np = filter->poles;
|
|
gdouble *a, *b;
|
|
gint i, p;
|
|
|
|
filter->num_a = np + 1;
|
|
filter->a = a = g_new0 (gdouble, np + 5);
|
|
filter->num_b = np + 1;
|
|
filter->b = b = g_new0 (gdouble, np + 5);
|
|
|
|
filter->channels = g_new0 (GstAudioChebyshevFreqBandChannelCtx, channels);
|
|
for (i = 0; i < channels; i++) {
|
|
GstAudioChebyshevFreqBandChannelCtx *ctx = &filter->channels[i];
|
|
|
|
ctx->x = g_new0 (gdouble, np + 1);
|
|
ctx->y = g_new0 (gdouble, np + 1);
|
|
}
|
|
|
|
/* Calculate transfer function coefficients */
|
|
a[4] = 1.0;
|
|
b[4] = 1.0;
|
|
|
|
for (p = 1; p <= np / 4; p++) {
|
|
gdouble a0, a1, a2, a3, a4, b1, b2, b3, b4;
|
|
gdouble *ta = g_new0 (gdouble, np + 5);
|
|
gdouble *tb = g_new0 (gdouble, np + 5);
|
|
|
|
generate_biquad_coefficients (filter, p, &a0, &a1, &a2, &a3, &a4, &b1,
|
|
&b2, &b3, &b4);
|
|
|
|
memcpy (ta, a, sizeof (gdouble) * (np + 5));
|
|
memcpy (tb, b, sizeof (gdouble) * (np + 5));
|
|
|
|
/* add the new coefficients for the new two poles
|
|
* to the cascade by multiplication of the transfer
|
|
* functions */
|
|
for (i = 4; i < np + 5; i++) {
|
|
a[i] =
|
|
a0 * ta[i] + a1 * ta[i - 1] + a2 * ta[i - 2] + a3 * ta[i - 3] +
|
|
a4 * ta[i - 4];
|
|
b[i] =
|
|
tb[i] - b1 * tb[i - 1] - b2 * tb[i - 2] - b3 * tb[i - 3] -
|
|
b4 * tb[i - 4];
|
|
}
|
|
g_free (ta);
|
|
g_free (tb);
|
|
}
|
|
|
|
/* Move coefficients to the beginning of the array
|
|
* and multiply the b coefficients with -1 to move from
|
|
* the transfer function's coefficients to the difference
|
|
* equation's coefficients */
|
|
b[4] = 0.0;
|
|
for (i = 0; i <= np; i++) {
|
|
a[i] = a[i + 4];
|
|
b[i] = -b[i + 4];
|
|
}
|
|
|
|
/* Normalize to unity gain at frequency 0 and frequency
|
|
* 0.5 for bandreject and unity gain at band center frequency
|
|
* for bandpass */
|
|
if (filter->mode == MODE_BAND_REJECT) {
|
|
/* gain is sqrt(H(0)*H(0.5)) */
|
|
|
|
gdouble gain1 = calculate_gain (a, b, np, np, 1.0, 0.0);
|
|
gdouble gain2 = calculate_gain (a, b, np, np, -1.0, 0.0);
|
|
|
|
gain1 = sqrt (gain1 * gain2);
|
|
|
|
for (i = 0; i <= np; i++) {
|
|
a[i] /= gain1;
|
|
}
|
|
} else {
|
|
/* gain is H(wc), wc = center frequency */
|
|
|
|
gdouble w1 =
|
|
2.0 * M_PI * (filter->lower_frequency /
|
|
GST_AUDIO_FILTER (filter)->format.rate);
|
|
gdouble w2 =
|
|
2.0 * M_PI * (filter->upper_frequency /
|
|
GST_AUDIO_FILTER (filter)->format.rate);
|
|
gdouble w0 = (w2 + w1) / 2.0;
|
|
gdouble zr = cos (w0), zi = sin (w0);
|
|
gdouble gain = calculate_gain (a, b, np, np, zr, zi);
|
|
|
|
for (i = 0; i <= np; i++) {
|
|
a[i] /= gain;
|
|
}
|
|
}
|
|
|
|
GST_LOG_OBJECT (filter,
|
|
"Generated IIR coefficients for the Chebyshev filter");
|
|
GST_LOG_OBJECT (filter,
|
|
"mode: %s, type: %d, poles: %d, lower-frequency: %.2f Hz, upper-frequency: %.2f Hz, ripple: %.2f dB",
|
|
(filter->mode == MODE_BAND_PASS) ? "band-pass" : "band-reject",
|
|
filter->type, filter->poles, filter->lower_frequency,
|
|
filter->upper_frequency, filter->ripple);
|
|
|
|
GST_LOG_OBJECT (filter, "%.2f dB gain @ 0Hz",
|
|
20.0 * log10 (calculate_gain (a, b, np, np, 1.0, 0.0)));
|
|
{
|
|
gdouble w1 =
|
|
2.0 * M_PI * (filter->lower_frequency /
|
|
GST_AUDIO_FILTER (filter)->format.rate);
|
|
gdouble w2 =
|
|
2.0 * M_PI * (filter->upper_frequency /
|
|
GST_AUDIO_FILTER (filter)->format.rate);
|
|
gdouble w0 = (w2 + w1) / 2.0;
|
|
gdouble zr, zi;
|
|
|
|
zr = cos (w1);
|
|
zi = sin (w1);
|
|
GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
|
|
20.0 * log10 (calculate_gain (a, b, np, np, zr, zi)),
|
|
(int) filter->lower_frequency);
|
|
zr = cos (w0);
|
|
zi = sin (w0);
|
|
GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
|
|
20.0 * log10 (calculate_gain (a, b, np, np, zr, zi)),
|
|
(int) ((filter->lower_frequency + filter->upper_frequency) / 2.0));
|
|
zr = cos (w2);
|
|
zi = sin (w2);
|
|
GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
|
|
20.0 * log10 (calculate_gain (a, b, np, np, zr, zi)),
|
|
(int) filter->upper_frequency);
|
|
}
|
|
GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
|
|
20.0 * log10 (calculate_gain (a, b, np, np, -1.0, 0.0)),
|
|
GST_AUDIO_FILTER (filter)->format.rate / 2);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gst_audio_chebyshev_freq_band_set_property (GObject * object, guint prop_id,
|
|
const GValue * value, GParamSpec * pspec)
|
|
{
|
|
GstAudioChebyshevFreqBand *filter = GST_AUDIO_CHEBYSHEV_FREQ_BAND (object);
|
|
|
|
switch (prop_id) {
|
|
case PROP_MODE:
|
|
GST_BASE_TRANSFORM_LOCK (filter);
|
|
filter->mode = g_value_get_enum (value);
|
|
generate_coefficients (filter);
|
|
GST_BASE_TRANSFORM_UNLOCK (filter);
|
|
break;
|
|
case PROP_TYPE:
|
|
GST_BASE_TRANSFORM_LOCK (filter);
|
|
filter->type = g_value_get_int (value);
|
|
generate_coefficients (filter);
|
|
GST_BASE_TRANSFORM_UNLOCK (filter);
|
|
break;
|
|
case PROP_LOWER_FREQUENCY:
|
|
GST_BASE_TRANSFORM_LOCK (filter);
|
|
filter->lower_frequency = g_value_get_float (value);
|
|
generate_coefficients (filter);
|
|
GST_BASE_TRANSFORM_UNLOCK (filter);
|
|
break;
|
|
case PROP_UPPER_FREQUENCY:
|
|
GST_BASE_TRANSFORM_LOCK (filter);
|
|
filter->upper_frequency = g_value_get_float (value);
|
|
generate_coefficients (filter);
|
|
GST_BASE_TRANSFORM_UNLOCK (filter);
|
|
break;
|
|
case PROP_RIPPLE:
|
|
GST_BASE_TRANSFORM_LOCK (filter);
|
|
filter->ripple = g_value_get_float (value);
|
|
generate_coefficients (filter);
|
|
GST_BASE_TRANSFORM_UNLOCK (filter);
|
|
break;
|
|
case PROP_POLES:
|
|
GST_BASE_TRANSFORM_LOCK (filter);
|
|
filter->poles = GST_ROUND_UP_4 (g_value_get_int (value));
|
|
generate_coefficients (filter);
|
|
GST_BASE_TRANSFORM_UNLOCK (filter);
|
|
break;
|
|
default:
|
|
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gst_audio_chebyshev_freq_band_get_property (GObject * object, guint prop_id,
|
|
GValue * value, GParamSpec * pspec)
|
|
{
|
|
GstAudioChebyshevFreqBand *filter = GST_AUDIO_CHEBYSHEV_FREQ_BAND (object);
|
|
|
|
switch (prop_id) {
|
|
case PROP_MODE:
|
|
g_value_set_enum (value, filter->mode);
|
|
break;
|
|
case PROP_TYPE:
|
|
g_value_set_int (value, filter->type);
|
|
break;
|
|
case PROP_LOWER_FREQUENCY:
|
|
g_value_set_float (value, filter->lower_frequency);
|
|
break;
|
|
case PROP_UPPER_FREQUENCY:
|
|
g_value_set_float (value, filter->upper_frequency);
|
|
break;
|
|
case PROP_RIPPLE:
|
|
g_value_set_float (value, filter->ripple);
|
|
break;
|
|
case PROP_POLES:
|
|
g_value_set_int (value, filter->poles);
|
|
break;
|
|
default:
|
|
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* GstAudioFilter vmethod implementations */
|
|
|
|
static gboolean
|
|
gst_audio_chebyshev_freq_band_setup (GstAudioFilter * base,
|
|
GstRingBufferSpec * format)
|
|
{
|
|
GstAudioChebyshevFreqBand *filter = GST_AUDIO_CHEBYSHEV_FREQ_BAND (base);
|
|
gboolean ret = TRUE;
|
|
|
|
if (format->width == 32)
|
|
filter->process = (GstAudioChebyshevFreqBandProcessFunc)
|
|
process_32;
|
|
else if (format->width == 64)
|
|
filter->process = (GstAudioChebyshevFreqBandProcessFunc)
|
|
process_64;
|
|
else
|
|
ret = FALSE;
|
|
|
|
filter->have_coeffs = FALSE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline gdouble
|
|
process (GstAudioChebyshevFreqBand * filter,
|
|
GstAudioChebyshevFreqBandChannelCtx * ctx, gdouble x0)
|
|
{
|
|
gdouble val = filter->a[0] * x0;
|
|
gint i, j;
|
|
|
|
for (i = 1, j = ctx->x_pos; i < filter->num_a; i++) {
|
|
val += filter->a[i] * ctx->x[j];
|
|
j--;
|
|
if (j < 0)
|
|
j = filter->num_a - 1;
|
|
}
|
|
|
|
for (i = 1, j = ctx->y_pos; i < filter->num_b; i++) {
|
|
val += filter->b[i] * ctx->y[j];
|
|
j--;
|
|
if (j < 0)
|
|
j = filter->num_b - 1;
|
|
}
|
|
|
|
if (ctx->x) {
|
|
ctx->x_pos++;
|
|
if (ctx->x_pos > filter->num_a - 1)
|
|
ctx->x_pos = 0;
|
|
ctx->x[ctx->x_pos] = x0;
|
|
}
|
|
|
|
if (ctx->y) {
|
|
ctx->y_pos++;
|
|
if (ctx->y_pos > filter->num_b - 1)
|
|
ctx->y_pos = 0;
|
|
|
|
ctx->y[ctx->y_pos] = val;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
#define DEFINE_PROCESS_FUNC(width,ctype) \
|
|
static void \
|
|
process_##width (GstAudioChebyshevFreqBand * filter, \
|
|
g##ctype * data, guint num_samples) \
|
|
{ \
|
|
gint i, j, channels = GST_AUDIO_FILTER (filter)->format.channels; \
|
|
gdouble val; \
|
|
\
|
|
for (i = 0; i < num_samples / channels; i++) { \
|
|
for (j = 0; j < channels; j++) { \
|
|
val = process (filter, &filter->channels[j], *data); \
|
|
*data++ = val; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
DEFINE_PROCESS_FUNC (32, float);
|
|
DEFINE_PROCESS_FUNC (64, double);
|
|
|
|
#undef DEFINE_PROCESS_FUNC
|
|
|
|
/* GstBaseTransform vmethod implementations */
|
|
static GstFlowReturn
|
|
gst_audio_chebyshev_freq_band_transform_ip (GstBaseTransform * base,
|
|
GstBuffer * buf)
|
|
{
|
|
GstAudioChebyshevFreqBand *filter = GST_AUDIO_CHEBYSHEV_FREQ_BAND (base);
|
|
guint num_samples =
|
|
GST_BUFFER_SIZE (buf) / (GST_AUDIO_FILTER (filter)->format.width / 8);
|
|
|
|
if (GST_CLOCK_TIME_IS_VALID (GST_BUFFER_TIMESTAMP (buf)))
|
|
gst_object_sync_values (G_OBJECT (filter), GST_BUFFER_TIMESTAMP (buf));
|
|
|
|
if (gst_base_transform_is_passthrough (base))
|
|
return GST_FLOW_OK;
|
|
|
|
if (!filter->have_coeffs)
|
|
generate_coefficients (filter);
|
|
|
|
filter->process (filter, GST_BUFFER_DATA (buf), num_samples);
|
|
|
|
return GST_FLOW_OK;
|
|
}
|
|
|
|
static gboolean
|
|
gst_audio_chebyshev_freq_band_start (GstBaseTransform * base)
|
|
{
|
|
GstAudioChebyshevFreqBand *filter = GST_AUDIO_CHEBYSHEV_FREQ_BAND (base);
|
|
gint channels = GST_AUDIO_FILTER (filter)->format.channels;
|
|
GstAudioChebyshevFreqBandChannelCtx *ctx;
|
|
gint i;
|
|
|
|
/* Reset the history of input and output values if
|
|
* already existing */
|
|
if (channels && filter->channels) {
|
|
for (i = 0; i < channels; i++) {
|
|
ctx = &filter->channels[i];
|
|
if (ctx->x)
|
|
memset (ctx->x, 0, (filter->poles + 1) * sizeof (gdouble));
|
|
if (ctx->y)
|
|
memset (ctx->y, 0, (filter->poles + 1) * sizeof (gdouble));
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|