mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-06 23:45:35 +00:00
ba41bb5ca7
Conflicts: ext/ogg/gstoggmux.c gst/playback/gstplaysink.c
1429 lines
44 KiB
C
1429 lines
44 KiB
C
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
|
Copyright (C) 2008 Thorvald Natvig
|
|
|
|
File: resample.c
|
|
Arbitrary resampling code
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. The name of the author may not be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
|
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
The design goals of this code are:
|
|
- Very fast algorithm
|
|
- SIMD-friendly algorithm
|
|
- Low memory requirement
|
|
- Good *perceptual* quality (and not best SNR)
|
|
|
|
Warning: This resampler is relatively new. Although I think I got rid of
|
|
all the major bugs and I don't expect the API to change anymore, there
|
|
may be something I've missed. So use with caution.
|
|
|
|
This algorithm is based on this original resampling algorithm:
|
|
Smith, Julius O. Digital Audio Resampling Home Page
|
|
Center for Computer Research in Music and Acoustics (CCRMA),
|
|
Stanford University, 2007.
|
|
Web published at http://www-ccrma.stanford.edu/~jos/resample/.
|
|
|
|
There is one main difference, though. This resampler uses cubic
|
|
interpolation instead of linear interpolation in the above paper. This
|
|
makes the table much smaller and makes it possible to compute that table
|
|
on a per-stream basis. In turn, being able to tweak the table for each
|
|
stream makes it possible to both reduce complexity on simple ratios
|
|
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
|
The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#ifdef OUTSIDE_SPEEX
|
|
#include <stdlib.h>
|
|
|
|
#ifdef HAVE_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include <glib.h>
|
|
|
|
#ifdef HAVE_ORC
|
|
#include <orc/orc.h>
|
|
#endif
|
|
|
|
#define EXPORT G_GNUC_INTERNAL
|
|
|
|
#ifdef _USE_SSE
|
|
#ifndef HAVE_XMMINTRIN_H
|
|
#undef _USE_SSE
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _USE_SSE2
|
|
#ifndef HAVE_EMMINTRIN_H
|
|
#undef _USE_SSE2
|
|
#endif
|
|
#endif
|
|
|
|
static inline void *
|
|
speex_alloc (int size)
|
|
{
|
|
return g_malloc0 (size);
|
|
}
|
|
|
|
static inline void *
|
|
speex_realloc (void *ptr, int size)
|
|
{
|
|
return g_realloc (ptr, size);
|
|
}
|
|
|
|
static inline void
|
|
speex_free (void *ptr)
|
|
{
|
|
g_free (ptr);
|
|
}
|
|
|
|
#include "speex_resampler.h"
|
|
#include "arch.h"
|
|
#else /* OUTSIDE_SPEEX */
|
|
|
|
#include "../include/speex/speex_resampler.h"
|
|
#include "arch.h"
|
|
#include "os_support.h"
|
|
#endif /* OUTSIDE_SPEEX */
|
|
|
|
#include <math.h>
|
|
|
|
#ifdef FIXED_POINT
|
|
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
|
|
#else
|
|
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
|
|
#endif
|
|
|
|
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
|
|
#define IMIN(a,b) ((a) < (b) ? (a) : (b))
|
|
|
|
#ifndef NULL
|
|
#define NULL 0
|
|
#endif
|
|
|
|
#if defined _USE_SSE || defined _USE_SSE2
|
|
#include "resample_sse.h"
|
|
#endif
|
|
|
|
/* Numer of elements to allocate on the stack */
|
|
#ifdef VAR_ARRAYS
|
|
#define FIXED_STACK_ALLOC 8192
|
|
#else
|
|
#define FIXED_STACK_ALLOC 1024
|
|
#endif
|
|
|
|
/* Allow selecting SSE or not when compiled with SSE support */
|
|
#ifdef _USE_SSE
|
|
#define SSE_FALLBACK(macro) \
|
|
if (st->use_sse) goto sse_##macro##_sse; {
|
|
#define SSE_IMPLEMENTATION(macro) \
|
|
goto sse_##macro##_end; } sse_##macro##_sse: {
|
|
#define SSE_END(macro) sse_##macro##_end:; }
|
|
#else
|
|
#define SSE_FALLBACK(macro)
|
|
#endif
|
|
|
|
#ifdef _USE_SSE2
|
|
#define SSE2_FALLBACK(macro) \
|
|
if (st->use_sse2) goto sse2_##macro##_sse2; {
|
|
#define SSE2_IMPLEMENTATION(macro) \
|
|
goto sse2_##macro##_end; } sse2_##macro##_sse2: {
|
|
#define SSE2_END(macro) sse2_##macro##_end:; }
|
|
#else
|
|
#define SSE2_FALLBACK(macro)
|
|
#endif
|
|
|
|
|
|
typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t,
|
|
const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
|
|
|
|
struct SpeexResamplerState_
|
|
{
|
|
spx_uint32_t in_rate;
|
|
spx_uint32_t out_rate;
|
|
spx_uint32_t num_rate;
|
|
spx_uint32_t den_rate;
|
|
|
|
int quality;
|
|
spx_uint32_t nb_channels;
|
|
spx_uint32_t filt_len;
|
|
spx_uint32_t mem_alloc_size;
|
|
spx_uint32_t buffer_size;
|
|
int int_advance;
|
|
int frac_advance;
|
|
float cutoff;
|
|
spx_uint32_t oversample;
|
|
int initialised;
|
|
int started;
|
|
|
|
/* These are per-channel */
|
|
spx_int32_t *last_sample;
|
|
spx_uint32_t *samp_frac_num;
|
|
spx_uint32_t *magic_samples;
|
|
|
|
spx_word16_t *mem;
|
|
spx_word16_t *sinc_table;
|
|
spx_uint32_t sinc_table_length;
|
|
resampler_basic_func resampler_ptr;
|
|
|
|
int in_stride;
|
|
int out_stride;
|
|
|
|
int use_sse:1;
|
|
int use_sse2:1;
|
|
};
|
|
|
|
static double kaiser12_table[68] = {
|
|
0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
|
|
0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
|
|
0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
|
|
0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
|
|
0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
|
|
0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
|
|
0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
|
|
0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
|
|
0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
|
|
0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
|
|
0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
|
|
0.00001000, 0.00000000
|
|
};
|
|
|
|
/*
|
|
static double kaiser12_table[36] = {
|
|
0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
|
|
0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
|
|
0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
|
|
0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
|
|
0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
|
|
0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
|
|
*/
|
|
static double kaiser10_table[36] = {
|
|
0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
|
|
0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
|
|
0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
|
|
0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
|
|
0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
|
|
0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000
|
|
};
|
|
|
|
static double kaiser8_table[36] = {
|
|
0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
|
|
0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
|
|
0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
|
|
0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
|
|
0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
|
|
0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000
|
|
};
|
|
|
|
static double kaiser6_table[36] = {
|
|
0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
|
|
0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
|
|
0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
|
|
0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
|
|
0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
|
|
0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000
|
|
};
|
|
|
|
struct FuncDef
|
|
{
|
|
double *table;
|
|
int oversample;
|
|
};
|
|
|
|
static struct FuncDef _KAISER12 = { kaiser12_table, 64 };
|
|
|
|
#define KAISER12 (&_KAISER12)
|
|
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
|
|
#define KAISER12 (&_KAISER12)*/
|
|
static struct FuncDef _KAISER10 = { kaiser10_table, 32 };
|
|
|
|
#define KAISER10 (&_KAISER10)
|
|
static struct FuncDef _KAISER8 = { kaiser8_table, 32 };
|
|
|
|
#define KAISER8 (&_KAISER8)
|
|
static struct FuncDef _KAISER6 = { kaiser6_table, 32 };
|
|
|
|
#define KAISER6 (&_KAISER6)
|
|
|
|
struct QualityMapping
|
|
{
|
|
int base_length;
|
|
int oversample;
|
|
float downsample_bandwidth;
|
|
float upsample_bandwidth;
|
|
struct FuncDef *window_func;
|
|
};
|
|
|
|
|
|
/* This table maps conversion quality to internal parameters. There are two
|
|
reasons that explain why the up-sampling bandwidth is larger than the
|
|
down-sampling bandwidth:
|
|
1) When up-sampling, we can assume that the spectrum is already attenuated
|
|
close to the Nyquist rate (from an A/D or a previous resampling filter)
|
|
2) Any aliasing that occurs very close to the Nyquist rate will be masked
|
|
by the sinusoids/noise just below the Nyquist rate (guaranteed only for
|
|
up-sampling).
|
|
*/
|
|
static const struct QualityMapping quality_map[11] = {
|
|
{8, 4, 0.830f, 0.860f, KAISER6}, /* Q0 */
|
|
{16, 4, 0.850f, 0.880f, KAISER6}, /* Q1 */
|
|
{32, 4, 0.882f, 0.910f, KAISER6}, /* Q2 *//* 82.3% cutoff ( ~60 dB stop) 6 */
|
|
{48, 8, 0.895f, 0.917f, KAISER8}, /* Q3 *//* 84.9% cutoff ( ~80 dB stop) 8 */
|
|
{64, 8, 0.921f, 0.940f, KAISER8}, /* Q4 *//* 88.7% cutoff ( ~80 dB stop) 8 */
|
|
{80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 *//* 89.1% cutoff (~100 dB stop) 10 */
|
|
{96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 *//* 91.5% cutoff (~100 dB stop) 10 */
|
|
{128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 *//* 93.1% cutoff (~100 dB stop) 10 */
|
|
{160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 *//* 94.5% cutoff (~100 dB stop) 10 */
|
|
{192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 *//* 95.5% cutoff (~100 dB stop) 10 */
|
|
{256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 *//* 96.6% cutoff (~100 dB stop) 10 */
|
|
};
|
|
|
|
/*8,24,40,56,80,104,128,160,200,256,320*/
|
|
#ifdef DOUBLE_PRECISION
|
|
static double
|
|
compute_func (double x, struct FuncDef *func)
|
|
{
|
|
double y, frac;
|
|
#else
|
|
static double
|
|
compute_func (float x, struct FuncDef *func)
|
|
{
|
|
float y, frac;
|
|
#endif
|
|
double interp[4];
|
|
int ind;
|
|
y = x * func->oversample;
|
|
ind = (int) floor (y);
|
|
frac = (y - ind);
|
|
/* CSE with handle the repeated powers */
|
|
interp[3] = -0.1666666667 * frac + 0.1666666667 * (frac * frac * frac);
|
|
interp[2] = frac + 0.5 * (frac * frac) - 0.5 * (frac * frac * frac);
|
|
/*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */
|
|
interp[0] =
|
|
-0.3333333333 * frac + 0.5 * (frac * frac) -
|
|
0.1666666667 * (frac * frac * frac);
|
|
/* Just to make sure we don't have rounding problems */
|
|
interp[1] = 1.f - interp[3] - interp[2] - interp[0];
|
|
|
|
/*sum = frac*accum[1] + (1-frac)*accum[2]; */
|
|
return interp[0] * func->table[ind] + interp[1] * func->table[ind + 1] +
|
|
interp[2] * func->table[ind + 2] + interp[3] * func->table[ind + 3];
|
|
}
|
|
|
|
#if 0
|
|
#include <stdio.h>
|
|
int
|
|
main (int argc, char **argv)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 256; i++) {
|
|
printf ("%f\n", compute_func (i / 256., KAISER12));
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef FIXED_POINT
|
|
/* The slow way of computing a sinc for the table. Should improve that some day */
|
|
static spx_word16_t
|
|
sinc (float cutoff, float x, int N, struct FuncDef *window_func)
|
|
{
|
|
/*fprintf (stderr, "%f ", x); */
|
|
float xx = x * cutoff;
|
|
if (fabs (x) < 1e-6f)
|
|
return WORD2INT (32768. * cutoff);
|
|
else if (fabs (x) > .5f * N)
|
|
return 0;
|
|
/*FIXME: Can it really be any slower than this? */
|
|
return WORD2INT (32768. * cutoff * sin (G_PI * xx) / (G_PI * xx) *
|
|
compute_func (fabs (2. * x / N), window_func));
|
|
}
|
|
#else
|
|
/* The slow way of computing a sinc for the table. Should improve that some day */
|
|
#ifdef DOUBLE_PRECISION
|
|
static spx_word16_t
|
|
sinc (double cutoff, double x, int N, struct FuncDef *window_func)
|
|
{
|
|
/*fprintf (stderr, "%f ", x); */
|
|
double xx = x * cutoff;
|
|
#else
|
|
static spx_word16_t
|
|
sinc (float cutoff, float x, int N, struct FuncDef *window_func)
|
|
{
|
|
/*fprintf (stderr, "%f ", x); */
|
|
float xx = x * cutoff;
|
|
#endif
|
|
if (fabs (x) < 1e-6)
|
|
return cutoff;
|
|
else if (fabs (x) > .5 * N)
|
|
return 0;
|
|
/*FIXME: Can it really be any slower than this? */
|
|
return cutoff * sin (G_PI * xx) / (G_PI * xx) * compute_func (fabs (2. * x /
|
|
N), window_func);
|
|
}
|
|
#endif
|
|
|
|
#ifdef FIXED_POINT
|
|
static void
|
|
cubic_coef (spx_word16_t x, spx_word16_t interp[4])
|
|
{
|
|
/* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
|
|
but I know it's MMSE-optimal on a sinc */
|
|
spx_word16_t x2, x3;
|
|
x2 = MULT16_16_P15 (x, x);
|
|
x3 = MULT16_16_P15 (x, x2);
|
|
interp[0] =
|
|
PSHR32 (MULT16_16 (QCONST16 (-0.16667f, 15),
|
|
x) + MULT16_16 (QCONST16 (0.16667f, 15), x3), 15);
|
|
interp[1] =
|
|
EXTRACT16 (EXTEND32 (x) + SHR32 (SUB32 (EXTEND32 (x2), EXTEND32 (x3)),
|
|
1));
|
|
interp[3] =
|
|
PSHR32 (MULT16_16 (QCONST16 (-0.33333f, 15),
|
|
x) + MULT16_16 (QCONST16 (.5f, 15),
|
|
x2) - MULT16_16 (QCONST16 (0.16667f, 15), x3), 15);
|
|
/* Just to make sure we don't have rounding problems */
|
|
interp[2] = Q15_ONE - interp[0] - interp[1] - interp[3];
|
|
if (interp[2] < 32767)
|
|
interp[2] += 1;
|
|
}
|
|
#else
|
|
static void
|
|
cubic_coef (spx_word16_t frac, spx_word16_t interp[4])
|
|
{
|
|
/* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
|
|
but I know it's MMSE-optimal on a sinc */
|
|
interp[0] = -0.16667f * frac + 0.16667f * frac * frac * frac;
|
|
interp[1] = frac + 0.5f * frac * frac - 0.5f * frac * frac * frac;
|
|
/*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */
|
|
interp[3] =
|
|
-0.33333f * frac + 0.5f * frac * frac - 0.16667f * frac * frac * frac;
|
|
/* Just to make sure we don't have rounding problems */
|
|
interp[2] = 1. - interp[0] - interp[1] - interp[3];
|
|
}
|
|
#endif
|
|
|
|
#ifndef DOUBLE_PRECISION
|
|
static int
|
|
resampler_basic_direct_single (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
|
|
spx_word16_t * out, spx_uint32_t * out_len)
|
|
{
|
|
const int N = st->filt_len;
|
|
int out_sample = 0;
|
|
int last_sample = st->last_sample[channel_index];
|
|
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
|
|
const spx_word16_t *sinc_table = st->sinc_table;
|
|
const int out_stride = st->out_stride;
|
|
const int int_advance = st->int_advance;
|
|
const int frac_advance = st->frac_advance;
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
spx_word32_t sum;
|
|
int j;
|
|
|
|
while (!(last_sample >= (spx_int32_t) * in_len
|
|
|| out_sample >= (spx_int32_t) * out_len)) {
|
|
const spx_word16_t *sinc = &sinc_table[samp_frac_num * N];
|
|
const spx_word16_t *iptr = &in[last_sample];
|
|
|
|
SSE_FALLBACK (INNER_PRODUCT_SINGLE)
|
|
sum = 0;
|
|
for (j = 0; j < N; j++)
|
|
sum += MULT16_16 (sinc[j], iptr[j]);
|
|
|
|
/* This code is slower on most DSPs which have only 2 accumulators.
|
|
Plus this this forces truncation to 32 bits and you lose the HW guard bits.
|
|
I think we can trust the compiler and let it vectorize and/or unroll itself.
|
|
spx_word32_t accum[4] = {0,0,0,0};
|
|
for(j=0;j<N;j+=4) {
|
|
accum[0] += MULT16_16(sinc[j], iptr[j]);
|
|
accum[1] += MULT16_16(sinc[j+1], iptr[j+1]);
|
|
accum[2] += MULT16_16(sinc[j+2], iptr[j+2]);
|
|
accum[3] += MULT16_16(sinc[j+3], iptr[j+3]);
|
|
}
|
|
sum = accum[0] + accum[1] + accum[2] + accum[3];
|
|
*/
|
|
#ifdef OVERRIDE_INNER_PRODUCT_SINGLE
|
|
SSE_IMPLEMENTATION (INNER_PRODUCT_SINGLE)
|
|
sum = inner_product_single (sinc, iptr, N);
|
|
SSE_END (INNER_PRODUCT_SINGLE)
|
|
#endif
|
|
out[out_stride * out_sample++] = SATURATE32 (PSHR32 (sum, 15), 32767);
|
|
last_sample += int_advance;
|
|
samp_frac_num += frac_advance;
|
|
if (samp_frac_num >= den_rate) {
|
|
samp_frac_num -= den_rate;
|
|
last_sample++;
|
|
}
|
|
}
|
|
|
|
st->last_sample[channel_index] = last_sample;
|
|
st->samp_frac_num[channel_index] = samp_frac_num;
|
|
return out_sample;
|
|
}
|
|
#endif
|
|
|
|
#ifdef FIXED_POINT
|
|
#else
|
|
/* This is the same as the previous function, except with a double-precision accumulator */
|
|
static int
|
|
resampler_basic_direct_double (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
|
|
spx_word16_t * out, spx_uint32_t * out_len)
|
|
{
|
|
const int N = st->filt_len;
|
|
int out_sample = 0;
|
|
int last_sample = st->last_sample[channel_index];
|
|
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
|
|
const spx_word16_t *sinc_table = st->sinc_table;
|
|
const int out_stride = st->out_stride;
|
|
const int int_advance = st->int_advance;
|
|
const int frac_advance = st->frac_advance;
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
double sum;
|
|
int j;
|
|
|
|
while (!(last_sample >= (spx_int32_t) * in_len
|
|
|| out_sample >= (spx_int32_t) * out_len)) {
|
|
const spx_word16_t *sinc = &sinc_table[samp_frac_num * N];
|
|
const spx_word16_t *iptr = &in[last_sample];
|
|
|
|
SSE2_FALLBACK (INNER_PRODUCT_DOUBLE)
|
|
double accum[4] = { 0, 0, 0, 0 };
|
|
|
|
for (j = 0; j < N; j += 4) {
|
|
accum[0] += sinc[j] * iptr[j];
|
|
accum[1] += sinc[j + 1] * iptr[j + 1];
|
|
accum[2] += sinc[j + 2] * iptr[j + 2];
|
|
accum[3] += sinc[j + 3] * iptr[j + 3];
|
|
}
|
|
sum = accum[0] + accum[1] + accum[2] + accum[3];
|
|
#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
|
|
SSE2_IMPLEMENTATION (INNER_PRODUCT_DOUBLE)
|
|
sum = inner_product_double (sinc, iptr, N);
|
|
SSE2_END (INNER_PRODUCT_DOUBLE)
|
|
#endif
|
|
out[out_stride * out_sample++] = PSHR32 (sum, 15);
|
|
last_sample += int_advance;
|
|
samp_frac_num += frac_advance;
|
|
if (samp_frac_num >= den_rate) {
|
|
samp_frac_num -= den_rate;
|
|
last_sample++;
|
|
}
|
|
}
|
|
|
|
st->last_sample[channel_index] = last_sample;
|
|
st->samp_frac_num[channel_index] = samp_frac_num;
|
|
return out_sample;
|
|
}
|
|
#endif
|
|
|
|
#ifndef DOUBLE_PRECISION
|
|
static int
|
|
resampler_basic_interpolate_single (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
|
|
spx_word16_t * out, spx_uint32_t * out_len)
|
|
{
|
|
const int N = st->filt_len;
|
|
int out_sample = 0;
|
|
int last_sample = st->last_sample[channel_index];
|
|
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
|
|
const int out_stride = st->out_stride;
|
|
const int int_advance = st->int_advance;
|
|
const int frac_advance = st->frac_advance;
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
int j;
|
|
spx_word32_t sum;
|
|
|
|
while (!(last_sample >= (spx_int32_t) * in_len
|
|
|| out_sample >= (spx_int32_t) * out_len)) {
|
|
const spx_word16_t *iptr = &in[last_sample];
|
|
|
|
const int offset = samp_frac_num * st->oversample / st->den_rate;
|
|
#ifdef FIXED_POINT
|
|
const spx_word16_t frac =
|
|
PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15),
|
|
st->den_rate);
|
|
#else
|
|
const spx_word16_t frac =
|
|
((float) ((samp_frac_num * st->oversample) % st->den_rate)) /
|
|
st->den_rate;
|
|
#endif
|
|
spx_word16_t interp[4];
|
|
|
|
|
|
SSE_FALLBACK (INTERPOLATE_PRODUCT_SINGLE)
|
|
spx_word32_t accum[4] = { 0, 0, 0, 0 };
|
|
|
|
for (j = 0; j < N; j++) {
|
|
const spx_word16_t curr_in = iptr[j];
|
|
accum[0] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
|
|
accum[1] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
|
|
accum[2] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset]);
|
|
accum[3] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
|
|
}
|
|
|
|
cubic_coef (frac, interp);
|
|
sum =
|
|
MULT16_32_Q15 (interp[0], SHR32 (accum[0],
|
|
1)) + MULT16_32_Q15 (interp[1], SHR32 (accum[1],
|
|
1)) + MULT16_32_Q15 (interp[2], SHR32 (accum[2],
|
|
1)) + MULT16_32_Q15 (interp[3], SHR32 (accum[3], 1));
|
|
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
|
|
SSE_IMPLEMENTATION (INTERPOLATE_PRODUCT_SINGLE)
|
|
cubic_coef (frac, interp);
|
|
sum =
|
|
interpolate_product_single (iptr,
|
|
st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample,
|
|
interp);
|
|
SSE_END (INTERPOLATE_PRODUCT_SINGLE)
|
|
#endif
|
|
out[out_stride * out_sample++] = SATURATE32 (PSHR32 (sum, 14), 32767);
|
|
last_sample += int_advance;
|
|
samp_frac_num += frac_advance;
|
|
if (samp_frac_num >= den_rate) {
|
|
samp_frac_num -= den_rate;
|
|
last_sample++;
|
|
}
|
|
}
|
|
|
|
st->last_sample[channel_index] = last_sample;
|
|
st->samp_frac_num[channel_index] = samp_frac_num;
|
|
return out_sample;
|
|
}
|
|
#endif
|
|
|
|
#ifdef FIXED_POINT
|
|
#else
|
|
/* This is the same as the previous function, except with a double-precision accumulator */
|
|
static int
|
|
resampler_basic_interpolate_double (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
|
|
spx_word16_t * out, spx_uint32_t * out_len)
|
|
{
|
|
const int N = st->filt_len;
|
|
int out_sample = 0;
|
|
int last_sample = st->last_sample[channel_index];
|
|
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
|
|
const int out_stride = st->out_stride;
|
|
const int int_advance = st->int_advance;
|
|
const int frac_advance = st->frac_advance;
|
|
const spx_uint32_t den_rate = st->den_rate;
|
|
int j;
|
|
spx_word32_t sum;
|
|
|
|
while (!(last_sample >= (spx_int32_t) * in_len
|
|
|| out_sample >= (spx_int32_t) * out_len)) {
|
|
const spx_word16_t *iptr = &in[last_sample];
|
|
|
|
const int offset = samp_frac_num * st->oversample / st->den_rate;
|
|
#ifdef FIXED_POINT
|
|
const spx_word16_t frac =
|
|
PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15),
|
|
st->den_rate);
|
|
#else
|
|
#ifdef DOUBLE_PRECISION
|
|
const spx_word16_t frac =
|
|
((double) ((samp_frac_num * st->oversample) % st->den_rate)) /
|
|
st->den_rate;
|
|
#else
|
|
const spx_word16_t frac =
|
|
((float) ((samp_frac_num * st->oversample) % st->den_rate)) /
|
|
st->den_rate;
|
|
#endif
|
|
#endif
|
|
spx_word16_t interp[4];
|
|
|
|
|
|
SSE2_FALLBACK (INTERPOLATE_PRODUCT_DOUBLE)
|
|
double accum[4] = { 0, 0, 0, 0 };
|
|
|
|
for (j = 0; j < N; j++) {
|
|
const double curr_in = iptr[j];
|
|
accum[0] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
|
|
accum[1] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
|
|
accum[2] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset]);
|
|
accum[3] +=
|
|
MULT16_16 (curr_in,
|
|
st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
|
|
}
|
|
|
|
cubic_coef (frac, interp);
|
|
sum =
|
|
MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1],
|
|
accum[1]) + MULT16_32_Q15 (interp[2],
|
|
accum[2]) + MULT16_32_Q15 (interp[3], accum[3]);
|
|
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
|
|
SSE2_IMPLEMENTATION (INTERPOLATE_PRODUCT_DOUBLE)
|
|
cubic_coef (frac, interp);
|
|
sum =
|
|
interpolate_product_double (iptr,
|
|
st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample,
|
|
interp);
|
|
SSE2_END (INTERPOLATE_PRODUCT_DOUBLE)
|
|
#endif
|
|
out[out_stride * out_sample++] = PSHR32 (sum, 15);
|
|
last_sample += int_advance;
|
|
samp_frac_num += frac_advance;
|
|
if (samp_frac_num >= den_rate) {
|
|
samp_frac_num -= den_rate;
|
|
last_sample++;
|
|
}
|
|
}
|
|
|
|
st->last_sample[channel_index] = last_sample;
|
|
st->samp_frac_num[channel_index] = samp_frac_num;
|
|
return out_sample;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
update_filter (SpeexResamplerState * st)
|
|
{
|
|
spx_uint32_t old_length;
|
|
|
|
old_length = st->filt_len;
|
|
st->oversample = quality_map[st->quality].oversample;
|
|
st->filt_len = quality_map[st->quality].base_length;
|
|
|
|
if (st->num_rate > st->den_rate) {
|
|
/* down-sampling */
|
|
st->cutoff =
|
|
quality_map[st->quality].downsample_bandwidth * st->den_rate /
|
|
st->num_rate;
|
|
/* FIXME: divide the numerator and denominator by a certain amount if they're too large */
|
|
st->filt_len = st->filt_len * st->num_rate / st->den_rate;
|
|
/* Round down to make sure we have a multiple of 4 */
|
|
st->filt_len &= (~0x3);
|
|
if (2 * st->den_rate < st->num_rate)
|
|
st->oversample >>= 1;
|
|
if (4 * st->den_rate < st->num_rate)
|
|
st->oversample >>= 1;
|
|
if (8 * st->den_rate < st->num_rate)
|
|
st->oversample >>= 1;
|
|
if (16 * st->den_rate < st->num_rate)
|
|
st->oversample >>= 1;
|
|
if (st->oversample < 1)
|
|
st->oversample = 1;
|
|
} else {
|
|
/* up-sampling */
|
|
st->cutoff = quality_map[st->quality].upsample_bandwidth;
|
|
}
|
|
|
|
/* Choose the resampling type that requires the least amount of memory */
|
|
if (st->den_rate <= st->oversample) {
|
|
spx_uint32_t i;
|
|
if (!st->sinc_table)
|
|
st->sinc_table =
|
|
(spx_word16_t *) speex_alloc (st->filt_len * st->den_rate *
|
|
sizeof (spx_word16_t));
|
|
else if (st->sinc_table_length < st->filt_len * st->den_rate) {
|
|
st->sinc_table =
|
|
(spx_word16_t *) speex_realloc (st->sinc_table,
|
|
st->filt_len * st->den_rate * sizeof (spx_word16_t));
|
|
st->sinc_table_length = st->filt_len * st->den_rate;
|
|
}
|
|
for (i = 0; i < st->den_rate; i++) {
|
|
spx_int32_t j;
|
|
for (j = 0; j < st->filt_len; j++) {
|
|
st->sinc_table[i * st->filt_len + j] =
|
|
sinc (st->cutoff, ((j - (spx_int32_t) st->filt_len / 2 + 1) -
|
|
#ifdef DOUBLE_PRECISION
|
|
((double) i) / st->den_rate), st->filt_len,
|
|
#else
|
|
((float) i) / st->den_rate), st->filt_len,
|
|
#endif
|
|
quality_map[st->quality].window_func);
|
|
}
|
|
}
|
|
#ifdef FIXED_POINT
|
|
st->resampler_ptr = resampler_basic_direct_single;
|
|
#else
|
|
#ifdef DOUBLE_PRECISION
|
|
st->resampler_ptr = resampler_basic_direct_double;
|
|
#else
|
|
if (st->quality > 8)
|
|
st->resampler_ptr = resampler_basic_direct_double;
|
|
else
|
|
st->resampler_ptr = resampler_basic_direct_single;
|
|
#endif
|
|
#endif
|
|
/*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff); */
|
|
} else {
|
|
spx_int32_t i;
|
|
if (!st->sinc_table)
|
|
st->sinc_table =
|
|
(spx_word16_t *) speex_alloc ((st->filt_len * st->oversample +
|
|
8) * sizeof (spx_word16_t));
|
|
else if (st->sinc_table_length < st->filt_len * st->oversample + 8) {
|
|
st->sinc_table =
|
|
(spx_word16_t *) speex_realloc (st->sinc_table,
|
|
(st->filt_len * st->oversample + 8) * sizeof (spx_word16_t));
|
|
st->sinc_table_length = st->filt_len * st->oversample + 8;
|
|
}
|
|
for (i = -4; i < (spx_int32_t) (st->oversample * st->filt_len + 4); i++)
|
|
st->sinc_table[i + 4] =
|
|
#ifdef DOUBLE_PRECISION
|
|
sinc (st->cutoff, (i / (double) st->oversample - st->filt_len / 2),
|
|
#else
|
|
sinc (st->cutoff, (i / (float) st->oversample - st->filt_len / 2),
|
|
#endif
|
|
st->filt_len, quality_map[st->quality].window_func);
|
|
#ifdef FIXED_POINT
|
|
st->resampler_ptr = resampler_basic_interpolate_single;
|
|
#else
|
|
#ifdef DOUBLE_PRECISION
|
|
st->resampler_ptr = resampler_basic_interpolate_double;
|
|
#else
|
|
if (st->quality > 8)
|
|
st->resampler_ptr = resampler_basic_interpolate_double;
|
|
else
|
|
st->resampler_ptr = resampler_basic_interpolate_single;
|
|
#endif
|
|
#endif
|
|
/*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff); */
|
|
}
|
|
st->int_advance = st->num_rate / st->den_rate;
|
|
st->frac_advance = st->num_rate % st->den_rate;
|
|
|
|
|
|
/* Here's the place where we update the filter memory to take into account
|
|
the change in filter length. It's probably the messiest part of the code
|
|
due to handling of lots of corner cases. */
|
|
if (!st->mem) {
|
|
spx_uint32_t i;
|
|
st->mem_alloc_size = st->filt_len - 1 + st->buffer_size;
|
|
st->mem =
|
|
(spx_word16_t *) speex_alloc (st->nb_channels * st->mem_alloc_size *
|
|
sizeof (spx_word16_t));
|
|
for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++)
|
|
st->mem[i] = 0;
|
|
/*speex_warning("init filter"); */
|
|
} else if (!st->started) {
|
|
spx_uint32_t i;
|
|
st->mem_alloc_size = st->filt_len - 1 + st->buffer_size;
|
|
st->mem =
|
|
(spx_word16_t *) speex_realloc (st->mem,
|
|
st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t));
|
|
for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++)
|
|
st->mem[i] = 0;
|
|
/*speex_warning("reinit filter"); */
|
|
} else if (st->filt_len > old_length) {
|
|
spx_int32_t i;
|
|
/* Increase the filter length */
|
|
/*speex_warning("increase filter size"); */
|
|
int old_alloc_size = st->mem_alloc_size;
|
|
if ((st->filt_len - 1 + st->buffer_size) > st->mem_alloc_size) {
|
|
st->mem_alloc_size = st->filt_len - 1 + st->buffer_size;
|
|
st->mem =
|
|
(spx_word16_t *) speex_realloc (st->mem,
|
|
st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t));
|
|
}
|
|
for (i = st->nb_channels - 1; i >= 0; i--) {
|
|
spx_int32_t j;
|
|
spx_uint32_t olen = old_length;
|
|
/*if (st->magic_samples[i]) */
|
|
{
|
|
/* Try and remove the magic samples as if nothing had happened */
|
|
|
|
/* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
|
|
olen = old_length + 2 * st->magic_samples[i];
|
|
for (j = old_length - 2 + st->magic_samples[i]; j >= 0; j--)
|
|
st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]] =
|
|
st->mem[i * old_alloc_size + j];
|
|
for (j = 0; j < st->magic_samples[i]; j++)
|
|
st->mem[i * st->mem_alloc_size + j] = 0;
|
|
st->magic_samples[i] = 0;
|
|
}
|
|
if (st->filt_len > olen) {
|
|
/* If the new filter length is still bigger than the "augmented" length */
|
|
/* Copy data going backward */
|
|
for (j = 0; j < olen - 1; j++)
|
|
st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] =
|
|
st->mem[i * st->mem_alloc_size + (olen - 2 - j)];
|
|
/* Then put zeros for lack of anything better */
|
|
for (; j < st->filt_len - 1; j++)
|
|
st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] = 0;
|
|
/* Adjust last_sample */
|
|
st->last_sample[i] += (st->filt_len - olen) / 2;
|
|
} else {
|
|
/* Put back some of the magic! */
|
|
st->magic_samples[i] = (olen - st->filt_len) / 2;
|
|
for (j = 0; j < st->filt_len - 1 + st->magic_samples[i]; j++)
|
|
st->mem[i * st->mem_alloc_size + j] =
|
|
st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]];
|
|
}
|
|
}
|
|
} else if (st->filt_len < old_length) {
|
|
spx_uint32_t i;
|
|
/* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
|
|
samples so they can be used directly as input the next time(s) */
|
|
for (i = 0; i < st->nb_channels; i++) {
|
|
spx_uint32_t j;
|
|
spx_uint32_t old_magic = st->magic_samples[i];
|
|
st->magic_samples[i] = (old_length - st->filt_len) / 2;
|
|
/* We must copy some of the memory that's no longer used */
|
|
/* Copy data going backward */
|
|
for (j = 0; j < st->filt_len - 1 + st->magic_samples[i] + old_magic; j++)
|
|
st->mem[i * st->mem_alloc_size + j] =
|
|
st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]];
|
|
st->magic_samples[i] += old_magic;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT SpeexResamplerState *
|
|
speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate,
|
|
spx_uint32_t out_rate, int quality, int *err)
|
|
{
|
|
return speex_resampler_init_frac (nb_channels, in_rate, out_rate, in_rate,
|
|
out_rate, quality, err);
|
|
}
|
|
|
|
#if defined HAVE_ORC && !defined DISABLE_ORC
|
|
static void
|
|
check_insn_set (SpeexResamplerState * st, const char *name)
|
|
{
|
|
if (!name)
|
|
return;
|
|
if (!strcmp (name, "sse"))
|
|
st->use_sse = 1;
|
|
if (!strcmp (name, "sse2"))
|
|
st->use_sse = st->use_sse2 = 1;
|
|
}
|
|
#endif
|
|
|
|
EXPORT SpeexResamplerState *
|
|
speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num,
|
|
spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate,
|
|
int quality, int *err)
|
|
{
|
|
spx_uint32_t i;
|
|
SpeexResamplerState *st;
|
|
if (quality > 10 || quality < 0) {
|
|
if (err)
|
|
*err = RESAMPLER_ERR_INVALID_ARG;
|
|
return NULL;
|
|
}
|
|
st = (SpeexResamplerState *) speex_alloc (sizeof (SpeexResamplerState));
|
|
st->initialised = 0;
|
|
st->started = 0;
|
|
st->in_rate = 0;
|
|
st->out_rate = 0;
|
|
st->num_rate = 0;
|
|
st->den_rate = 0;
|
|
st->quality = -1;
|
|
st->sinc_table_length = 0;
|
|
st->mem_alloc_size = 0;
|
|
st->filt_len = 0;
|
|
st->mem = 0;
|
|
st->resampler_ptr = 0;
|
|
|
|
st->cutoff = 1.f;
|
|
st->nb_channels = nb_channels;
|
|
st->in_stride = 1;
|
|
st->out_stride = 1;
|
|
|
|
#ifdef FIXED_POINT
|
|
st->buffer_size = 160;
|
|
#else
|
|
st->buffer_size = 160;
|
|
#endif
|
|
|
|
st->use_sse = st->use_sse2 = 0;
|
|
#if defined HAVE_ORC && !defined DISABLE_ORC
|
|
orc_init ();
|
|
{
|
|
OrcTarget *target = orc_target_get_default ();
|
|
if (target) {
|
|
unsigned int flags = orc_target_get_default_flags (target);
|
|
check_insn_set (st, orc_target_get_name (target));
|
|
for (i = 0; i < 32; ++i) {
|
|
if (flags & (1 << i)) {
|
|
check_insn_set (st, orc_target_get_flag_name (target, i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Per channel data */
|
|
st->last_sample = (spx_int32_t *) speex_alloc (nb_channels * sizeof (int));
|
|
st->magic_samples = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int));
|
|
st->samp_frac_num = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int));
|
|
for (i = 0; i < nb_channels; i++) {
|
|
st->last_sample[i] = 0;
|
|
st->magic_samples[i] = 0;
|
|
st->samp_frac_num[i] = 0;
|
|
}
|
|
|
|
speex_resampler_set_quality (st, quality);
|
|
speex_resampler_set_rate_frac (st, ratio_num, ratio_den, in_rate, out_rate);
|
|
|
|
|
|
update_filter (st);
|
|
|
|
st->initialised = 1;
|
|
if (err)
|
|
*err = RESAMPLER_ERR_SUCCESS;
|
|
|
|
return st;
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_destroy (SpeexResamplerState * st)
|
|
{
|
|
speex_free (st->mem);
|
|
speex_free (st->sinc_table);
|
|
speex_free (st->last_sample);
|
|
speex_free (st->magic_samples);
|
|
speex_free (st->samp_frac_num);
|
|
speex_free (st);
|
|
}
|
|
|
|
static int
|
|
speex_resampler_process_native (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, spx_uint32_t * in_len, spx_word16_t * out,
|
|
spx_uint32_t * out_len)
|
|
{
|
|
int j = 0;
|
|
const int N = st->filt_len;
|
|
int out_sample = 0;
|
|
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
|
spx_uint32_t ilen;
|
|
|
|
st->started = 1;
|
|
|
|
/* Call the right resampler through the function ptr */
|
|
out_sample = st->resampler_ptr (st, channel_index, mem, in_len, out, out_len);
|
|
|
|
if (st->last_sample[channel_index] < (spx_int32_t) * in_len)
|
|
*in_len = st->last_sample[channel_index];
|
|
*out_len = out_sample;
|
|
st->last_sample[channel_index] -= *in_len;
|
|
|
|
ilen = *in_len;
|
|
|
|
for (j = 0; j < N - 1; ++j)
|
|
mem[j] = mem[j + ilen];
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
static int
|
|
speex_resampler_magic (SpeexResamplerState * st, spx_uint32_t channel_index,
|
|
spx_word16_t ** out, spx_uint32_t out_len)
|
|
{
|
|
spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
|
|
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
|
const int N = st->filt_len;
|
|
|
|
speex_resampler_process_native (st, channel_index, &tmp_in_len, *out,
|
|
&out_len);
|
|
|
|
st->magic_samples[channel_index] -= tmp_in_len;
|
|
|
|
/* If we couldn't process all "magic" input samples, save the rest for next time */
|
|
if (st->magic_samples[channel_index]) {
|
|
spx_uint32_t i;
|
|
for (i = 0; i < st->magic_samples[channel_index]; i++)
|
|
mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len];
|
|
}
|
|
*out += out_len * st->out_stride;
|
|
return out_len;
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
EXPORT int
|
|
speex_resampler_process_int (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
|
|
spx_int16_t * out, spx_uint32_t * out_len)
|
|
#else
|
|
#ifdef DOUBLE_PRECISION
|
|
EXPORT int
|
|
speex_resampler_process_float (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const double *in, spx_uint32_t * in_len,
|
|
double *out, spx_uint32_t * out_len)
|
|
#else
|
|
EXPORT int
|
|
speex_resampler_process_float (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
|
|
float *out, spx_uint32_t * out_len)
|
|
#endif
|
|
#endif
|
|
{
|
|
int j;
|
|
spx_uint32_t ilen = *in_len;
|
|
spx_uint32_t olen = *out_len;
|
|
spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
|
|
const int filt_offs = st->filt_len - 1;
|
|
const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
|
|
const int istride = st->in_stride;
|
|
|
|
if (st->magic_samples[channel_index])
|
|
olen -= speex_resampler_magic (st, channel_index, &out, olen);
|
|
if (!st->magic_samples[channel_index]) {
|
|
while (ilen && olen) {
|
|
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
|
spx_uint32_t ochunk = olen;
|
|
|
|
if (in) {
|
|
for (j = 0; j < ichunk; ++j)
|
|
x[j + filt_offs] = in[j * istride];
|
|
} else {
|
|
for (j = 0; j < ichunk; ++j)
|
|
x[j + filt_offs] = 0;
|
|
}
|
|
speex_resampler_process_native (st, channel_index, &ichunk, out, &ochunk);
|
|
ilen -= ichunk;
|
|
olen -= ochunk;
|
|
out += ochunk * st->out_stride;
|
|
if (in)
|
|
in += ichunk * istride;
|
|
}
|
|
}
|
|
*in_len -= ilen;
|
|
*out_len -= olen;
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
EXPORT int
|
|
speex_resampler_process_float (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
|
|
float *out, spx_uint32_t * out_len)
|
|
#else
|
|
EXPORT int
|
|
speex_resampler_process_int (SpeexResamplerState * st,
|
|
spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
|
|
spx_int16_t * out, spx_uint32_t * out_len)
|
|
#endif
|
|
{
|
|
int j;
|
|
const int istride_save = st->in_stride;
|
|
const int ostride_save = st->out_stride;
|
|
spx_uint32_t ilen = *in_len;
|
|
spx_uint32_t olen = *out_len;
|
|
spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
|
|
const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1);
|
|
#ifdef VAR_ARRAYS
|
|
const unsigned int ylen =
|
|
(olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC;
|
|
VARDECL (spx_word16_t * ystack);
|
|
ALLOC (ystack, ylen, spx_word16_t);
|
|
#else
|
|
const unsigned int ylen = FIXED_STACK_ALLOC;
|
|
spx_word16_t ystack[FIXED_STACK_ALLOC];
|
|
#endif
|
|
|
|
st->out_stride = 1;
|
|
|
|
while (ilen && olen) {
|
|
spx_word16_t *y = ystack;
|
|
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
|
spx_uint32_t ochunk = (olen > ylen) ? ylen : olen;
|
|
spx_uint32_t omagic = 0;
|
|
|
|
if (st->magic_samples[channel_index]) {
|
|
omagic = speex_resampler_magic (st, channel_index, &y, ochunk);
|
|
ochunk -= omagic;
|
|
olen -= omagic;
|
|
}
|
|
if (!st->magic_samples[channel_index]) {
|
|
if (in) {
|
|
for (j = 0; j < ichunk; ++j)
|
|
#ifdef FIXED_POINT
|
|
x[j + st->filt_len - 1] = WORD2INT (in[j * istride_save]);
|
|
#else
|
|
x[j + st->filt_len - 1] = in[j * istride_save];
|
|
#endif
|
|
} else {
|
|
for (j = 0; j < ichunk; ++j)
|
|
x[j + st->filt_len - 1] = 0;
|
|
}
|
|
|
|
speex_resampler_process_native (st, channel_index, &ichunk, y, &ochunk);
|
|
} else {
|
|
ichunk = 0;
|
|
ochunk = 0;
|
|
}
|
|
|
|
for (j = 0; j < ochunk + omagic; ++j)
|
|
#ifdef FIXED_POINT
|
|
out[j * ostride_save] = ystack[j];
|
|
#else
|
|
out[j * ostride_save] = WORD2INT (ystack[j]);
|
|
#endif
|
|
|
|
ilen -= ichunk;
|
|
olen -= ochunk;
|
|
out += (ochunk + omagic) * ostride_save;
|
|
if (in)
|
|
in += ichunk * istride_save;
|
|
}
|
|
st->out_stride = ostride_save;
|
|
*in_len -= ilen;
|
|
*out_len -= olen;
|
|
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
#ifdef DOUBLE_PRECISION
|
|
EXPORT int
|
|
speex_resampler_process_interleaved_float (SpeexResamplerState * st,
|
|
const double *in, spx_uint32_t * in_len, double *out,
|
|
spx_uint32_t * out_len)
|
|
#else
|
|
EXPORT int
|
|
speex_resampler_process_interleaved_float (SpeexResamplerState * st,
|
|
const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len)
|
|
#endif
|
|
{
|
|
spx_uint32_t i;
|
|
int istride_save, ostride_save;
|
|
spx_uint32_t bak_len = *out_len;
|
|
istride_save = st->in_stride;
|
|
ostride_save = st->out_stride;
|
|
st->in_stride = st->out_stride = st->nb_channels;
|
|
for (i = 0; i < st->nb_channels; i++) {
|
|
*out_len = bak_len;
|
|
if (in != NULL)
|
|
speex_resampler_process_float (st, i, in + i, in_len, out + i, out_len);
|
|
else
|
|
speex_resampler_process_float (st, i, NULL, in_len, out + i, out_len);
|
|
}
|
|
st->in_stride = istride_save;
|
|
st->out_stride = ostride_save;
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_process_interleaved_int (SpeexResamplerState * st,
|
|
const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out,
|
|
spx_uint32_t * out_len)
|
|
{
|
|
spx_uint32_t i;
|
|
int istride_save, ostride_save;
|
|
spx_uint32_t bak_len = *out_len;
|
|
istride_save = st->in_stride;
|
|
ostride_save = st->out_stride;
|
|
st->in_stride = st->out_stride = st->nb_channels;
|
|
for (i = 0; i < st->nb_channels; i++) {
|
|
*out_len = bak_len;
|
|
if (in != NULL)
|
|
speex_resampler_process_int (st, i, in + i, in_len, out + i, out_len);
|
|
else
|
|
speex_resampler_process_int (st, i, NULL, in_len, out + i, out_len);
|
|
}
|
|
st->in_stride = istride_save;
|
|
st->out_stride = ostride_save;
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate,
|
|
spx_uint32_t out_rate)
|
|
{
|
|
return speex_resampler_set_rate_frac (st, in_rate, out_rate, in_rate,
|
|
out_rate);
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate,
|
|
spx_uint32_t * out_rate)
|
|
{
|
|
*in_rate = st->in_rate;
|
|
*out_rate = st->out_rate;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num,
|
|
spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
|
{
|
|
spx_uint32_t fact;
|
|
spx_uint32_t old_den;
|
|
spx_uint32_t i;
|
|
if (st->in_rate == in_rate && st->out_rate == out_rate
|
|
&& st->num_rate == ratio_num && st->den_rate == ratio_den)
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
|
|
old_den = st->den_rate;
|
|
st->in_rate = in_rate;
|
|
st->out_rate = out_rate;
|
|
st->num_rate = ratio_num;
|
|
st->den_rate = ratio_den;
|
|
/* FIXME: This is terribly inefficient, but who cares (at least for now)? */
|
|
for (fact = 2; fact <= IMIN (st->num_rate, st->den_rate); fact++) {
|
|
while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0)) {
|
|
st->num_rate /= fact;
|
|
st->den_rate /= fact;
|
|
}
|
|
}
|
|
|
|
if (old_den > 0) {
|
|
for (i = 0; i < st->nb_channels; i++) {
|
|
st->samp_frac_num[i] = st->samp_frac_num[i] * st->den_rate / old_den;
|
|
/* Safety net */
|
|
if (st->samp_frac_num[i] >= st->den_rate)
|
|
st->samp_frac_num[i] = st->den_rate - 1;
|
|
}
|
|
}
|
|
|
|
if (st->initialised)
|
|
update_filter (st);
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num,
|
|
spx_uint32_t * ratio_den)
|
|
{
|
|
*ratio_num = st->num_rate;
|
|
*ratio_den = st->den_rate;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_set_quality (SpeexResamplerState * st, int quality)
|
|
{
|
|
if (quality > 10 || quality < 0)
|
|
return RESAMPLER_ERR_INVALID_ARG;
|
|
if (st->quality == quality)
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
st->quality = quality;
|
|
if (st->initialised)
|
|
update_filter (st);
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_get_quality (SpeexResamplerState * st, int *quality)
|
|
{
|
|
*quality = st->quality;
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_set_input_stride (SpeexResamplerState * st, spx_uint32_t stride)
|
|
{
|
|
st->in_stride = stride;
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_get_input_stride (SpeexResamplerState * st,
|
|
spx_uint32_t * stride)
|
|
{
|
|
*stride = st->in_stride;
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_set_output_stride (SpeexResamplerState * st,
|
|
spx_uint32_t stride)
|
|
{
|
|
st->out_stride = stride;
|
|
}
|
|
|
|
EXPORT void
|
|
speex_resampler_get_output_stride (SpeexResamplerState * st,
|
|
spx_uint32_t * stride)
|
|
{
|
|
*stride = st->out_stride;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_get_input_latency (SpeexResamplerState * st)
|
|
{
|
|
return st->filt_len / 2;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_get_output_latency (SpeexResamplerState * st)
|
|
{
|
|
return ((st->filt_len / 2) * st->den_rate +
|
|
(st->num_rate >> 1)) / st->num_rate;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_get_filt_len (SpeexResamplerState * st)
|
|
{
|
|
return st->filt_len;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_skip_zeros (SpeexResamplerState * st)
|
|
{
|
|
spx_uint32_t i;
|
|
for (i = 0; i < st->nb_channels; i++)
|
|
st->last_sample[i] = st->filt_len / 2;
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
EXPORT int
|
|
speex_resampler_reset_mem (SpeexResamplerState * st)
|
|
{
|
|
spx_uint32_t i;
|
|
for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
|
|
st->mem[i] = 0;
|
|
return RESAMPLER_ERR_SUCCESS;
|
|
}
|
|
|
|
EXPORT const char *
|
|
speex_resampler_strerror (int err)
|
|
{
|
|
switch (err) {
|
|
case RESAMPLER_ERR_SUCCESS:
|
|
return "Success.";
|
|
case RESAMPLER_ERR_ALLOC_FAILED:
|
|
return "Memory allocation failed.";
|
|
case RESAMPLER_ERR_BAD_STATE:
|
|
return "Bad resampler state.";
|
|
case RESAMPLER_ERR_INVALID_ARG:
|
|
return "Invalid argument.";
|
|
case RESAMPLER_ERR_PTR_OVERLAP:
|
|
return "Input and output buffers overlap.";
|
|
default:
|
|
return "Unknown error. Bad error code or strange version mismatch.";
|
|
}
|
|
}
|