gstreamer/gst/gl/regcomb_yuvrgb.c
2014-03-15 18:36:15 +01:00

424 lines
14 KiB
C

// these includes don't do a lot in Linux, they are more needed in Win32 (for the OpenGL function call pointers)
// but they are used at least for checking if the necessary extensions are present
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "ARB_multitexture.h"
#include "NV_register_combiners.h"
#include "EXT_paletted_texture.h"
/***********************************************************************************************
INTERESTING PART: *
handles initialization of the Nvidia register combiners for YUV->RGB conversion.
This code was created by Jens Schneider <schneider@glhint.de>
***********************************************************************************************/
GLuint Yhandle;
GLuint Uhandle;
GLuint Vhandle;
unsigned char *YPlane;
unsigned char *UPlane;
unsigned char *VPlane;
// YUV 4:2:2 example
unsigned int Ywidth = 512, Yheight = 512;
unsigned int UVwidth = 256, UVheight = 512;
int tex_xsize, tex_ysize;
void
GenerateRGBTables (unsigned char *Ytable, // Y-palette
unsigned char *Utable, // U-palette
unsigned char *Vtable, // V-palette
float *bias, // bias (fourth vector to be added)
float *Uscale, // scaling color for U
float *Vscale) // scaling color for V
{
int i;
const float mat[9] = { // the modified YUV->RGB matrix
+1.130469478f, -0.058755723f, +1.596026304f,
+1.130469478f, -0.450515935f, -0.812967512f,
+1.130469478f, +1.958477882f, 0.0f
};
#define COMPRESS(a)(0.5f*(a)+128.0f) // counter-piece to EXPAND_NORMAL
#define fCOMPRESS(a) (0.5f*(a)+0.5f);
#define XCLAMP(a) ((a)<0.0f ? 0.0f : ((a)>255.0f ? 255.0f : (a))) // should not be necessary, but what do you know.
bias[0] = fCOMPRESS (-0.842580964f);
bias[1] = fCOMPRESS (+0.563287723f);
bias[2] = fCOMPRESS (-1.0f);
bias[3] = 0.0f;
Uscale[0] = 8.0f / 255.0f;
Uscale[1] = 60.0f / 255.0f;
Uscale[2] = 250.0f / 255.0f;
Uscale[3] = 0.0f;
Vscale[0] = 204.0f / 255.0f;
Vscale[1] = 105.0f / 255.0f;
Vscale[2] = 0.5f;
Vscale[3] = 0.0f;
for (i = 0; i < 256; i++) {
// Y-table holds unsigned values
Ytable[3 * i] = (unsigned char) XCLAMP (mat[0] * (float) i); // R
Ytable[3 * i + 1] = (unsigned char) XCLAMP (mat[3] * (float) i); // G
Ytable[3 * i + 2] = (unsigned char) XCLAMP (mat[6] * (float) i); // B
// U-table holds signed values
Utable[3 * i] = (unsigned char) XCLAMP (COMPRESS (255.0f / 16.0f * mat[1] * (float) i)); // R
Utable[3 * i + 1] = (unsigned char) XCLAMP (COMPRESS (255.0f / 120.0f * mat[4] * (float) i)); // G
Utable[3 * i + 2] = (unsigned char) XCLAMP (COMPRESS (255.0f / 500.0f * mat[7] * (float) i)); // B
// V-table holds signed values
Vtable[3 * i] = (unsigned char) XCLAMP (COMPRESS (255.0f / 408.0f * mat[2] * (float) i)); // R
Vtable[3 * i + 1] = (unsigned char) XCLAMP (COMPRESS (255.0f / 210.0f * mat[5] * (float) i)); // G
Vtable[3 * i + 2] = (unsigned char) (128.0f - 14.0f); // G constant
}
#undef fCOMPRESS
#undef COMPRESS
#undef XCLAMP
}
// Sets the constants. Call once prior to rendering.
void
SetConsts (float *bias, float *Uscale, float *Vscale)
{
glEnable (GL_REGISTER_COMBINERS_NV);
glColor3fv (bias);
//printf("%f %f %f\n",bias[0],bias[1],bias[2]);
glCombinerParameterfvNV (GL_CONSTANT_COLOR0_NV, Uscale);
glCombinerParameterfvNV (GL_CONSTANT_COLOR1_NV, Vscale);
}
/*
* SOFTWARE PATH
*/
inline void
map_EXPAND_NORMAL (float *v)
{
v[0] = 2.0f * v[0] - 1.0f;
v[1] = 2.0f * v[1] - 1.0f;
v[2] = 2.0f * v[2] - 1.0f;
}
inline void
map_UNSIGNED_INVERT (float *v)
{
v[0] = 1.0f - v[0];
v[1] = 1.0f - v[1];
v[2] = 1.0f - v[2];
}
inline void
map_UNSIGNED_IDENTITY (float *v)
{
v[0] = (v[0] < 0.0f ? 0.0f : v[0]);
v[1] = (v[1] < 0.0f ? 0.0f : v[1]);
v[2] = (v[2] < 0.0f ? 0.0f : v[2]);
}
inline void
map_SIGNED_IDENTITY (float *v)
{
}
inline void
omap_SCALE_BY_TWO (float *v)
{
v[0] *= 2.0f;
v[1] *= 2.0f;
v[2] *= 2.0f;
}
inline void
omap_SCALE_BY_ONE_HALF (float *v)
{
v[0] *= 0.5f;
v[1] *= 0.5f;
v[2] *= 0.5f;
}
inline void
omap_RANGE (float *v)
{
v[0] = (v[0] < -1.0f ? -1.0f : (v[0] > 1.0f ? 1.0f : v[0]));
v[1] = (v[1] < -1.0f ? -1.0f : (v[1] > 1.0f ? 1.0f : v[1]));
v[2] = (v[2] < -1.0f ? -1.0f : (v[2] > 1.0f ? 1.0f : v[2]));
}
inline void
omap_CLAMP_01 (float *v)
{
v[0] = (v[0] < 0.0f ? 0.0f : (v[0] > 1.0f ? 1.0f : v[0]));
v[1] = (v[1] < 0.0f ? 0.0f : (v[1] > 1.0f ? 1.0f : v[1]));
v[2] = (v[2] < 0.0f ? 0.0f : (v[2] > 1.0f ? 1.0f : v[2]));
}
void
PerformSWCombiner (unsigned char *Result,
unsigned char *tex0,
unsigned char *tex1,
unsigned char *tex2, float *COLOR0, float *CONST0, float *CONST1)
{
float SPARE0[3];
float SPARE1[3];
float A[3], B[3], C[3], D[3];
float TEX0[3], TEX1[3], TEX2[3];
float ZERO[3] = { 0.0f, 0.0f, 0.0f };
TEX0[0] = (float) tex0[0] / 255.0f;
TEX0[1] = (float) tex0[1] / 255.0f;
TEX0[2] = (float) tex0[2] / 255.0f;
TEX1[0] = (float) tex1[0] / 255.0f;
TEX1[1] = (float) tex1[1] / 255.0f;
TEX1[2] = (float) tex1[2] / 255.0f;
TEX2[0] = (float) tex2[0] / 255.0f;
TEX2[1] = (float) tex2[1] / 255.0f;
TEX2[2] = (float) tex2[2] / 255.0f;
// Combiner Stage 0:
memcpy (A, TEX0, 3 * sizeof (float));
map_UNSIGNED_IDENTITY (A);
memcpy (B, ZERO, 3 * sizeof (float));
map_UNSIGNED_INVERT (B);
memcpy (C, COLOR0, 3 * sizeof (float));
map_EXPAND_NORMAL (C);
memcpy (D, ZERO, 3 * sizeof (float));
map_UNSIGNED_INVERT (D);
SPARE0[0] = A[0] * B[0] + C[0] * D[0];
SPARE0[1] = A[1] * B[1] + C[1] * D[1];
SPARE0[2] = A[2] * B[2] + C[2] * D[2];
omap_SCALE_BY_ONE_HALF (SPARE0);
omap_RANGE (SPARE0);
// Combiner Stage 1:
memcpy (A, TEX1, 3 * sizeof (float));
map_EXPAND_NORMAL (A);
memcpy (B, CONST0, 3 * sizeof (float));
map_UNSIGNED_IDENTITY (B);
memcpy (C, TEX2, 3 * sizeof (float));
map_EXPAND_NORMAL (C);
memcpy (D, CONST1, 3 * sizeof (float));
map_UNSIGNED_IDENTITY (D);
SPARE1[0] = A[0] * B[0] + C[0] * D[0];
SPARE1[1] = A[1] * B[1] + C[1] * D[1];
SPARE1[2] = A[2] * B[2] + C[2] * D[2];
omap_RANGE (SPARE1);
// Combiner Stage 2:
memcpy (A, SPARE0, 3 * sizeof (float));
map_SIGNED_IDENTITY (A);
memcpy (B, ZERO, 3 * sizeof (float));
map_UNSIGNED_INVERT (B);
memcpy (C, SPARE1, 3 * sizeof (float));
map_SIGNED_IDENTITY (C);
memcpy (D, ZERO, 3 * sizeof (float));
map_UNSIGNED_INVERT (D);
SPARE0[0] = A[0] * B[0] + C[0] * D[0];
SPARE0[1] = A[1] * B[1] + C[1] * D[1];
SPARE0[2] = A[2] * B[2] + C[2] * D[2];
omap_SCALE_BY_TWO (SPARE0);
omap_RANGE (SPARE0);
// Final Combiner Stage:
memcpy (A, ZERO, 3 * sizeof (float));
map_UNSIGNED_INVERT (A);
memcpy (B, SPARE0, 3 * sizeof (float));
map_UNSIGNED_IDENTITY (B);
memcpy (C, ZERO, 3 * sizeof (float));
map_UNSIGNED_IDENTITY (C);
memcpy (D, ZERO, 3 * sizeof (float));
map_UNSIGNED_IDENTITY (D);
SPARE0[0] = A[0] * B[0] + (1.0f - A[0]) * C[0] + D[0];
SPARE0[1] = A[1] * B[1] + (1.0f - A[1]) * C[1] + D[1];
SPARE0[2] = A[2] * B[2] + (1.0f - A[2]) * C[2] + D[2];
omap_CLAMP_01 (SPARE0);
Result[0] = (unsigned char) (SPARE0[0] * 255.0f);
Result[1] = (unsigned char) (SPARE0[1] * 255.0f);
Result[2] = (unsigned char) (SPARE0[2] * 255.0f);
}
// Sets up the register combiners. Call once prior to rendering
void
SetupCombiners (void)
{
glCombinerParameteriNV (GL_NUM_GENERAL_COMBINERS_NV, 3);
// Combiner Stage 0: th. OK
glCombinerInputNV (GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_A_NV, GL_TEXTURE0_ARB,
GL_UNSIGNED_IDENTITY_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_B_NV, GL_ZERO,
GL_UNSIGNED_INVERT_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_C_NV,
GL_PRIMARY_COLOR_NV, GL_EXPAND_NORMAL_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_D_NV, GL_ZERO,
GL_UNSIGNED_INVERT_NV, GL_RGB);
glCombinerOutputNV (GL_COMBINER0_NV, GL_RGB, GL_DISCARD_NV, GL_DISCARD_NV,
GL_SPARE0_NV, GL_SCALE_BY_ONE_HALF_NV, GL_NONE, GL_FALSE, GL_FALSE,
GL_FALSE);
// Combiner Stage 1: th. OK
glCombinerInputNV (GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_A_NV, GL_TEXTURE1_ARB,
GL_EXPAND_NORMAL_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_B_NV,
GL_CONSTANT_COLOR0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_C_NV, GL_TEXTURE2_ARB,
GL_EXPAND_NORMAL_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_D_NV,
GL_CONSTANT_COLOR1_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
glCombinerOutputNV (GL_COMBINER1_NV, GL_RGB, GL_DISCARD_NV, GL_DISCARD_NV,
GL_SPARE1_NV, GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE);
// Combiner Stage 2: th. OK
glCombinerInputNV (GL_COMBINER2_NV, GL_RGB, GL_VARIABLE_A_NV, GL_SPARE0_NV,
GL_SIGNED_IDENTITY_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER2_NV, GL_RGB, GL_VARIABLE_B_NV, GL_ZERO,
GL_UNSIGNED_INVERT_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER2_NV, GL_RGB, GL_VARIABLE_C_NV, GL_SPARE1_NV,
GL_SIGNED_IDENTITY_NV, GL_RGB);
glCombinerInputNV (GL_COMBINER2_NV, GL_RGB, GL_VARIABLE_D_NV, GL_ZERO,
GL_UNSIGNED_INVERT_NV, GL_RGB);
glCombinerOutputNV (GL_COMBINER2_NV, GL_RGB, GL_DISCARD_NV, GL_DISCARD_NV,
GL_SPARE0_NV, GL_SCALE_BY_TWO_NV, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE);
// Final Sage: th. OK
glFinalCombinerInputNV (GL_VARIABLE_A_NV, GL_ZERO, GL_UNSIGNED_INVERT_NV,
GL_RGB);
glFinalCombinerInputNV (GL_VARIABLE_B_NV, GL_SPARE0_NV,
GL_UNSIGNED_IDENTITY_NV, GL_RGB);
glFinalCombinerInputNV (GL_VARIABLE_C_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV,
GL_RGB);
glFinalCombinerInputNV (GL_VARIABLE_D_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV,
GL_RGB);
glFinalCombinerInputNV (GL_VARIABLE_G_NV, GL_ZERO, GL_UNSIGNED_INVERT_NV,
GL_ALPHA);
}
unsigned int
PowerOfTwo (unsigned int i)
{
unsigned int bitsum = 0;
unsigned int shifts = 0;
unsigned int j = (unsigned int) i;
// Check wether i is a power of two - may contain at most one set bit
do {
bitsum += j & 1;
j = j >> 1;
++shifts;
} while (j > 0);
if (bitsum == 1)
return i;
else
return (1 << shifts);
}
// Initializes textures. Call once prior to rendering
void
InitYUVPlanes (GLuint * Yhandle, GLuint * Uhandle, GLuint * Vhandle, unsigned int Ywidth, unsigned int Yheight, unsigned int UVwidth, unsigned int UVheight, GLenum filter, // filter should be either GL_NEAREST or GL_LINEAR. Test this!
unsigned char *Ypal, unsigned char *Upal, unsigned char *Vpal)
{
glGenTextures (1, Yhandle);
glGenTextures (1, Uhandle);
glGenTextures (1, Vhandle);
glBindTexture (GL_TEXTURE_2D, (*Yhandle));
#ifdef _WIN32
glColorTableEXT (GL_TEXTURE_2D, GL_RGB8, 256, GL_RGB, GL_UNSIGNED_BYTE, Ypal);
#else // Hopefully Linux
glColorTable (GL_TEXTURE_2D, GL_RGB8, 256, GL_RGB, GL_UNSIGNED_BYTE, Ypal);
#endif
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
tex_xsize = PowerOfTwo (Ywidth);
tex_ysize = PowerOfTwo (Yheight);
glTexImage2D (GL_TEXTURE_2D, 0, GL_COLOR_INDEX8_EXT, PowerOfTwo (Ywidth),
PowerOfTwo (Yheight), 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, NULL);
glBindTexture (GL_TEXTURE_2D, (*Uhandle));
#ifdef _WIN32
glColorTableEXT (GL_TEXTURE_2D, GL_RGB8, 256, GL_RGB, GL_UNSIGNED_BYTE, Upal);
#else // Hopefully Linux
glColorTable (GL_TEXTURE_2D, GL_RGB8, 256, GL_RGB, GL_UNSIGNED_BYTE, Upal);
#endif
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexImage2D (GL_TEXTURE_2D, 0, GL_COLOR_INDEX8_EXT, PowerOfTwo (UVwidth),
PowerOfTwo (UVheight), 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, NULL);
glBindTexture (GL_TEXTURE_2D, (*Vhandle));
#ifdef _WIN32
glColorTableEXT (GL_TEXTURE_2D, GL_RGB8, 256, GL_RGB, GL_UNSIGNED_BYTE, Vpal);
#else // Hopefully Linux
glColorTable (GL_TEXTURE_2D, GL_RGB8, 256, GL_RGB, GL_UNSIGNED_BYTE, Vpal);
#endif
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexImage2D (GL_TEXTURE_2D, 0, GL_COLOR_INDEX8_EXT, PowerOfTwo (UVwidth),
PowerOfTwo (UVheight), 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, NULL);
}
void
LoadYUVPlanes (GLuint Yhandle, GLuint Uhandle, GLuint Vhandle,
unsigned int Ywidth, unsigned int Yheight,
unsigned int UVwidth, unsigned int UVheight,
unsigned char *Ydata, unsigned char *Udata, unsigned char *Vdata)
{
glActiveTextureARB (GL_TEXTURE0_ARB);
glBindTexture (GL_TEXTURE_2D, Yhandle);
glTexSubImage2D (GL_TEXTURE_2D, 0, 0, 0, Ywidth, Yheight, GL_COLOR_INDEX,
GL_UNSIGNED_BYTE, Ydata);
glEnable (GL_TEXTURE_2D);
glActiveTextureARB (GL_TEXTURE1_ARB);
glBindTexture (GL_TEXTURE_2D, Uhandle);
glTexSubImage2D (GL_TEXTURE_2D, 0, 0, 0, UVwidth, UVheight, GL_COLOR_INDEX,
GL_UNSIGNED_BYTE, Udata);
glEnable (GL_TEXTURE_2D);
glActiveTextureARB (GL_TEXTURE2_ARB);
glBindTexture (GL_TEXTURE_2D, Vhandle);
glTexSubImage2D (GL_TEXTURE_2D, 0, 0, 0, UVwidth, UVheight, GL_COLOR_INDEX,
GL_UNSIGNED_BYTE, Vdata);
glEnable (GL_TEXTURE_2D);
}
void
Initialize_Backend (unsigned int Ywidth, unsigned int Yheight,
unsigned int UVwidth, unsigned int UVheight, GLenum filter)
{
printf ("Reinitializing register combiner backend with res %d x %d!\n",
Ywidth, Yheight);
//if (!GL_ARB_multitexture_Init()) exit(0);
//if (!GL_EXT_paletted_texture_Init()) exit(0);
//if (!GL_NV_register_combiners_Init()) exit(0);
unsigned char Ypal[768];
unsigned char Upal[768];
unsigned char Vpal[768];
float bias[4];
float Uscale[4];
float Vscale[4];
GenerateRGBTables (Ypal, Upal, Vpal, bias, Uscale, Vscale);
InitYUVPlanes (&Yhandle, &Uhandle, &Vhandle, Ywidth, Yheight, UVwidth,
UVheight, filter, Ypal, Upal, Vpal);
SetupCombiners ();
SetConsts (bias, Uscale, Vscale);
}
void
initialize (GLenum filter)
{
glShadeModel (GL_SMOOTH);
glHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glClearColor (0.0f, 0.0f, 0.2f, 1.0f);
Initialize_Backend (Ywidth, Yheight, UVwidth, UVheight, filter);
}