mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-24 16:18:16 +00:00
4b07d54931
V4L2 and DRM choose different, incompatible ways to represent tiled/compressed etc. formats. While the later uses combinations of format fourccs and opaque, vendor/hardware specific modifiers, for the later every such combination is a distinct new format. Traditionally Gst implemented each of the V4L2 formats if needed. Given the large number of tiling and compression modes, this is quite work intensive - and often actually not needed. In many situations Gst just needs to pass buffers from V4L2 to DRM in the form of EGL, VK, Wayland or KMS. Thus implement a direct translation for some V4L2 formats to DRM ones, limited to the DMA_DRM API, allowing much quicker enablement of formats while requiring peers to use external implementations (usually Mesa or KMS) for tiling etc. Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/7355>
1588 lines
68 KiB
C
1588 lines
68 KiB
C
/*
|
|
* Copyright 2011 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#ifndef DRM_FOURCC_H
|
|
#define DRM_FOURCC_H
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* DOC: overview
|
|
*
|
|
* In the DRM subsystem, framebuffer pixel formats are described using the
|
|
* fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
|
|
* fourcc code, a Format Modifier may optionally be provided, in order to
|
|
* further describe the buffer's format - for example tiling or compression.
|
|
*
|
|
* Format Modifiers
|
|
* ----------------
|
|
*
|
|
* Format modifiers are used in conjunction with a fourcc code, forming a
|
|
* unique fourcc:modifier pair. This format:modifier pair must fully define the
|
|
* format and data layout of the buffer, and should be the only way to describe
|
|
* that particular buffer.
|
|
*
|
|
* Having multiple fourcc:modifier pairs which describe the same layout should
|
|
* be avoided, as such aliases run the risk of different drivers exposing
|
|
* different names for the same data format, forcing userspace to understand
|
|
* that they are aliases.
|
|
*
|
|
* Format modifiers may change any property of the buffer, including the number
|
|
* of planes and/or the required allocation size. Format modifiers are
|
|
* vendor-namespaced, and as such the relationship between a fourcc code and a
|
|
* modifier is specific to the modifier being used. For example, some modifiers
|
|
* may preserve meaning - such as number of planes - from the fourcc code,
|
|
* whereas others may not.
|
|
*
|
|
* Modifiers must uniquely encode buffer layout. In other words, a buffer must
|
|
* match only a single modifier. A modifier must not be a subset of layouts of
|
|
* another modifier. For instance, it's incorrect to encode pitch alignment in
|
|
* a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
|
|
* aligned modifier. That said, modifiers can have implicit minimal
|
|
* requirements.
|
|
*
|
|
* For modifiers where the combination of fourcc code and modifier can alias,
|
|
* a canonical pair needs to be defined and used by all drivers. Preferred
|
|
* combinations are also encouraged where all combinations might lead to
|
|
* confusion and unnecessarily reduced interoperability. An example for the
|
|
* latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
|
|
*
|
|
* There are two kinds of modifier users:
|
|
*
|
|
* - Kernel and user-space drivers: for drivers it's important that modifiers
|
|
* don't alias, otherwise two drivers might support the same format but use
|
|
* different aliases, preventing them from sharing buffers in an efficient
|
|
* format.
|
|
* - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
|
|
* see modifiers as opaque tokens they can check for equality and intersect.
|
|
* These users mustn't need to know to reason about the modifier value
|
|
* (i.e. they are not expected to extract information out of the modifier).
|
|
*
|
|
* Vendors should document their modifier usage in as much detail as
|
|
* possible, to ensure maximum compatibility across devices, drivers and
|
|
* applications.
|
|
*
|
|
* The authoritative list of format modifier codes is found in
|
|
* `include/uapi/drm/drm_fourcc.h`
|
|
*
|
|
* Open Source User Waiver
|
|
* -----------------------
|
|
*
|
|
* Because this is the authoritative source for pixel formats and modifiers
|
|
* referenced by GL, Vulkan extensions and other standards and hence used both
|
|
* by open source and closed source driver stacks, the usual requirement for an
|
|
* upstream in-kernel or open source userspace user does not apply.
|
|
*
|
|
* To ensure, as much as feasible, compatibility across stacks and avoid
|
|
* confusion with incompatible enumerations stakeholders for all relevant driver
|
|
* stacks should approve additions.
|
|
*/
|
|
|
|
#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
|
|
((__u32)(c) << 16) | ((__u32)(d) << 24))
|
|
|
|
#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
|
|
|
|
/* Reserve 0 for the invalid format specifier */
|
|
#define DRM_FORMAT_INVALID 0
|
|
|
|
/* color index */
|
|
#define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
|
|
#define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
|
|
#define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
|
|
#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
|
|
|
|
/* 1 bpp Darkness (inverse relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
|
|
|
|
/* 2 bpp Darkness (inverse relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
|
|
|
|
/* 4 bpp Darkness (inverse relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
|
|
|
|
/* 8 bpp Darkness (inverse relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
|
|
|
|
/* 1 bpp Red (direct relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
|
|
|
|
/* 2 bpp Red (direct relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
|
|
|
|
/* 4 bpp Red (direct relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
|
|
|
|
/* 8 bpp Red (direct relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
|
|
|
|
/* 10 bpp Red (direct relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
|
|
|
|
/* 12 bpp Red (direct relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
|
|
|
|
/* 16 bpp Red (direct relationship between channel value and brightness) */
|
|
#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
|
|
|
|
/* 16 bpp RG */
|
|
#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
|
|
#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
|
|
|
|
/* 32 bpp RG */
|
|
#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
|
|
#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
|
|
|
|
/* 8 bpp RGB */
|
|
#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
|
|
#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
|
|
|
|
/* 16 bpp RGB */
|
|
#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
|
|
#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
|
|
#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
|
|
#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
|
|
|
|
#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
|
|
#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
|
|
#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
|
|
#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
|
|
|
|
#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
|
|
#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
|
|
#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
|
|
#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
|
|
|
|
#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
|
|
#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
|
|
#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
|
|
#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
|
|
|
|
#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
|
|
#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
|
|
|
|
/* 24 bpp RGB */
|
|
#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
|
|
#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
|
|
|
|
/* 32 bpp RGB */
|
|
#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
|
|
|
|
#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
|
|
|
|
#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
|
|
#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
|
|
#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
|
|
#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
|
|
|
|
#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
|
|
#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
|
|
#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
|
|
#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
|
|
|
|
/* 64 bpp RGB */
|
|
#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
|
|
#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
|
|
|
|
#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
|
|
#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
|
|
|
|
/*
|
|
* Floating point 64bpp RGB
|
|
* IEEE 754-2008 binary16 half-precision float
|
|
* [15:0] sign:exponent:mantissa 1:5:10
|
|
*/
|
|
#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
|
|
#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
|
|
|
|
#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
|
|
#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
|
|
|
|
/*
|
|
* RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
|
|
* of unused padding per component:
|
|
*/
|
|
#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
|
|
|
|
/* packed YCbCr */
|
|
#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
|
|
|
|
#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
|
|
#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
|
|
#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
|
|
|
|
/*
|
|
* packed Y2xx indicate for each component, xx valid data occupy msb
|
|
* 16-xx padding occupy lsb
|
|
*/
|
|
#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
|
|
#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
|
|
#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
|
|
|
|
/*
|
|
* packed Y4xx indicate for each component, xx valid data occupy msb
|
|
* 16-xx padding occupy lsb except Y410
|
|
*/
|
|
#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
|
|
#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
|
|
#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
|
|
|
|
#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
|
|
#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
|
|
#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
|
|
|
|
/*
|
|
* packed YCbCr420 2x2 tiled formats
|
|
* first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
|
|
*/
|
|
/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
|
|
#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
|
|
/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
|
|
#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
|
|
|
|
/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
|
|
#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
|
|
/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
|
|
#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
|
|
|
|
/*
|
|
* 1-plane YUV 4:2:0
|
|
* In these formats, the component ordering is specified (Y, followed by U
|
|
* then V), but the exact Linear layout is undefined.
|
|
* These formats can only be used with a non-Linear modifier.
|
|
*/
|
|
#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
|
|
#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
|
|
|
|
/*
|
|
* 2 plane RGB + A
|
|
* index 0 = RGB plane, same format as the corresponding non _A8 format has
|
|
* index 1 = A plane, [7:0] A
|
|
*/
|
|
#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
|
|
#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
|
|
#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
|
|
#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
|
|
#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
|
|
#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
|
|
#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
|
|
#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
|
|
|
|
/*
|
|
* 2 plane YCbCr
|
|
* index 0 = Y plane, [7:0] Y
|
|
* index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
|
|
* or
|
|
* index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
|
|
*/
|
|
#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
|
|
#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
|
|
#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
|
|
#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
|
|
#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
|
|
#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
|
|
/*
|
|
* 2 plane YCbCr
|
|
* index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
|
|
* index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
|
|
*/
|
|
#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
|
|
#define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
|
|
#define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
|
|
|
|
/*
|
|
* 2 plane YCbCr MSB aligned
|
|
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
|
|
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
|
|
*/
|
|
#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
|
|
|
|
/*
|
|
* 2 plane YCbCr MSB aligned
|
|
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
|
|
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
|
|
*/
|
|
#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
|
|
|
|
/*
|
|
* 2 plane YCbCr MSB aligned
|
|
* index 0 = Y plane, [15:0] Y:x [12:4] little endian
|
|
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
|
|
*/
|
|
#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
|
|
|
|
/*
|
|
* 2 plane YCbCr MSB aligned
|
|
* index 0 = Y plane, [15:0] Y little endian
|
|
* index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
|
|
*/
|
|
#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
|
|
|
|
/* 2 plane YCbCr420.
|
|
* 3 10 bit components and 2 padding bits packed into 4 bytes.
|
|
* index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
|
|
* index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
|
|
*/
|
|
#define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
|
|
|
|
/* 3 plane non-subsampled (444) YCbCr
|
|
* 16 bits per component, but only 10 bits are used and 6 bits are padded
|
|
* index 0: Y plane, [15:0] Y:x [10:6] little endian
|
|
* index 1: Cb plane, [15:0] Cb:x [10:6] little endian
|
|
* index 2: Cr plane, [15:0] Cr:x [10:6] little endian
|
|
*/
|
|
#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
|
|
|
|
/* 3 plane non-subsampled (444) YCrCb
|
|
* 16 bits per component, but only 10 bits are used and 6 bits are padded
|
|
* index 0: Y plane, [15:0] Y:x [10:6] little endian
|
|
* index 1: Cr plane, [15:0] Cr:x [10:6] little endian
|
|
* index 2: Cb plane, [15:0] Cb:x [10:6] little endian
|
|
*/
|
|
#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
|
|
|
|
/*
|
|
* 3 plane YCbCr
|
|
* index 0: Y plane, [7:0] Y
|
|
* index 1: Cb plane, [7:0] Cb
|
|
* index 2: Cr plane, [7:0] Cr
|
|
* or
|
|
* index 1: Cr plane, [7:0] Cr
|
|
* index 2: Cb plane, [7:0] Cb
|
|
*/
|
|
#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
|
|
#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
|
|
#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
|
|
#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
|
|
#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
|
|
#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
|
|
#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
|
|
#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
|
|
#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
|
|
#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
|
|
|
|
|
|
/*
|
|
* Format Modifiers:
|
|
*
|
|
* Format modifiers describe, typically, a re-ordering or modification
|
|
* of the data in a plane of an FB. This can be used to express tiled/
|
|
* swizzled formats, or compression, or a combination of the two.
|
|
*
|
|
* The upper 8 bits of the format modifier are a vendor-id as assigned
|
|
* below. The lower 56 bits are assigned as vendor sees fit.
|
|
*/
|
|
|
|
/* Vendor Ids: */
|
|
#define DRM_FORMAT_MOD_VENDOR_NONE 0
|
|
#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
|
|
#define DRM_FORMAT_MOD_VENDOR_AMD 0x02
|
|
#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
|
|
#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
|
|
#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
|
|
#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
|
|
#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
|
|
#define DRM_FORMAT_MOD_VENDOR_ARM 0x08
|
|
#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
|
|
#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
|
|
|
|
/* add more to the end as needed */
|
|
|
|
#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
|
|
|
|
#define fourcc_mod_get_vendor(modifier) \
|
|
(((modifier) >> 56) & 0xff)
|
|
|
|
#define fourcc_mod_is_vendor(modifier, vendor) \
|
|
(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
|
|
|
|
#define fourcc_mod_code(vendor, val) \
|
|
((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
|
|
|
|
/*
|
|
* Format Modifier tokens:
|
|
*
|
|
* When adding a new token please document the layout with a code comment,
|
|
* similar to the fourcc codes above. drm_fourcc.h is considered the
|
|
* authoritative source for all of these.
|
|
*
|
|
* Generic modifier names:
|
|
*
|
|
* DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
|
|
* for layouts which are common across multiple vendors. To preserve
|
|
* compatibility, in cases where a vendor-specific definition already exists and
|
|
* a generic name for it is desired, the common name is a purely symbolic alias
|
|
* and must use the same numerical value as the original definition.
|
|
*
|
|
* Note that generic names should only be used for modifiers which describe
|
|
* generic layouts (such as pixel re-ordering), which may have
|
|
* independently-developed support across multiple vendors.
|
|
*
|
|
* In future cases where a generic layout is identified before merging with a
|
|
* vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
|
|
* 'NONE' could be considered. This should only be for obvious, exceptional
|
|
* cases to avoid polluting the 'GENERIC' namespace with modifiers which only
|
|
* apply to a single vendor.
|
|
*
|
|
* Generic names should not be used for cases where multiple hardware vendors
|
|
* have implementations of the same standardised compression scheme (such as
|
|
* AFBC). In those cases, all implementations should use the same format
|
|
* modifier(s), reflecting the vendor of the standard.
|
|
*/
|
|
|
|
#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
|
|
|
|
/*
|
|
* Invalid Modifier
|
|
*
|
|
* This modifier can be used as a sentinel to terminate the format modifiers
|
|
* list, or to initialize a variable with an invalid modifier. It might also be
|
|
* used to report an error back to userspace for certain APIs.
|
|
*/
|
|
#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
|
|
|
|
/*
|
|
* Linear Layout
|
|
*
|
|
* Just plain linear layout. Note that this is different from no specifying any
|
|
* modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
|
|
* which tells the driver to also take driver-internal information into account
|
|
* and so might actually result in a tiled framebuffer.
|
|
*/
|
|
#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
|
|
|
|
/*
|
|
* Deprecated: use DRM_FORMAT_MOD_LINEAR instead
|
|
*
|
|
* The "none" format modifier doesn't actually mean that the modifier is
|
|
* implicit, instead it means that the layout is linear. Whether modifiers are
|
|
* used is out-of-band information carried in an API-specific way (e.g. in a
|
|
* flag for drm_mode_fb_cmd2).
|
|
*/
|
|
#define DRM_FORMAT_MOD_NONE 0
|
|
|
|
/* Intel framebuffer modifiers */
|
|
|
|
/*
|
|
* Intel X-tiling layout
|
|
*
|
|
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
|
|
* in row-major layout. Within the tile bytes are laid out row-major, with
|
|
* a platform-dependent stride. On top of that the memory can apply
|
|
* platform-depending swizzling of some higher address bits into bit6.
|
|
*
|
|
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
|
|
* On earlier platforms the is highly platforms specific and not useful for
|
|
* cross-driver sharing. It exists since on a given platform it does uniquely
|
|
* identify the layout in a simple way for i915-specific userspace, which
|
|
* facilitated conversion of userspace to modifiers. Additionally the exact
|
|
* format on some really old platforms is not known.
|
|
*/
|
|
#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
|
|
|
|
/*
|
|
* Intel Y-tiling layout
|
|
*
|
|
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
|
|
* in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
|
|
* chunks column-major, with a platform-dependent height. On top of that the
|
|
* memory can apply platform-depending swizzling of some higher address bits
|
|
* into bit6.
|
|
*
|
|
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
|
|
* On earlier platforms the is highly platforms specific and not useful for
|
|
* cross-driver sharing. It exists since on a given platform it does uniquely
|
|
* identify the layout in a simple way for i915-specific userspace, which
|
|
* facilitated conversion of userspace to modifiers. Additionally the exact
|
|
* format on some really old platforms is not known.
|
|
*/
|
|
#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
|
|
|
|
/*
|
|
* Intel Yf-tiling layout
|
|
*
|
|
* This is a tiled layout using 4Kb tiles in row-major layout.
|
|
* Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
|
|
* are arranged in four groups (two wide, two high) with column-major layout.
|
|
* Each group therefore consists out of four 256 byte units, which are also laid
|
|
* out as 2x2 column-major.
|
|
* 256 byte units are made out of four 64 byte blocks of pixels, producing
|
|
* either a square block or a 2:1 unit.
|
|
* 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
|
|
* in pixel depends on the pixel depth.
|
|
*/
|
|
#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
|
|
|
|
/*
|
|
* Intel color control surface (CCS) for render compression
|
|
*
|
|
* The framebuffer format must be one of the 8:8:8:8 RGB formats.
|
|
* The main surface will be plane index 0 and must be Y/Yf-tiled,
|
|
* the CCS will be plane index 1.
|
|
*
|
|
* Each CCS tile matches a 1024x512 pixel area of the main surface.
|
|
* To match certain aspects of the 3D hardware the CCS is
|
|
* considered to be made up of normal 128Bx32 Y tiles, Thus
|
|
* the CCS pitch must be specified in multiples of 128 bytes.
|
|
*
|
|
* In reality the CCS tile appears to be a 64Bx64 Y tile, composed
|
|
* of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
|
|
* But that fact is not relevant unless the memory is accessed
|
|
* directly.
|
|
*/
|
|
#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
|
|
#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
|
|
|
|
/*
|
|
* Intel color control surfaces (CCS) for Gen-12 render compression.
|
|
*
|
|
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
|
|
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
|
|
* main surface. In other words, 4 bits in CCS map to a main surface cache
|
|
* line pair. The main surface pitch is required to be a multiple of four
|
|
* Y-tile widths.
|
|
*/
|
|
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
|
|
|
|
/*
|
|
* Intel color control surfaces (CCS) for Gen-12 media compression
|
|
*
|
|
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
|
|
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
|
|
* main surface. In other words, 4 bits in CCS map to a main surface cache
|
|
* line pair. The main surface pitch is required to be a multiple of four
|
|
* Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
|
|
* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
|
|
* planes 2 and 3 for the respective CCS.
|
|
*/
|
|
#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
|
|
|
|
/*
|
|
* Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
|
|
* compression.
|
|
*
|
|
* The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
|
|
* and at index 1. The clear color is stored at index 2, and the pitch should
|
|
* be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
|
|
* represents Raw Clear Color Red, Green, Blue and Alpha color each represented
|
|
* by 32 bits. The raw clear color is consumed by the 3d engine and generates
|
|
* the converted clear color of size 64 bits. The first 32 bits store the Lower
|
|
* Converted Clear Color value and the next 32 bits store the Higher Converted
|
|
* Clear Color value when applicable. The Converted Clear Color values are
|
|
* consumed by the DE. The last 64 bits are used to store Color Discard Enable
|
|
* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
|
|
* corresponds to an area of 4x1 tiles in the main surface. The main surface
|
|
* pitch is required to be a multiple of 4 tile widths.
|
|
*/
|
|
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
|
|
|
|
/*
|
|
* Intel Tile 4 layout
|
|
*
|
|
* This is a tiled layout using 4KB tiles in a row-major layout. It has the same
|
|
* shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
|
|
* only differs from Tile Y at the 256B granularity in between. At this
|
|
* granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
|
|
* of 64B x 8 rows.
|
|
*/
|
|
#define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
|
|
|
|
/*
|
|
* Intel color control surfaces (CCS) for DG2 render compression.
|
|
*
|
|
* The main surface is Tile 4 and at plane index 0. The CCS data is stored
|
|
* outside of the GEM object in a reserved memory area dedicated for the
|
|
* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
|
|
* main surface pitch is required to be a multiple of four Tile 4 widths.
|
|
*/
|
|
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
|
|
|
|
/*
|
|
* Intel color control surfaces (CCS) for DG2 media compression.
|
|
*
|
|
* The main surface is Tile 4 and at plane index 0. For semi-planar formats
|
|
* like NV12, the Y and UV planes are Tile 4 and are located at plane indices
|
|
* 0 and 1, respectively. The CCS for all planes are stored outside of the
|
|
* GEM object in a reserved memory area dedicated for the storage of the
|
|
* CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
|
|
* pitch is required to be a multiple of four Tile 4 widths.
|
|
*/
|
|
#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
|
|
|
|
/*
|
|
* Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
|
|
*
|
|
* The main surface is Tile 4 and at plane index 0. The CCS data is stored
|
|
* outside of the GEM object in a reserved memory area dedicated for the
|
|
* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
|
|
* main surface pitch is required to be a multiple of four Tile 4 widths. The
|
|
* clear color is stored at plane index 1 and the pitch should be 64 bytes
|
|
* aligned. The format of the 256 bits of clear color data matches the one used
|
|
* for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
|
|
* for details.
|
|
*/
|
|
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
|
|
|
|
/*
|
|
* Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
|
|
*
|
|
* The main surface is tile4 and at plane index 0, the CCS is linear and
|
|
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
|
|
* main surface. In other words, 4 bits in CCS map to a main surface cache
|
|
* line pair. The main surface pitch is required to be a multiple of four
|
|
* tile4 widths.
|
|
*/
|
|
#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
|
|
|
|
/*
|
|
* Intel Color Control Surfaces (CCS) for display ver. 14 media compression
|
|
*
|
|
* The main surface is tile4 and at plane index 0, the CCS is linear and
|
|
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
|
|
* main surface. In other words, 4 bits in CCS map to a main surface cache
|
|
* line pair. The main surface pitch is required to be a multiple of four
|
|
* tile4 widths. For semi-planar formats like NV12, CCS planes follow the
|
|
* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
|
|
* planes 2 and 3 for the respective CCS.
|
|
*/
|
|
#define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
|
|
|
|
/*
|
|
* Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
|
|
* compression.
|
|
*
|
|
* The main surface is tile4 and is at plane index 0 whereas CCS is linear
|
|
* and at index 1. The clear color is stored at index 2, and the pitch should
|
|
* be ignored. The clear color structure is 256 bits. The first 128 bits
|
|
* represents Raw Clear Color Red, Green, Blue and Alpha color each represented
|
|
* by 32 bits. The raw clear color is consumed by the 3d engine and generates
|
|
* the converted clear color of size 64 bits. The first 32 bits store the Lower
|
|
* Converted Clear Color value and the next 32 bits store the Higher Converted
|
|
* Clear Color value when applicable. The Converted Clear Color values are
|
|
* consumed by the DE. The last 64 bits are used to store Color Discard Enable
|
|
* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
|
|
* corresponds to an area of 4x1 tiles in the main surface. The main surface
|
|
* pitch is required to be a multiple of 4 tile widths.
|
|
*/
|
|
#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
|
|
|
|
/*
|
|
* Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
|
|
*
|
|
* Macroblocks are laid in a Z-shape, and each pixel data is following the
|
|
* standard NV12 style.
|
|
* As for NV12, an image is the result of two frame buffers: one for Y,
|
|
* one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
|
|
* Alignment requirements are (for each buffer):
|
|
* - multiple of 128 pixels for the width
|
|
* - multiple of 32 pixels for the height
|
|
*
|
|
* For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
|
|
*/
|
|
#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
|
|
|
|
/*
|
|
* Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
|
|
*
|
|
* This is a simple tiled layout using tiles of 16x16 pixels in a row-major
|
|
* layout. For YCbCr formats Cb/Cr components are taken in such a way that
|
|
* they correspond to their 16x16 luma block.
|
|
*/
|
|
#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
|
|
|
|
/*
|
|
* Qualcomm Compressed Format
|
|
*
|
|
* Refers to a compressed variant of the base format that is compressed.
|
|
* Implementation may be platform and base-format specific.
|
|
*
|
|
* Each macrotile consists of m x n (mostly 4 x 4) tiles.
|
|
* Pixel data pitch/stride is aligned with macrotile width.
|
|
* Pixel data height is aligned with macrotile height.
|
|
* Entire pixel data buffer is aligned with 4k(bytes).
|
|
*/
|
|
#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
|
|
|
|
/*
|
|
* Qualcomm Tiled Format
|
|
*
|
|
* Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
|
|
* Implementation may be platform and base-format specific.
|
|
*
|
|
* Each macrotile consists of m x n (mostly 4 x 4) tiles.
|
|
* Pixel data pitch/stride is aligned with macrotile width.
|
|
* Pixel data height is aligned with macrotile height.
|
|
* Entire pixel data buffer is aligned with 4k(bytes).
|
|
*/
|
|
#define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
|
|
|
|
/*
|
|
* Qualcomm Alternate Tiled Format
|
|
*
|
|
* Alternate tiled format typically only used within GMEM.
|
|
* Implementation may be platform and base-format specific.
|
|
*/
|
|
#define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
|
|
|
|
|
|
/* Vivante framebuffer modifiers */
|
|
|
|
/*
|
|
* Vivante 4x4 tiling layout
|
|
*
|
|
* This is a simple tiled layout using tiles of 4x4 pixels in a row-major
|
|
* layout.
|
|
*/
|
|
#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
|
|
|
|
/*
|
|
* Vivante 64x64 super-tiling layout
|
|
*
|
|
* This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
|
|
* contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
|
|
* major layout.
|
|
*
|
|
* For more information: see
|
|
* https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
|
|
*/
|
|
#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
|
|
|
|
/*
|
|
* Vivante 4x4 tiling layout for dual-pipe
|
|
*
|
|
* Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
|
|
* different base address. Offsets from the base addresses are therefore halved
|
|
* compared to the non-split tiled layout.
|
|
*/
|
|
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
|
|
|
|
/*
|
|
* Vivante 64x64 super-tiling layout for dual-pipe
|
|
*
|
|
* Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
|
|
* starts at a different base address. Offsets from the base addresses are
|
|
* therefore halved compared to the non-split super-tiled layout.
|
|
*/
|
|
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
|
|
|
|
/*
|
|
* Vivante TS (tile-status) buffer modifiers. They can be combined with all of
|
|
* the color buffer tiling modifiers defined above. When TS is present it's a
|
|
* separate buffer containing the clear/compression status of each tile. The
|
|
* modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
|
|
* tile size in bytes covered by one entry in the status buffer and s is the
|
|
* number of status bits per entry.
|
|
* We reserve the top 8 bits of the Vivante modifier space for tile status
|
|
* clear/compression modifiers, as future cores might add some more TS layout
|
|
* variations.
|
|
*/
|
|
#define VIVANTE_MOD_TS_64_4 (1ULL << 48)
|
|
#define VIVANTE_MOD_TS_64_2 (2ULL << 48)
|
|
#define VIVANTE_MOD_TS_128_4 (3ULL << 48)
|
|
#define VIVANTE_MOD_TS_256_4 (4ULL << 48)
|
|
#define VIVANTE_MOD_TS_MASK (0xfULL << 48)
|
|
|
|
/*
|
|
* Vivante compression modifiers. Those depend on a TS modifier being present
|
|
* as the TS bits get reinterpreted as compression tags instead of simple
|
|
* clear markers when compression is enabled.
|
|
*/
|
|
#define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
|
|
#define VIVANTE_MOD_COMP_MASK (0xfULL << 52)
|
|
|
|
/* Masking out the extension bits will yield the base modifier. */
|
|
#define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \
|
|
VIVANTE_MOD_COMP_MASK)
|
|
|
|
/* NVIDIA frame buffer modifiers */
|
|
|
|
/*
|
|
* Tegra Tiled Layout, used by Tegra 2, 3 and 4.
|
|
*
|
|
* Pixels are arranged in simple tiles of 16 x 16 bytes.
|
|
*/
|
|
#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
|
|
|
|
/*
|
|
* Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
|
|
* and Tegra GPUs starting with Tegra K1.
|
|
*
|
|
* Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
|
|
* based on the architecture generation. GOBs themselves are then arranged in
|
|
* 3D blocks, with the block dimensions (in terms of GOBs) always being a power
|
|
* of two, and hence expressible as their log2 equivalent (E.g., "2" represents
|
|
* a block depth or height of "4").
|
|
*
|
|
* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
|
|
* in full detail.
|
|
*
|
|
* Macro
|
|
* Bits Param Description
|
|
* ---- ----- -----------------------------------------------------------------
|
|
*
|
|
* 3:0 h log2(height) of each block, in GOBs. Placed here for
|
|
* compatibility with the existing
|
|
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
|
|
*
|
|
* 4:4 - Must be 1, to indicate block-linear layout. Necessary for
|
|
* compatibility with the existing
|
|
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
|
|
*
|
|
* 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
|
|
* size). Must be zero.
|
|
*
|
|
* Note there is no log2(width) parameter. Some portions of the
|
|
* hardware support a block width of two gobs, but it is impractical
|
|
* to use due to lack of support elsewhere, and has no known
|
|
* benefits.
|
|
*
|
|
* 11:9 - Reserved (To support 2D-array textures with variable array stride
|
|
* in blocks, specified via log2(tile width in blocks)). Must be
|
|
* zero.
|
|
*
|
|
* 19:12 k Page Kind. This value directly maps to a field in the page
|
|
* tables of all GPUs >= NV50. It affects the exact layout of bits
|
|
* in memory and can be derived from the tuple
|
|
*
|
|
* (format, GPU model, compression type, samples per pixel)
|
|
*
|
|
* Where compression type is defined below. If GPU model were
|
|
* implied by the format modifier, format, or memory buffer, page
|
|
* kind would not need to be included in the modifier itself, but
|
|
* since the modifier should define the layout of the associated
|
|
* memory buffer independent from any device or other context, it
|
|
* must be included here.
|
|
*
|
|
* 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
|
|
* starting with Fermi GPUs. Additionally, the mapping between page
|
|
* kind and bit layout has changed at various points.
|
|
*
|
|
* 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
|
|
* 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
|
|
* 2 = Gob Height 8, Turing+ Page Kind mapping
|
|
* 3 = Reserved for future use.
|
|
*
|
|
* 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
|
|
* bit remapping step that occurs at an even lower level than the
|
|
* page kind and block linear swizzles. This causes the layout of
|
|
* surfaces mapped in those SOC's GPUs to be incompatible with the
|
|
* equivalent mapping on other GPUs in the same system.
|
|
*
|
|
* 0 = Tegra K1 - Tegra Parker/TX2 Layout.
|
|
* 1 = Desktop GPU and Tegra Xavier+ Layout
|
|
*
|
|
* 25:23 c Lossless Framebuffer Compression type.
|
|
*
|
|
* 0 = none
|
|
* 1 = ROP/3D, layout 1, exact compression format implied by Page
|
|
* Kind field
|
|
* 2 = ROP/3D, layout 2, exact compression format implied by Page
|
|
* Kind field
|
|
* 3 = CDE horizontal
|
|
* 4 = CDE vertical
|
|
* 5 = Reserved for future use
|
|
* 6 = Reserved for future use
|
|
* 7 = Reserved for future use
|
|
*
|
|
* 55:25 - Reserved for future use. Must be zero.
|
|
*/
|
|
#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
|
|
fourcc_mod_code(NVIDIA, (0x10 | \
|
|
((h) & 0xf) | \
|
|
(((k) & 0xff) << 12) | \
|
|
(((g) & 0x3) << 20) | \
|
|
(((s) & 0x1) << 22) | \
|
|
(((c) & 0x7) << 23)))
|
|
|
|
/* To grandfather in prior block linear format modifiers to the above layout,
|
|
* the page kind "0", which corresponds to "pitch/linear" and hence is unusable
|
|
* with block-linear layouts, is remapped within drivers to the value 0xfe,
|
|
* which corresponds to the "generic" kind used for simple single-sample
|
|
* uncompressed color formats on Fermi - Volta GPUs.
|
|
*/
|
|
static __inline__ __u64
|
|
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
|
|
{
|
|
if (!(modifier & 0x10) || (modifier & (0xff << 12)))
|
|
return modifier;
|
|
else
|
|
return modifier | (0xfe << 12);
|
|
}
|
|
|
|
/*
|
|
* 16Bx2 Block Linear layout, used by Tegra K1 and later
|
|
*
|
|
* Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
|
|
* vertically by a power of 2 (1 to 32 GOBs) to form a block.
|
|
*
|
|
* Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
|
|
*
|
|
* Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
|
|
* Valid values are:
|
|
*
|
|
* 0 == ONE_GOB
|
|
* 1 == TWO_GOBS
|
|
* 2 == FOUR_GOBS
|
|
* 3 == EIGHT_GOBS
|
|
* 4 == SIXTEEN_GOBS
|
|
* 5 == THIRTYTWO_GOBS
|
|
*
|
|
* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
|
|
* in full detail.
|
|
*/
|
|
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
|
|
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
|
|
|
|
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
|
|
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
|
|
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
|
|
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
|
|
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
|
|
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
|
|
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
|
|
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
|
|
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
|
|
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
|
|
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
|
|
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
|
|
|
|
/*
|
|
* Some Broadcom modifiers take parameters, for example the number of
|
|
* vertical lines in the image. Reserve the lower 32 bits for modifier
|
|
* type, and the next 24 bits for parameters. Top 8 bits are the
|
|
* vendor code.
|
|
*/
|
|
#define __fourcc_mod_broadcom_param_shift 8
|
|
#define __fourcc_mod_broadcom_param_bits 48
|
|
#define fourcc_mod_broadcom_code(val, params) \
|
|
fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
|
|
#define fourcc_mod_broadcom_param(m) \
|
|
((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
|
|
((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
|
|
#define fourcc_mod_broadcom_mod(m) \
|
|
((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
|
|
__fourcc_mod_broadcom_param_shift))
|
|
|
|
/*
|
|
* Broadcom VC4 "T" format
|
|
*
|
|
* This is the primary layout that the V3D GPU can texture from (it
|
|
* can't do linear). The T format has:
|
|
*
|
|
* - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
|
|
* pixels at 32 bit depth.
|
|
*
|
|
* - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
|
|
* 16x16 pixels).
|
|
*
|
|
* - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
|
|
* even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
|
|
* they're (TR, BR, BL, TL), where bottom left is start of memory.
|
|
*
|
|
* - an image made of 4k tiles in rows either left-to-right (even rows of 4k
|
|
* tiles) or right-to-left (odd rows of 4k tiles).
|
|
*/
|
|
#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
|
|
|
|
/*
|
|
* Broadcom SAND format
|
|
*
|
|
* This is the native format that the H.264 codec block uses. For VC4
|
|
* HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
|
|
*
|
|
* The image can be considered to be split into columns, and the
|
|
* columns are placed consecutively into memory. The width of those
|
|
* columns can be either 32, 64, 128, or 256 pixels, but in practice
|
|
* only 128 pixel columns are used.
|
|
*
|
|
* The pitch between the start of each column is set to optimally
|
|
* switch between SDRAM banks. This is passed as the number of lines
|
|
* of column width in the modifier (we can't use the stride value due
|
|
* to various core checks that look at it , so you should set the
|
|
* stride to width*cpp).
|
|
*
|
|
* Note that the column height for this format modifier is the same
|
|
* for all of the planes, assuming that each column contains both Y
|
|
* and UV. Some SAND-using hardware stores UV in a separate tiled
|
|
* image from Y to reduce the column height, which is not supported
|
|
* with these modifiers.
|
|
*
|
|
* The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
|
|
* supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
|
|
* wide, but as this is a 10 bpp format that translates to 96 pixels.
|
|
*/
|
|
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
|
|
fourcc_mod_broadcom_code(2, v)
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
|
|
fourcc_mod_broadcom_code(3, v)
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
|
|
fourcc_mod_broadcom_code(4, v)
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
|
|
fourcc_mod_broadcom_code(5, v)
|
|
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
|
|
DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
|
|
DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
|
|
DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
|
|
#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
|
|
DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
|
|
|
|
/* Broadcom UIF format
|
|
*
|
|
* This is the common format for the current Broadcom multimedia
|
|
* blocks, including V3D 3.x and newer, newer video codecs, and
|
|
* displays.
|
|
*
|
|
* The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
|
|
* and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
|
|
* stored in columns, with padding between the columns to ensure that
|
|
* moving from one column to the next doesn't hit the same SDRAM page
|
|
* bank.
|
|
*
|
|
* To calculate the padding, it is assumed that each hardware block
|
|
* and the software driving it knows the platform's SDRAM page size,
|
|
* number of banks, and XOR address, and that it's identical between
|
|
* all blocks using the format. This tiling modifier will use XOR as
|
|
* necessary to reduce the padding. If a hardware block can't do XOR,
|
|
* the assumption is that a no-XOR tiling modifier will be created.
|
|
*/
|
|
#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
|
|
|
|
/*
|
|
* Arm Framebuffer Compression (AFBC) modifiers
|
|
*
|
|
* AFBC is a proprietary lossless image compression protocol and format.
|
|
* It provides fine-grained random access and minimizes the amount of data
|
|
* transferred between IP blocks.
|
|
*
|
|
* AFBC has several features which may be supported and/or used, which are
|
|
* represented using bits in the modifier. Not all combinations are valid,
|
|
* and different devices or use-cases may support different combinations.
|
|
*
|
|
* Further information on the use of AFBC modifiers can be found in
|
|
* Documentation/gpu/afbc.rst
|
|
*/
|
|
|
|
/*
|
|
* The top 4 bits (out of the 56 bits allotted for specifying vendor specific
|
|
* modifiers) denote the category for modifiers. Currently we have three
|
|
* categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
|
|
* sixteen different categories.
|
|
*/
|
|
#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
|
|
fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
|
|
|
|
#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
|
|
#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
|
|
|
|
#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
|
|
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
|
|
|
|
/*
|
|
* AFBC superblock size
|
|
*
|
|
* Indicates the superblock size(s) used for the AFBC buffer. The buffer
|
|
* size (in pixels) must be aligned to a multiple of the superblock size.
|
|
* Four lowest significant bits(LSBs) are reserved for block size.
|
|
*
|
|
* Where one superblock size is specified, it applies to all planes of the
|
|
* buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
|
|
* the first applies to the Luma plane and the second applies to the Chroma
|
|
* plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
|
|
* Multiple superblock sizes are only valid for multi-plane YCbCr formats.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
|
|
#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
|
|
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
|
|
#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
|
|
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
|
|
|
|
/*
|
|
* AFBC lossless colorspace transform
|
|
*
|
|
* Indicates that the buffer makes use of the AFBC lossless colorspace
|
|
* transform.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_YTR (1ULL << 4)
|
|
|
|
/*
|
|
* AFBC block-split
|
|
*
|
|
* Indicates that the payload of each superblock is split. The second
|
|
* half of the payload is positioned at a predefined offset from the start
|
|
* of the superblock payload.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
|
|
|
|
/*
|
|
* AFBC sparse layout
|
|
*
|
|
* This flag indicates that the payload of each superblock must be stored at a
|
|
* predefined position relative to the other superblocks in the same AFBC
|
|
* buffer. This order is the same order used by the header buffer. In this mode
|
|
* each superblock is given the same amount of space as an uncompressed
|
|
* superblock of the particular format would require, rounding up to the next
|
|
* multiple of 128 bytes in size.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
|
|
|
|
/*
|
|
* AFBC copy-block restrict
|
|
*
|
|
* Buffers with this flag must obey the copy-block restriction. The restriction
|
|
* is such that there are no copy-blocks referring across the border of 8x8
|
|
* blocks. For the subsampled data the 8x8 limitation is also subsampled.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_CBR (1ULL << 7)
|
|
|
|
/*
|
|
* AFBC tiled layout
|
|
*
|
|
* The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
|
|
* superblocks inside a tile are stored together in memory. 8x8 tiles are used
|
|
* for pixel formats up to and including 32 bpp while 4x4 tiles are used for
|
|
* larger bpp formats. The order between the tiles is scan line.
|
|
* When the tiled layout is used, the buffer size (in pixels) must be aligned
|
|
* to the tile size.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_TILED (1ULL << 8)
|
|
|
|
/*
|
|
* AFBC solid color blocks
|
|
*
|
|
* Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
|
|
* can be reduced if a whole superblock is a single color.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_SC (1ULL << 9)
|
|
|
|
/*
|
|
* AFBC double-buffer
|
|
*
|
|
* Indicates that the buffer is allocated in a layout safe for front-buffer
|
|
* rendering.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_DB (1ULL << 10)
|
|
|
|
/*
|
|
* AFBC buffer content hints
|
|
*
|
|
* Indicates that the buffer includes per-superblock content hints.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_BCH (1ULL << 11)
|
|
|
|
/* AFBC uncompressed storage mode
|
|
*
|
|
* Indicates that the buffer is using AFBC uncompressed storage mode.
|
|
* In this mode all superblock payloads in the buffer use the uncompressed
|
|
* storage mode, which is usually only used for data which cannot be compressed.
|
|
* The buffer layout is the same as for AFBC buffers without USM set, this only
|
|
* affects the storage mode of the individual superblocks. Note that even a
|
|
* buffer without USM set may use uncompressed storage mode for some or all
|
|
* superblocks, USM just guarantees it for all.
|
|
*/
|
|
#define AFBC_FORMAT_MOD_USM (1ULL << 12)
|
|
|
|
/*
|
|
* Arm Fixed-Rate Compression (AFRC) modifiers
|
|
*
|
|
* AFRC is a proprietary fixed rate image compression protocol and format,
|
|
* designed to provide guaranteed bandwidth and memory footprint
|
|
* reductions in graphics and media use-cases.
|
|
*
|
|
* AFRC buffers consist of one or more planes, with the same components
|
|
* and meaning as an uncompressed buffer using the same pixel format.
|
|
*
|
|
* Within each plane, the pixel/luma/chroma values are grouped into
|
|
* "coding unit" blocks which are individually compressed to a
|
|
* fixed size (in bytes). All coding units within a given plane of a buffer
|
|
* store the same number of values, and have the same compressed size.
|
|
*
|
|
* The coding unit size is configurable, allowing different rates of compression.
|
|
*
|
|
* The start of each AFRC buffer plane must be aligned to an alignment granule which
|
|
* depends on the coding unit size.
|
|
*
|
|
* Coding Unit Size Plane Alignment
|
|
* ---------------- ---------------
|
|
* 16 bytes 1024 bytes
|
|
* 24 bytes 512 bytes
|
|
* 32 bytes 2048 bytes
|
|
*
|
|
* Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
|
|
* to a multiple of the paging tile dimensions.
|
|
* The dimensions of each paging tile depend on whether the buffer is optimised for
|
|
* scanline (SCAN layout) or rotated (ROT layout) access.
|
|
*
|
|
* Layout Paging Tile Width Paging Tile Height
|
|
* ------ ----------------- ------------------
|
|
* SCAN 16 coding units 4 coding units
|
|
* ROT 8 coding units 8 coding units
|
|
*
|
|
* The dimensions of each coding unit depend on the number of components
|
|
* in the compressed plane and whether the buffer is optimised for
|
|
* scanline (SCAN layout) or rotated (ROT layout) access.
|
|
*
|
|
* Number of Components in Plane Layout Coding Unit Width Coding Unit Height
|
|
* ----------------------------- --------- ----------------- ------------------
|
|
* 1 SCAN 16 samples 4 samples
|
|
* Example: 16x4 luma samples in a 'Y' plane
|
|
* 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
|
|
* ----------------------------- --------- ----------------- ------------------
|
|
* 1 ROT 8 samples 8 samples
|
|
* Example: 8x8 luma samples in a 'Y' plane
|
|
* 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
|
|
* ----------------------------- --------- ----------------- ------------------
|
|
* 2 DONT CARE 8 samples 4 samples
|
|
* Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
|
|
* ----------------------------- --------- ----------------- ------------------
|
|
* 3 DONT CARE 4 samples 4 samples
|
|
* Example: 4x4 pixels in an RGB buffer without alpha
|
|
* ----------------------------- --------- ----------------- ------------------
|
|
* 4 DONT CARE 4 samples 4 samples
|
|
* Example: 4x4 pixels in an RGB buffer with alpha
|
|
*/
|
|
|
|
#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
|
|
|
|
#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
|
|
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
|
|
|
|
/*
|
|
* AFRC coding unit size modifier.
|
|
*
|
|
* Indicates the number of bytes used to store each compressed coding unit for
|
|
* one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
|
|
* is the same for both Cb and Cr, which may be stored in separate planes.
|
|
*
|
|
* AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
|
|
* each compressed coding unit in the first plane of the buffer. For RGBA buffers
|
|
* this is the only plane, while for semi-planar and fully-planar YUV buffers,
|
|
* this corresponds to the luma plane.
|
|
*
|
|
* AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
|
|
* each compressed coding unit in the second and third planes in the buffer.
|
|
* For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
|
|
*
|
|
* For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
|
|
* and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
|
|
* For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
|
|
* AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
|
|
*/
|
|
#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
|
|
#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
|
|
#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
|
|
#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
|
|
|
|
#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
|
|
#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
|
|
|
|
/*
|
|
* AFRC scanline memory layout.
|
|
*
|
|
* Indicates if the buffer uses the scanline-optimised layout
|
|
* for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
|
|
* The memory layout is the same for all planes.
|
|
*/
|
|
#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
|
|
|
|
/*
|
|
* Arm 16x16 Block U-Interleaved modifier
|
|
*
|
|
* This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
|
|
* into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
|
|
* in the block are reordered.
|
|
*/
|
|
#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
|
|
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
|
|
|
|
/*
|
|
* Allwinner tiled modifier
|
|
*
|
|
* This tiling mode is implemented by the VPU found on all Allwinner platforms,
|
|
* codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
|
|
* planes.
|
|
*
|
|
* With this tiling, the luminance samples are disposed in tiles representing
|
|
* 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
|
|
* The pixel order in each tile is linear and the tiles are disposed linearly,
|
|
* both in row-major order.
|
|
*/
|
|
#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
|
|
|
|
/*
|
|
* Amlogic Video Framebuffer Compression modifiers
|
|
*
|
|
* Amlogic uses a proprietary lossless image compression protocol and format
|
|
* for their hardware video codec accelerators, either video decoders or
|
|
* video input encoders.
|
|
*
|
|
* It considerably reduces memory bandwidth while writing and reading
|
|
* frames in memory.
|
|
*
|
|
* The underlying storage is considered to be 3 components, 8bit or 10-bit
|
|
* per component YCbCr 420, single plane :
|
|
* - DRM_FORMAT_YUV420_8BIT
|
|
* - DRM_FORMAT_YUV420_10BIT
|
|
*
|
|
* The first 8 bits of the mode defines the layout, then the following 8 bits
|
|
* defines the options changing the layout.
|
|
*
|
|
* Not all combinations are valid, and different SoCs may support different
|
|
* combinations of layout and options.
|
|
*/
|
|
#define __fourcc_mod_amlogic_layout_mask 0xff
|
|
#define __fourcc_mod_amlogic_options_shift 8
|
|
#define __fourcc_mod_amlogic_options_mask 0xff
|
|
|
|
#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
|
|
fourcc_mod_code(AMLOGIC, \
|
|
((__layout) & __fourcc_mod_amlogic_layout_mask) | \
|
|
(((__options) & __fourcc_mod_amlogic_options_mask) \
|
|
<< __fourcc_mod_amlogic_options_shift))
|
|
|
|
/* Amlogic FBC Layouts */
|
|
|
|
/*
|
|
* Amlogic FBC Basic Layout
|
|
*
|
|
* The basic layout is composed of:
|
|
* - a body content organized in 64x32 superblocks with 4096 bytes per
|
|
* superblock in default mode.
|
|
* - a 32 bytes per 128x64 header block
|
|
*
|
|
* This layout is transferrable between Amlogic SoCs supporting this modifier.
|
|
*/
|
|
#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
|
|
|
|
/*
|
|
* Amlogic FBC Scatter Memory layout
|
|
*
|
|
* Indicates the header contains IOMMU references to the compressed
|
|
* frames content to optimize memory access and layout.
|
|
*
|
|
* In this mode, only the header memory address is needed, thus the
|
|
* content memory organization is tied to the current producer
|
|
* execution and cannot be saved/dumped neither transferrable between
|
|
* Amlogic SoCs supporting this modifier.
|
|
*
|
|
* Due to the nature of the layout, these buffers are not expected to
|
|
* be accessible by the user-space clients, but only accessible by the
|
|
* hardware producers and consumers.
|
|
*
|
|
* The user-space clients should expect a failure while trying to mmap
|
|
* the DMA-BUF handle returned by the producer.
|
|
*/
|
|
#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
|
|
|
|
/* Amlogic FBC Layout Options Bit Mask */
|
|
|
|
/*
|
|
* Amlogic FBC Memory Saving mode
|
|
*
|
|
* Indicates the storage is packed when pixel size is multiple of word
|
|
* boundaries, i.e. 8bit should be stored in this mode to save allocation
|
|
* memory.
|
|
*
|
|
* This mode reduces body layout to 3072 bytes per 64x32 superblock with
|
|
* the basic layout and 3200 bytes per 64x32 superblock combined with
|
|
* the scatter layout.
|
|
*/
|
|
#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
|
|
|
|
/*
|
|
* AMD modifiers
|
|
*
|
|
* Memory layout:
|
|
*
|
|
* without DCC:
|
|
* - main surface
|
|
*
|
|
* with DCC & without DCC_RETILE:
|
|
* - main surface in plane 0
|
|
* - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
|
|
*
|
|
* with DCC & DCC_RETILE:
|
|
* - main surface in plane 0
|
|
* - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
|
|
* - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
|
|
*
|
|
* For multi-plane formats the above surfaces get merged into one plane for
|
|
* each format plane, based on the required alignment only.
|
|
*
|
|
* Bits Parameter Notes
|
|
* ----- ------------------------ ---------------------------------------------
|
|
*
|
|
* 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
|
|
* 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
|
|
* 13 DCC
|
|
* 14 DCC_RETILE
|
|
* 15 DCC_PIPE_ALIGN
|
|
* 16 DCC_INDEPENDENT_64B
|
|
* 17 DCC_INDEPENDENT_128B
|
|
* 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
|
|
* 20 DCC_CONSTANT_ENCODE
|
|
* 23:21 PIPE_XOR_BITS Only for some chips
|
|
* 26:24 BANK_XOR_BITS Only for some chips
|
|
* 29:27 PACKERS Only for some chips
|
|
* 32:30 RB Only for some chips
|
|
* 35:33 PIPE Only for some chips
|
|
* 55:36 - Reserved for future use, must be zero
|
|
*/
|
|
#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
|
|
|
|
#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
|
|
|
|
/* Reserve 0 for GFX8 and older */
|
|
#define AMD_FMT_MOD_TILE_VER_GFX9 1
|
|
#define AMD_FMT_MOD_TILE_VER_GFX10 2
|
|
#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
|
|
#define AMD_FMT_MOD_TILE_VER_GFX11 4
|
|
#define AMD_FMT_MOD_TILE_VER_GFX12 5
|
|
|
|
/*
|
|
* 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
|
|
* version.
|
|
*/
|
|
#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
|
|
|
|
/*
|
|
* 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
|
|
* GFX9 as canonical version.
|
|
*
|
|
* 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
|
|
*/
|
|
#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
|
|
#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
|
|
#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
|
|
#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
|
|
#define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
|
|
|
|
/* Gfx12 swizzle modes:
|
|
* 0 - LINEAR
|
|
* 1 - 256B_2D - 2D block dimensions
|
|
* 2 - 4KB_2D
|
|
* 3 - 64KB_2D
|
|
* 4 - 256KB_2D
|
|
* 5 - 4KB_3D - 3D block dimensions
|
|
* 6 - 64KB_3D
|
|
* 7 - 256KB_3D
|
|
*/
|
|
#define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
|
|
#define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
|
|
|
|
#define AMD_FMT_MOD_DCC_BLOCK_64B 0
|
|
#define AMD_FMT_MOD_DCC_BLOCK_128B 1
|
|
#define AMD_FMT_MOD_DCC_BLOCK_256B 2
|
|
|
|
#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
|
|
#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
|
|
#define AMD_FMT_MOD_TILE_SHIFT 8
|
|
#define AMD_FMT_MOD_TILE_MASK 0x1F
|
|
|
|
/* Whether DCC compression is enabled. */
|
|
#define AMD_FMT_MOD_DCC_SHIFT 13
|
|
#define AMD_FMT_MOD_DCC_MASK 0x1
|
|
|
|
/*
|
|
* Whether to include two DCC surfaces, one which is rb & pipe aligned, and
|
|
* one which is not-aligned.
|
|
*/
|
|
#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
|
|
#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
|
|
|
|
/* Only set if DCC_RETILE = false */
|
|
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
|
|
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
|
|
|
|
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
|
|
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
|
|
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
|
|
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
|
|
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
|
|
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
|
|
|
|
#define AMD_FMT_MOD_GFX12_DCC_MAX_COMPRESSED_BLOCK_SHIFT 3
|
|
#define AMD_FMT_MOD_GFX12_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3 /* 0:64B, 1:128B, 2:256B */
|
|
|
|
/*
|
|
* DCC supports embedding some clear colors directly in the DCC surface.
|
|
* However, on older GPUs the rendering HW ignores the embedded clear color
|
|
* and prefers the driver provided color. This necessitates doing a fastclear
|
|
* eliminate operation before a process transfers control.
|
|
*
|
|
* If this bit is set that means the fastclear eliminate is not needed for these
|
|
* embeddable colors.
|
|
*/
|
|
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
|
|
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
|
|
|
|
/*
|
|
* The below fields are for accounting for per GPU differences. These are only
|
|
* relevant for GFX9 and later and if the tile field is *_X/_T.
|
|
*
|
|
* PIPE_XOR_BITS = always needed
|
|
* BANK_XOR_BITS = only for TILE_VER_GFX9
|
|
* PACKERS = only for TILE_VER_GFX10_RBPLUS
|
|
* RB = only for TILE_VER_GFX9 & DCC
|
|
* PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
|
|
*/
|
|
#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
|
|
#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
|
|
#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
|
|
#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
|
|
#define AMD_FMT_MOD_PACKERS_SHIFT 27
|
|
#define AMD_FMT_MOD_PACKERS_MASK 0x7
|
|
#define AMD_FMT_MOD_RB_SHIFT 30
|
|
#define AMD_FMT_MOD_RB_MASK 0x7
|
|
#define AMD_FMT_MOD_PIPE_SHIFT 33
|
|
#define AMD_FMT_MOD_PIPE_MASK 0x7
|
|
|
|
#define AMD_FMT_MOD_SET(field, value) \
|
|
((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
|
|
#define AMD_FMT_MOD_GET(field, value) \
|
|
(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
|
|
#define AMD_FMT_MOD_CLEAR(field) \
|
|
(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
|
|
|
|
#if defined(__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* DRM_FOURCC_H */
|