gstreamer/gst/gstminiobject.c
David Svensson Fors e6bd5b4193 miniobject: free qdata array when the last qdata is removed
In cases with many long-lived buffers that have qdata only very
briefly, the memory overhead of keeping an array of 16 GstQData
structs for each buffer can be significant. We free the array when
the last qdata is removed, like it was done in 1.14.

Fixes #436
2019-09-08 19:42:59 +00:00

1115 lines
33 KiB
C

/* GStreamer
* Copyright (C) 2005 David Schleef <ds@schleef.org>
*
* gstminiobject.h: Header for GstMiniObject
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/**
* SECTION:gstminiobject
* @title: GstMiniObject
* @short_description: Lightweight base class for the GStreamer object hierarchy
*
* #GstMiniObject is a simple structure that can be used to implement refcounted
* types.
*
* Subclasses will include #GstMiniObject as the first member in their structure
* and then call gst_mini_object_init() to initialize the #GstMiniObject fields.
*
* gst_mini_object_ref() and gst_mini_object_unref() increment and decrement the
* refcount respectively. When the refcount of a mini-object reaches 0, the
* dispose function is called first and when this returns %TRUE, the free
* function of the miniobject is called.
*
* A copy can be made with gst_mini_object_copy().
*
* gst_mini_object_is_writable() will return %TRUE when the refcount of the
* object is exactly 1 and there is no parent or a single parent exists and is
* writable itself, meaning the current caller has the only reference to the
* object. gst_mini_object_make_writable() will return a writable version of
* the object, which might be a new copy when the refcount was not 1.
*
* Opaque data can be associated with a #GstMiniObject with
* gst_mini_object_set_qdata() and gst_mini_object_get_qdata(). The data is
* meant to be specific to the particular object and is not automatically copied
* with gst_mini_object_copy() or similar methods.
*
* A weak reference can be added and remove with gst_mini_object_weak_ref()
* and gst_mini_object_weak_unref() respectively.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gst/gst_private.h"
#include "gst/gstminiobject.h"
#include "gst/gstinfo.h"
#include <gobject/gvaluecollector.h>
/* Mutex used for weak referencing */
G_LOCK_DEFINE_STATIC (qdata_mutex);
static GQuark weak_ref_quark;
#define SHARE_ONE (1 << 16)
#define SHARE_TWO (2 << 16)
#define SHARE_MASK (~(SHARE_ONE - 1))
#define IS_SHARED(state) (state >= SHARE_TWO)
#define LOCK_ONE (GST_LOCK_FLAG_LAST)
#define FLAG_MASK (GST_LOCK_FLAG_LAST - 1)
#define LOCK_MASK ((SHARE_ONE - 1) - FLAG_MASK)
#define LOCK_FLAG_MASK (SHARE_ONE - 1)
/* For backwards compatibility reasons we use the
* guint and gpointer in the GstMiniObject struct in
* a rather complicated way to store the parent(s) and qdata.
* Originally the were just the number of qdatas and the qdata.
*
* The guint is used as an atomic state integer with the following
* states:
* - Locked: 0, basically a spinlock
* - No parent, no qdata: 1 (pointer is NULL)
* - One parent: 2 (pointer contains the parent)
* - Multiple parents or qdata: 3 (pointer contains a PrivData struct)
*
* Unless we're in state 3, we always have to move to Locking state
* atomically and release that again later to the target state whenever
* accessing the pointer. When we're in state 3, we will never move to lower
* states again
*
* FIXME 2.0: We should store this directly inside the struct, possibly
* keeping space directly allocated for a couple of parents
*/
enum
{
PRIV_DATA_STATE_LOCKED = 0,
PRIV_DATA_STATE_NO_PARENT = 1,
PRIV_DATA_STATE_ONE_PARENT = 2,
PRIV_DATA_STATE_PARENTS_OR_QDATA = 3,
};
typedef struct
{
GQuark quark;
GstMiniObjectNotify notify;
gpointer data;
GDestroyNotify destroy;
} GstQData;
typedef struct
{
/* Atomic spinlock: 1 if locked, 0 otherwise */
gint parent_lock;
guint n_parents, n_parents_len;
GstMiniObject **parents;
guint n_qdata, n_qdata_len;
GstQData *qdata;
} PrivData;
#define QDATA(q,i) (q->qdata)[(i)]
#define QDATA_QUARK(o,i) (QDATA(o,i).quark)
#define QDATA_NOTIFY(o,i) (QDATA(o,i).notify)
#define QDATA_DATA(o,i) (QDATA(o,i).data)
#define QDATA_DESTROY(o,i) (QDATA(o,i).destroy)
void
_priv_gst_mini_object_initialize (void)
{
weak_ref_quark = g_quark_from_static_string ("GstMiniObjectWeakRefQuark");
}
/**
* gst_mini_object_init: (skip)
* @mini_object: a #GstMiniObject
* @flags: initial #GstMiniObjectFlags
* @type: the #GType of the mini-object to create
* @copy_func: (allow-none): the copy function, or %NULL
* @dispose_func: (allow-none): the dispose function, or %NULL
* @free_func: (allow-none): the free function or %NULL
*
* Initializes a mini-object with the desired type and copy/dispose/free
* functions.
*/
void
gst_mini_object_init (GstMiniObject * mini_object, guint flags, GType type,
GstMiniObjectCopyFunction copy_func,
GstMiniObjectDisposeFunction dispose_func,
GstMiniObjectFreeFunction free_func)
{
mini_object->type = type;
mini_object->refcount = 1;
mini_object->lockstate = 0;
mini_object->flags = flags;
mini_object->copy = copy_func;
mini_object->dispose = dispose_func;
mini_object->free = free_func;
g_atomic_int_set ((gint *) & mini_object->priv_uint,
PRIV_DATA_STATE_NO_PARENT);
mini_object->priv_pointer = NULL;
GST_TRACER_MINI_OBJECT_CREATED (mini_object);
}
/**
* gst_mini_object_copy: (skip)
* @mini_object: the mini-object to copy
*
* Creates a copy of the mini-object.
*
* MT safe
*
* Returns: (transfer full) (nullable): the new mini-object if copying is
* possible, %NULL otherwise.
*/
GstMiniObject *
gst_mini_object_copy (const GstMiniObject * mini_object)
{
GstMiniObject *copy;
g_return_val_if_fail (mini_object != NULL, NULL);
if (mini_object->copy)
copy = mini_object->copy (mini_object);
else
copy = NULL;
return copy;
}
/**
* gst_mini_object_lock:
* @object: the mini-object to lock
* @flags: #GstLockFlags
*
* Lock the mini-object with the specified access mode in @flags.
*
* Returns: %TRUE if @object could be locked.
*/
gboolean
gst_mini_object_lock (GstMiniObject * object, GstLockFlags flags)
{
gint access_mode, state, newstate;
g_return_val_if_fail (object != NULL, FALSE);
g_return_val_if_fail (GST_MINI_OBJECT_IS_LOCKABLE (object), FALSE);
if (G_UNLIKELY (object->flags & GST_MINI_OBJECT_FLAG_LOCK_READONLY &&
flags & GST_LOCK_FLAG_WRITE))
return FALSE;
do {
access_mode = flags & FLAG_MASK;
newstate = state = g_atomic_int_get (&object->lockstate);
GST_CAT_TRACE (GST_CAT_LOCKING, "lock %p: state %08x, access_mode %d",
object, state, access_mode);
if (access_mode & GST_LOCK_FLAG_EXCLUSIVE) {
/* shared ref */
newstate += SHARE_ONE;
access_mode &= ~GST_LOCK_FLAG_EXCLUSIVE;
}
/* shared counter > 1 and write access is not allowed */
if (((state & GST_LOCK_FLAG_WRITE) != 0
|| (access_mode & GST_LOCK_FLAG_WRITE) != 0)
&& IS_SHARED (newstate))
goto lock_failed;
if (access_mode) {
if ((state & LOCK_FLAG_MASK) == 0) {
/* nothing mapped, set access_mode */
newstate |= access_mode;
} else {
/* access_mode must match */
if ((state & access_mode) != access_mode)
goto lock_failed;
}
/* increase refcount */
newstate += LOCK_ONE;
}
} while (!g_atomic_int_compare_and_exchange (&object->lockstate, state,
newstate));
return TRUE;
lock_failed:
{
GST_CAT_DEBUG (GST_CAT_LOCKING,
"lock failed %p: state %08x, access_mode %d", object, state,
access_mode);
return FALSE;
}
}
/**
* gst_mini_object_unlock:
* @object: the mini-object to unlock
* @flags: #GstLockFlags
*
* Unlock the mini-object with the specified access mode in @flags.
*/
void
gst_mini_object_unlock (GstMiniObject * object, GstLockFlags flags)
{
gint access_mode, state, newstate;
g_return_if_fail (object != NULL);
g_return_if_fail (GST_MINI_OBJECT_IS_LOCKABLE (object));
do {
access_mode = flags & FLAG_MASK;
newstate = state = g_atomic_int_get (&object->lockstate);
GST_CAT_TRACE (GST_CAT_LOCKING, "unlock %p: state %08x, access_mode %d",
object, state, access_mode);
if (access_mode & GST_LOCK_FLAG_EXCLUSIVE) {
/* shared counter */
g_return_if_fail (state >= SHARE_ONE);
newstate -= SHARE_ONE;
access_mode &= ~GST_LOCK_FLAG_EXCLUSIVE;
}
if (access_mode) {
g_return_if_fail ((state & access_mode) == access_mode);
/* decrease the refcount */
newstate -= LOCK_ONE;
/* last refcount, unset access_mode */
if ((newstate & LOCK_FLAG_MASK) == access_mode)
newstate &= ~LOCK_FLAG_MASK;
}
} while (!g_atomic_int_compare_and_exchange (&object->lockstate, state,
newstate));
}
/* Locks the priv pointer and sets the priv uint to PRIV_DATA_STATE_LOCKED,
* unless the full struct was already stored in the priv pointer.
*
* Returns the previous state of the priv uint
*/
static guint
lock_priv_pointer (GstMiniObject * object)
{
gint priv_state = g_atomic_int_get ((gint *) & object->priv_uint);
if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA) {
/* As long as the struct was not allocated yet and either someone else
* locked it or our priv_state is out of date, try to lock it */
while (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA &&
(priv_state == PRIV_DATA_STATE_LOCKED ||
!g_atomic_int_compare_and_exchange ((gint *) & object->priv_uint,
priv_state, PRIV_DATA_STATE_LOCKED)))
priv_state = g_atomic_int_get ((gint *) & object->priv_uint);
/* Note that if we got the full struct, we did not store
* PRIV_DATA_STATE_LOCKED and did not actually lock the priv pointer */
}
return priv_state;
}
/**
* gst_mini_object_is_writable:
* @mini_object: the mini-object to check
*
* If @mini_object has the LOCKABLE flag set, check if the current EXCLUSIVE
* lock on @object is the only one, this means that changes to the object will
* not be visible to any other object.
*
* If the LOCKABLE flag is not set, check if the refcount of @mini_object is
* exactly 1, meaning that no other reference exists to the object and that the
* object is therefore writable.
*
* Modification of a mini-object should only be done after verifying that it
* is writable.
*
* Returns: %TRUE if the object is writable.
*/
gboolean
gst_mini_object_is_writable (const GstMiniObject * mini_object)
{
gboolean result;
gint priv_state;
g_return_val_if_fail (mini_object != NULL, FALSE);
/* Let's first check our own writability. If this already fails there's
* no point in checking anything else */
if (GST_MINI_OBJECT_IS_LOCKABLE (mini_object)) {
result = !IS_SHARED (g_atomic_int_get (&mini_object->lockstate));
} else {
result = (GST_MINI_OBJECT_REFCOUNT_VALUE (mini_object) == 1);
}
if (!result)
return result;
/* We are writable ourselves, but are there parents and are they all
* writable too? */
priv_state = lock_priv_pointer (GST_MINI_OBJECT_CAST (mini_object));
/* Now we either have to check the full struct and all the
* parents in there, or if there is exactly one parent we
* can check that one */
if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA) {
PrivData *priv_data = mini_object->priv_pointer;
/* Lock parents */
while (!g_atomic_int_compare_and_exchange (&priv_data->parent_lock, 0, 1));
/* If we have one parent, we're only writable if that parent is writable.
* Otherwise if we have multiple parents we are not writable, and if
* we have no parent, we are writable */
if (priv_data->n_parents == 1)
result = gst_mini_object_is_writable (priv_data->parents[0]);
else if (priv_data->n_parents == 0)
result = TRUE;
else
result = FALSE;
/* Unlock again */
g_atomic_int_set (&priv_data->parent_lock, 0);
} else {
if (priv_state == PRIV_DATA_STATE_ONE_PARENT) {
result = gst_mini_object_is_writable (mini_object->priv_pointer);
} else {
g_assert (priv_state == PRIV_DATA_STATE_NO_PARENT);
result = TRUE;
}
/* Unlock again */
g_atomic_int_set ((gint *) & mini_object->priv_uint, priv_state);
}
return result;
}
/**
* gst_mini_object_make_writable: (skip)
* @mini_object: (transfer full): the mini-object to make writable
*
* Checks if a mini-object is writable. If not, a writable copy is made and
* returned. This gives away the reference to the original mini object,
* and returns a reference to the new object.
*
* MT safe
*
* Returns: (transfer full): a mini-object (possibly the same pointer) that
* is writable.
*/
GstMiniObject *
gst_mini_object_make_writable (GstMiniObject * mini_object)
{
GstMiniObject *ret;
g_return_val_if_fail (mini_object != NULL, NULL);
if (gst_mini_object_is_writable (mini_object)) {
ret = mini_object;
} else {
ret = gst_mini_object_copy (mini_object);
GST_CAT_DEBUG (GST_CAT_PERFORMANCE, "copy %s miniobject %p -> %p",
g_type_name (GST_MINI_OBJECT_TYPE (mini_object)), mini_object, ret);
gst_mini_object_unref (mini_object);
}
return ret;
}
/**
* gst_mini_object_ref: (skip)
* @mini_object: the mini-object
*
* Increase the reference count of the mini-object.
*
* Note that the refcount affects the writability
* of @mini-object, see gst_mini_object_is_writable(). It is
* important to note that keeping additional references to
* GstMiniObject instances can potentially increase the number
* of memcpy operations in a pipeline, especially if the miniobject
* is a #GstBuffer.
*
* Returns: (transfer full): the mini-object.
*/
GstMiniObject *
gst_mini_object_ref (GstMiniObject * mini_object)
{
gint old_refcount, new_refcount;
g_return_val_if_fail (mini_object != NULL, NULL);
/* we can't assert that the refcount > 0 since the _free functions
* increments the refcount from 0 to 1 again to allow resurrecting
* the object
g_return_val_if_fail (mini_object->refcount > 0, NULL);
*/
old_refcount = g_atomic_int_add (&mini_object->refcount, 1);
new_refcount = old_refcount + 1;
GST_CAT_TRACE (GST_CAT_REFCOUNTING, "%p ref %d->%d", mini_object,
old_refcount, new_refcount);
GST_TRACER_MINI_OBJECT_REFFED (mini_object, new_refcount);
return mini_object;
}
/* Called with global qdata lock */
static gint
find_notify (GstMiniObject * object, GQuark quark, gboolean match_notify,
GstMiniObjectNotify notify, gpointer data)
{
guint i;
gint priv_state = g_atomic_int_get ((gint *) & object->priv_uint);
PrivData *priv_data;
if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA)
return -1;
priv_data = object->priv_pointer;
for (i = 0; i < priv_data->n_qdata; i++) {
if (QDATA_QUARK (priv_data, i) == quark) {
/* check if we need to match the callback too */
if (!match_notify || (QDATA_NOTIFY (priv_data, i) == notify &&
QDATA_DATA (priv_data, i) == data))
return i;
}
}
return -1;
}
static void
remove_notify (GstMiniObject * object, gint index)
{
gint priv_state = g_atomic_int_get ((gint *) & object->priv_uint);
PrivData *priv_data;
g_assert (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA);
priv_data = object->priv_pointer;
/* remove item */
priv_data->n_qdata--;
if (priv_data->n_qdata == 0) {
/* we don't shrink but free when everything is gone */
g_free (priv_data->qdata);
priv_data->qdata = NULL;
priv_data->n_qdata_len = 0;
} else if (index != priv_data->n_qdata) {
QDATA (priv_data, index) = QDATA (priv_data, priv_data->n_qdata);
}
}
/* Make sure we allocate the PrivData of this object if not happened yet */
static void
ensure_priv_data (GstMiniObject * object)
{
gint priv_state;
PrivData *priv_data;
GstMiniObject *parent = NULL;
GST_CAT_DEBUG (GST_CAT_PERFORMANCE,
"allocating private data %s miniobject %p",
g_type_name (GST_MINI_OBJECT_TYPE (object)), object);
priv_state = lock_priv_pointer (object);
if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA)
return;
/* Now we're either locked, or someone has already allocated the struct
* before us and we can just go ahead
*
* Note: if someone else allocated it in the meantime, we don't have to
* unlock as we didn't lock! */
if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA) {
if (priv_state == PRIV_DATA_STATE_ONE_PARENT)
parent = object->priv_pointer;
object->priv_pointer = priv_data = g_new0 (PrivData, 1);
if (parent) {
priv_data->parents = g_new (GstMiniObject *, 16);
priv_data->n_parents_len = 16;
priv_data->n_parents = 1;
priv_data->parents[0] = parent;
}
/* Unlock */
g_atomic_int_set ((gint *) & object->priv_uint,
PRIV_DATA_STATE_PARENTS_OR_QDATA);
}
}
static void
set_notify (GstMiniObject * object, gint index, GQuark quark,
GstMiniObjectNotify notify, gpointer data, GDestroyNotify destroy)
{
PrivData *priv_data;
ensure_priv_data (object);
priv_data = object->priv_pointer;
if (index == -1) {
/* add item */
index = priv_data->n_qdata++;
if (index >= priv_data->n_qdata_len) {
priv_data->n_qdata_len *= 2;
if (priv_data->n_qdata_len == 0)
priv_data->n_qdata_len = 16;
priv_data->qdata =
g_realloc (priv_data->qdata,
sizeof (GstQData) * priv_data->n_qdata_len);
}
}
QDATA_QUARK (priv_data, index) = quark;
QDATA_NOTIFY (priv_data, index) = notify;
QDATA_DATA (priv_data, index) = data;
QDATA_DESTROY (priv_data, index) = destroy;
}
static void
free_priv_data (GstMiniObject * obj)
{
guint i;
gint priv_state = g_atomic_int_get ((gint *) & obj->priv_uint);
PrivData *priv_data;
if (priv_state != PRIV_DATA_STATE_PARENTS_OR_QDATA) {
if (priv_state == PRIV_DATA_STATE_LOCKED) {
g_warning
("%s: object finalizing but has locked private data (object:%p)",
G_STRFUNC, obj);
} else if (priv_state == PRIV_DATA_STATE_ONE_PARENT) {
g_warning
("%s: object finalizing but still has parent (object:%p, parent:%p)",
G_STRFUNC, obj, obj->priv_pointer);
}
return;
}
priv_data = obj->priv_pointer;
for (i = 0; i < priv_data->n_qdata; i++) {
if (QDATA_QUARK (priv_data, i) == weak_ref_quark)
QDATA_NOTIFY (priv_data, i) (QDATA_DATA (priv_data, i), obj);
if (QDATA_DESTROY (priv_data, i))
QDATA_DESTROY (priv_data, i) (QDATA_DATA (priv_data, i));
}
g_free (priv_data->qdata);
if (priv_data->n_parents)
g_warning ("%s: object finalizing but still has %d parents (object:%p)",
G_STRFUNC, priv_data->n_parents, obj);
g_free (priv_data->parents);
g_free (priv_data);
}
/**
* gst_mini_object_unref: (skip)
* @mini_object: the mini-object
*
* Decreases the reference count of the mini-object, possibly freeing
* the mini-object.
*/
void
gst_mini_object_unref (GstMiniObject * mini_object)
{
gint old_refcount, new_refcount;
g_return_if_fail (mini_object != NULL);
g_return_if_fail (GST_MINI_OBJECT_REFCOUNT_VALUE (mini_object) > 0);
old_refcount = g_atomic_int_add (&mini_object->refcount, -1);
new_refcount = old_refcount - 1;
g_return_if_fail (old_refcount > 0);
GST_CAT_TRACE (GST_CAT_REFCOUNTING, "%p unref %d->%d",
mini_object, old_refcount, new_refcount);
GST_TRACER_MINI_OBJECT_UNREFFED (mini_object, new_refcount);
if (new_refcount == 0) {
gboolean do_free;
if (mini_object->dispose)
do_free = mini_object->dispose (mini_object);
else
do_free = TRUE;
/* if the subclass recycled the object (and returned FALSE) we don't
* want to free the instance anymore */
if (G_LIKELY (do_free)) {
/* there should be no outstanding locks */
g_return_if_fail ((g_atomic_int_get (&mini_object->lockstate) & LOCK_MASK)
< 4);
free_priv_data (mini_object);
GST_TRACER_MINI_OBJECT_DESTROYED (mini_object);
if (mini_object->free)
mini_object->free (mini_object);
}
}
}
/**
* gst_clear_mini_object: (skip)
* @object_ptr: a pointer to a #GstMiniObject reference
*
* Clears a reference to a #GstMiniObject.
*
* @object_ptr must not be %NULL.
*
* If the reference is %NULL then this function does nothing.
* Otherwise, the reference count of the object is decreased using
* gst_mini_object_unref() and the pointer is set to %NULL.
*
* A macro is also included that allows this function to be used without
* pointer casts.
*
* Since: 1.16
**/
#undef gst_clear_mini_object
void
gst_clear_mini_object (GstMiniObject ** object_ptr)
{
g_clear_pointer (object_ptr, gst_mini_object_unref);
}
/**
* gst_mini_object_replace:
* @olddata: (inout) (transfer full) (nullable): pointer to a pointer to a
* mini-object to be replaced
* @newdata: (allow-none): pointer to new mini-object
*
* Atomically modifies a pointer to point to a new mini-object.
* The reference count of @olddata is decreased and the reference count of
* @newdata is increased.
*
* Either @newdata and the value pointed to by @olddata may be %NULL.
*
* Returns: %TRUE if @newdata was different from @olddata
*/
gboolean
gst_mini_object_replace (GstMiniObject ** olddata, GstMiniObject * newdata)
{
GstMiniObject *olddata_val;
g_return_val_if_fail (olddata != NULL, FALSE);
GST_CAT_TRACE (GST_CAT_REFCOUNTING, "replace %p (%d) with %p (%d)",
*olddata, *olddata ? (*olddata)->refcount : 0,
newdata, newdata ? newdata->refcount : 0);
olddata_val = g_atomic_pointer_get ((gpointer *) olddata);
if (G_UNLIKELY (olddata_val == newdata))
return FALSE;
if (newdata)
gst_mini_object_ref (newdata);
while (G_UNLIKELY (!g_atomic_pointer_compare_and_exchange ((gpointer *)
olddata, olddata_val, newdata))) {
olddata_val = g_atomic_pointer_get ((gpointer *) olddata);
if (G_UNLIKELY (olddata_val == newdata))
break;
}
if (olddata_val)
gst_mini_object_unref (olddata_val);
return olddata_val != newdata;
}
/**
* gst_mini_object_steal: (skip)
* @olddata: (inout) (transfer full): pointer to a pointer to a mini-object to
* be stolen
*
* Replace the current #GstMiniObject pointer to by @olddata with %NULL and
* return the old value.
*
* Returns: (nullable): the #GstMiniObject at @oldata
*/
GstMiniObject *
gst_mini_object_steal (GstMiniObject ** olddata)
{
GstMiniObject *olddata_val;
g_return_val_if_fail (olddata != NULL, NULL);
GST_CAT_TRACE (GST_CAT_REFCOUNTING, "steal %p (%d)",
*olddata, *olddata ? (*olddata)->refcount : 0);
do {
olddata_val = g_atomic_pointer_get ((gpointer *) olddata);
if (olddata_val == NULL)
break;
} while (G_UNLIKELY (!g_atomic_pointer_compare_and_exchange ((gpointer *)
olddata, olddata_val, NULL)));
return olddata_val;
}
/**
* gst_mini_object_take:
* @olddata: (inout) (transfer full): pointer to a pointer to a mini-object to
* be replaced
* @newdata: pointer to new mini-object
*
* Modifies a pointer to point to a new mini-object. The modification
* is done atomically. This version is similar to gst_mini_object_replace()
* except that it does not increase the refcount of @newdata and thus
* takes ownership of @newdata.
*
* Either @newdata and the value pointed to by @olddata may be %NULL.
*
* Returns: %TRUE if @newdata was different from @olddata
*/
gboolean
gst_mini_object_take (GstMiniObject ** olddata, GstMiniObject * newdata)
{
GstMiniObject *olddata_val;
g_return_val_if_fail (olddata != NULL, FALSE);
GST_CAT_TRACE (GST_CAT_REFCOUNTING, "take %p (%d) with %p (%d)",
*olddata, *olddata ? (*olddata)->refcount : 0,
newdata, newdata ? newdata->refcount : 0);
do {
olddata_val = g_atomic_pointer_get ((gpointer *) olddata);
if (G_UNLIKELY (olddata_val == newdata))
break;
} while (G_UNLIKELY (!g_atomic_pointer_compare_and_exchange ((gpointer *)
olddata, olddata_val, newdata)));
if (olddata_val)
gst_mini_object_unref (olddata_val);
return olddata_val != newdata;
}
/**
* gst_mini_object_weak_ref: (skip)
* @object: #GstMiniObject to reference weakly
* @notify: callback to invoke before the mini object is freed
* @data: extra data to pass to notify
*
* Adds a weak reference callback to a mini object. Weak references are
* used for notification when a mini object is finalized. They are called
* "weak references" because they allow you to safely hold a pointer
* to the mini object without calling gst_mini_object_ref()
* (gst_mini_object_ref() adds a strong reference, that is, forces the object
* to stay alive).
*/
void
gst_mini_object_weak_ref (GstMiniObject * object,
GstMiniObjectNotify notify, gpointer data)
{
g_return_if_fail (object != NULL);
g_return_if_fail (notify != NULL);
g_return_if_fail (GST_MINI_OBJECT_REFCOUNT_VALUE (object) >= 1);
G_LOCK (qdata_mutex);
set_notify (object, -1, weak_ref_quark, notify, data, NULL);
G_UNLOCK (qdata_mutex);
}
/**
* gst_mini_object_weak_unref: (skip)
* @object: #GstMiniObject to remove a weak reference from
* @notify: callback to search for
* @data: data to search for
*
* Removes a weak reference callback from a mini object.
*/
void
gst_mini_object_weak_unref (GstMiniObject * object,
GstMiniObjectNotify notify, gpointer data)
{
gint i;
g_return_if_fail (object != NULL);
g_return_if_fail (notify != NULL);
G_LOCK (qdata_mutex);
if ((i = find_notify (object, weak_ref_quark, TRUE, notify, data)) != -1) {
remove_notify (object, i);
} else {
g_warning ("%s: couldn't find weak ref %p (object:%p data:%p)", G_STRFUNC,
notify, object, data);
}
G_UNLOCK (qdata_mutex);
}
/**
* gst_mini_object_set_qdata:
* @object: a #GstMiniObject
* @quark: A #GQuark, naming the user data pointer
* @data: An opaque user data pointer
* @destroy: Function to invoke with @data as argument, when @data
* needs to be freed
*
* This sets an opaque, named pointer on a miniobject.
* The name is specified through a #GQuark (retrieved e.g. via
* g_quark_from_static_string()), and the pointer
* can be gotten back from the @object with gst_mini_object_get_qdata()
* until the @object is disposed.
* Setting a previously set user data pointer, overrides (frees)
* the old pointer set, using %NULL as pointer essentially
* removes the data stored.
*
* @destroy may be specified which is called with @data as argument
* when the @object is disposed, or the data is being overwritten by
* a call to gst_mini_object_set_qdata() with the same @quark.
*/
void
gst_mini_object_set_qdata (GstMiniObject * object, GQuark quark,
gpointer data, GDestroyNotify destroy)
{
gint i;
gpointer old_data = NULL;
GDestroyNotify old_notify = NULL;
g_return_if_fail (object != NULL);
g_return_if_fail (quark > 0);
G_LOCK (qdata_mutex);
if ((i = find_notify (object, quark, FALSE, NULL, NULL)) != -1) {
PrivData *priv_data = object->priv_pointer;
old_data = QDATA_DATA (priv_data, i);
old_notify = QDATA_DESTROY (priv_data, i);
if (data == NULL)
remove_notify (object, i);
}
if (data != NULL)
set_notify (object, i, quark, NULL, data, destroy);
G_UNLOCK (qdata_mutex);
if (old_notify)
old_notify (old_data);
}
/**
* gst_mini_object_get_qdata:
* @object: The GstMiniObject to get a stored user data pointer from
* @quark: A #GQuark, naming the user data pointer
*
* This function gets back user data pointers stored via
* gst_mini_object_set_qdata().
*
* Returns: (transfer none) (nullable): The user data pointer set, or
* %NULL
*/
gpointer
gst_mini_object_get_qdata (GstMiniObject * object, GQuark quark)
{
guint i;
gpointer result;
g_return_val_if_fail (object != NULL, NULL);
g_return_val_if_fail (quark > 0, NULL);
G_LOCK (qdata_mutex);
if ((i = find_notify (object, quark, FALSE, NULL, NULL)) != -1) {
PrivData *priv_data = object->priv_pointer;
result = QDATA_DATA (priv_data, i);
} else {
result = NULL;
}
G_UNLOCK (qdata_mutex);
return result;
}
/**
* gst_mini_object_steal_qdata:
* @object: The GstMiniObject to get a stored user data pointer from
* @quark: A #GQuark, naming the user data pointer
*
* This function gets back user data pointers stored via gst_mini_object_set_qdata()
* and removes the data from @object without invoking its destroy() function (if
* any was set).
*
* Returns: (transfer full) (nullable): The user data pointer set, or
* %NULL
*/
gpointer
gst_mini_object_steal_qdata (GstMiniObject * object, GQuark quark)
{
guint i;
gpointer result;
g_return_val_if_fail (object != NULL, NULL);
g_return_val_if_fail (quark > 0, NULL);
G_LOCK (qdata_mutex);
if ((i = find_notify (object, quark, FALSE, NULL, NULL)) != -1) {
PrivData *priv_data = object->priv_pointer;
result = QDATA_DATA (priv_data, i);
remove_notify (object, i);
} else {
result = NULL;
}
G_UNLOCK (qdata_mutex);
return result;
}
/**
* gst_mini_object_add_parent:
* @object: a #GstMiniObject
* @parent: a parent #GstMiniObject
*
* This adds @parent as a parent for @object. Having one ore more parents affects the
* writability of @object: if a @parent is not writable, @object is also not
* writable, regardless of its refcount. @object is only writable if all
* the parents are writable and its own refcount is exactly 1.
*
* Note: This function does not take ownership of @parent and also does not
* take an additional reference. It is the responsibility of the caller to
* remove the parent again at a later time.
*
* Since: 1.16
*/
void
gst_mini_object_add_parent (GstMiniObject * object, GstMiniObject * parent)
{
gint priv_state;
g_return_if_fail (object != NULL);
GST_CAT_TRACE (GST_CAT_REFCOUNTING, "adding parent %p to object %p", parent,
object);
priv_state = lock_priv_pointer (object);
/* If we already had one parent, we need to allocate the full struct now */
if (priv_state == PRIV_DATA_STATE_ONE_PARENT) {
/* Unlock again */
g_atomic_int_set ((gint *) & object->priv_uint, priv_state);
ensure_priv_data (object);
priv_state = PRIV_DATA_STATE_PARENTS_OR_QDATA;
}
/* Now we either have to add the new parent to the full struct, or add
* our one and only parent to the pointer field */
if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA) {
PrivData *priv_data = object->priv_pointer;
/* Lock parents */
while (!g_atomic_int_compare_and_exchange (&priv_data->parent_lock, 0, 1));
if (priv_data->n_parents >= priv_data->n_parents_len) {
priv_data->n_parents_len *= 2;
if (priv_data->n_parents_len == 0)
priv_data->n_parents_len = 16;
priv_data->parents =
g_realloc (priv_data->parents,
priv_data->n_parents_len * sizeof (GstMiniObject *));
}
priv_data->parents[priv_data->n_parents] = parent;
priv_data->n_parents++;
/* Unlock again */
g_atomic_int_set (&priv_data->parent_lock, 0);
} else if (priv_state == PRIV_DATA_STATE_NO_PARENT) {
object->priv_pointer = parent;
/* Unlock again */
g_atomic_int_set ((gint *) & object->priv_uint, PRIV_DATA_STATE_ONE_PARENT);
} else {
g_assert_not_reached ();
}
}
/**
* gst_mini_object_remove_parent:
* @object: a #GstMiniObject
* @parent: a parent #GstMiniObject
*
* This removes @parent as a parent for @object. See
* gst_mini_object_add_parent().
*
* Since: 1.16
*/
void
gst_mini_object_remove_parent (GstMiniObject * object, GstMiniObject * parent)
{
gint priv_state;
g_return_if_fail (object != NULL);
GST_CAT_TRACE (GST_CAT_REFCOUNTING, "removing parent %p from object %p",
parent, object);
priv_state = lock_priv_pointer (object);
/* Now we either have to add the new parent to the full struct, or add
* our one and only parent to the pointer field */
if (priv_state == PRIV_DATA_STATE_PARENTS_OR_QDATA) {
PrivData *priv_data = object->priv_pointer;
guint i;
/* Lock parents */
while (!g_atomic_int_compare_and_exchange (&priv_data->parent_lock, 0, 1));
for (i = 0; i < priv_data->n_parents; i++)
if (parent == priv_data->parents[i])
break;
if (i != priv_data->n_parents) {
priv_data->n_parents--;
if (priv_data->n_parents != i)
priv_data->parents[i] = priv_data->parents[priv_data->n_parents];
} else {
g_warning ("%s: couldn't find parent %p (object:%p)", G_STRFUNC,
object, parent);
}
/* Unlock again */
g_atomic_int_set (&priv_data->parent_lock, 0);
} else if (priv_state == PRIV_DATA_STATE_ONE_PARENT) {
if (object->priv_pointer != parent) {
g_warning ("%s: couldn't find parent %p (object:%p)", G_STRFUNC,
object, parent);
/* Unlock again */
g_atomic_int_set ((gint *) & object->priv_uint, priv_state);
} else {
object->priv_pointer = NULL;
/* Unlock again */
g_atomic_int_set ((gint *) & object->priv_uint,
PRIV_DATA_STATE_NO_PARENT);
}
} else {
/* Unlock again */
g_atomic_int_set ((gint *) & object->priv_uint, PRIV_DATA_STATE_NO_PARENT);
}
}