Remove some custom and incomplete seek calculation
logic in favour of gst_segment_do_seek(), and
short-circuit any actual seeking or recalculation
if the position didn't change and just send an updated
segment directly.
This removes the custom seeking logic in favour of
using standard core seek handling.
The default behaviour of rtponviftimestamp is to drop buffers
outside the segment. This creates obvious problems for reverse
playback.
The ONVIF specification unfortunately doesn't describe how to handle
that specific use case, but we can expose a property to let the
user disable the dropping behaviour, and forward these buffers with
a G_MAXUINT64 ONVIF timestamp.
Also modify rtponvifparse to handle such timestamps appropriately.
We reject caps with other framerates as it's impossible to generate
timecodes unless we actually know a constant framerate. Reflect this
also in the pad template caps.
Instead of using a static hardcoded PCR interval, allow the user
to configure it.
Also revert back the default to a 40 ms interval, that was changed
in recent patches for no good reason.
There's no point in working with invalid LTC timestamps as all future
calculations will be wrong based on this, and invalid LTC timestamps can
sometimes be read via the audio input.
This patch just enforces boudaries for the access to the
standard_deviation array (64 floats). Such case can be
seen with a corrupted stream, where there's no hope to
obtain a valid decoded frame anyway.
https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/1002
The D bit is meant to be set whenever there is a discontinuity
in transmission, and directly maps to the DISCONT flag.
The E bit is not meant to be set on every buffer preceding a
discontinuity, but only on the last buffer of a contiguous section
of recording. This has to be signaled through the unfortunately-named
"discont" field of the custom NtpOffset event.
Based on a patch by
Georg Lippitsch <glippitsch@toolsonair.com>
Vivia Nikolaidou <vivia@toolsonair.com>
Using libltc from https://github.com/x42/libltc
We now have a single property to select the timecode source that should
be applied, and for each timecode source the timecode is updated at
every frame. Then based on a set mode, the timecode is added to the
frame if none exists already or all existing timecodes are removed and
the timecode is added.
In addition the real-time clock is considered a proper timecode source
now instead of only allowing to initialize once in the beginning with
it, and also instead of just taking the current time we now take the
current time at the clock time of the video frame.
The SPS parsing functions take a parse_vui_param flag
to skip VUI parsing, but there's no indication in the output
SPS struct that the VUI was skipped.
The only caller that ever passed FALSE seems to be the
important gst_h264_parser_parse_nal() function, meaning - so the
cached SPS were always silently invalid. That needs changing
anyway, meaning noone ever passes FALSE.
I don't see any use for saving a few microseconds in
order to silently produce garbage, and since this is still
unstable API, let's remove the parse_vui_param.
Fix a recently introduced segfault. Don't de-reference a NULL
SPS pointer when attempting to update source caps before SPS
has been seen in the stream.
Interleaved frames can be fragmented between
incoming frames. Thus, we can have multiple
frames within the single input frame, as well as
incomplete frame. Now it preserves parsing
state and handle both situations.
Fixes#991
The length of the TCP payload is the IP plus TCP header length
subtracted from the IP datagram length specified in the IP header.
Prior to this, the size was calculated incorrectly, considering
all data after TCP header as a payload till the end of a packet.
Fixes#995
If recording is set to FALSE after the last audio or video buffer and
before the EOS event then recording stop is never signalled.
Similarly, we should signal recording stop once both audio and video are
EOS, regardless of the recording property, as there's nothing to be
recorded anymore.
We generally always prefer the information from upstream for other
metadata (pixel-aspect-ration, etc.) and should also do so here.
Other parsers (h264parse) already do the same.